Advertisement

Cellular and Molecular Life Sciences

, Volume 72, Issue 3, pp 401–415 | Cite as

Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease

  • Triana Amen
  • Daniel Kaganovich
Review

Abstract

Neurodegenerative diseases and other proteinopathies constitute a class of several dozen illnesses etiologically linked to pathological protein misfolding and aggregation. Because of this strong association with disease pathology, cell death, and aging, accumulation of proteins in aggregates or aggregation-associated structures (inclusions) has come to be regarded by many as a deleterious process, to be avoided if possible. Recent work has led us to see inclusion structures and disordered aggregate-like protein mixtures (which we call dynamic droplets) in a new light: not necessarily as a result of a pathological breakdown of cellular order, but as an elaborate cellular architecture regulating function and stress response. In this review, we discuss what is currently known about the role of inclusion structures in cellular homeostasis, stress response, toxicity, and disease. We will focus on possible mechanisms of aggregate toxicity, in contrast to the homeostatic function of several inclusion structures.

Keywords

Chaperone Ubiquitin Proteasome Misfolded protein Aggregation PhoC Inclusion Inclusion body Aggresome JUNQ IPOD Stress foci Stress granules P-bodies Dynamic droplets 

Notes

Acknowledgments

We tried to cite all primary literature pertaining to inclusions and inclusion-like structures. We apologize to any colleagues if we unintentionally missed their studies. We thank Mark Kaganovich, Jeremy England, Richard Gardner, Ehud Cohen, and members of the Kaganovich lab for discussion and feedback on the manuscript. This work was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC-StG2013 337713 DarkSide starting grant, as well as an Israel Science Foundation Grant ISF 843/11; a German Israel Foundation Grant GIFI-1201-242.13/2012; an Israel Health Ministry grant under the framework of E-Rare-2, a Niedersachsen-Israel Research Program grant, and a grant from the American Federation for Aging Research.

References

  1. 1.
    Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. doi: 10.1038/nrd3050nrd3050 PubMedGoogle Scholar
  2. 2.
    Renner M, Melki R (2014) Protein aggregation and prionopathies. Pathol Biol (Paris) 62(3):162–168. doi: 10.1016/j.patbio.2014.01.003 Google Scholar
  3. 3.
    Rajan RS, Illing ME, Bence NF, Kopito RR (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci USA 98(23):13060–13065. doi: 10.1073/pnas.181479798181479798 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530PubMedGoogle Scholar
  5. 5.
    Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898PubMedCentralPubMedGoogle Scholar
  6. 6.
    Cotto J, Fox S, Morimoto R (1997) HSF1 granules: a novel stress-induced nuclear compartment of human cells. J Cell Sci 110(Pt 23):2925–2934PubMedGoogle Scholar
  7. 7.
    Kim S, Nollen EA, Kitagawa K, Bindokas VP, Morimoto RI (2002) Polyglutamine protein aggregates are dynamic. Nat Cell Biol 4(10):826–831. doi: 10.1038/ncb863ncb863 PubMedGoogle Scholar
  8. 8.
    Matsumoto G, Kim S, Morimoto RI (2006) Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J Biol Chem 281(7):4477–4485. doi: 10.1074/jbc.M509201200 PubMedGoogle Scholar
  9. 9.
    Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143(6):1457–1470. doi: 10.1083/jcb.143.6.1457 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21(12):516–520. doi: 10.1016/S0166-2236(98)01276-4 PubMedGoogle Scholar
  11. 11.
    Treusch S, Cyr DM, Lindquist S (2009) Amyloid deposits: protection against toxic protein species? Cell Cycle 8(11):1668–1674PubMedGoogle Scholar
  12. 12.
    Krobitsch S, Lindquist S (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 97(4):1589–1594PubMedCentralPubMedGoogle Scholar
  13. 13.
    Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci USA 94(24):12949–12956PubMedCentralPubMedGoogle Scholar
  14. 14.
    Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281(5384):1851–1854. doi: 10.1126/science.281.5384.1851 PubMedGoogle Scholar
  15. 15.
    Cleveland DW, Liu J (2000) Oxidation versus aggregation—how do SOD1 mutants cause ALS? Nat Med 6(12):1320–1321. doi: 10.1038/82122 PubMedGoogle Scholar
  16. 16.
    Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS ONE 3(4):e1867. doi: 10.1371/journal.pone.0001867 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Ben-Gedalya T, Cohen E (2012) Quality control compartments coming of age. Traffic 13(5):635–642. doi: 10.1111/j.1600-0854.2012.01330.x PubMedGoogle Scholar
  18. 18.
    Dillin A, Cohen E (2011) Ageing and protein aggregation-mediated disorders: from invertebrates to mammals. Philos Trans R Soc Lond B Biol Sci 366(1561):94–98. doi: 10.1098/rstb.2010.0271366/1561/94 PubMedCentralPubMedGoogle Scholar
  19. 19.
    England JL, Kaganovich D (2011) Polyglutamine shows a urea-like affinity for unfolded cytosolic protein. FEBS Lett 585(2):381–384. doi: 10.1016/j.febslet.2010.12.023 PubMedGoogle Scholar
  20. 20.
    Lin WL, Dickson DW (2012) Ultrastructure of ubiquitin-positive, TDP-43-negative neuronal inclusions in cerebral cortex of C9ORF72-linked frontotemporal lobar degeneration/amyotrophic lateral sclerosis. Neuropathology 32(6):679–681. doi: 10.1111/j.1440-1789.2012.01305.x PubMedGoogle Scholar
  21. 21.
    Waxman EA, Giasson BI (2011) Induction of intracellular tau aggregation is promoted by alpha-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J Neurosci 31(21):7604–7618. doi: 10.1523/Jneurosci.0297-11.2011 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Forman MS, Farmer J, Johnson JK, Clark CM, Arnold SE, Coslett HB, Chatterjee A, Hurtig HI, Karlawish JH, Rosen HJ, Van Deerlin V, Lee VM, Miller BL, Trojanowski JQ, Grossman M (2006) Frontotemporal dementia: clinicopathological correlations. Ann Neurol 59(6):952–962. doi: 10.1002/ana.20873 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53(1):135–160. doi: 10.1016/j.brainresrev.2006.08.001 PubMedGoogle Scholar
  24. 24.
    Bhat KP, Yan S, Wang CE, Li S, Li XJ (2014) Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A. Proc Natl Acad Sci USA 111(15):5706–5711. doi: 10.1073/pnas.14022151111402215111 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Sampaio-Marques B, Felgueiras C, Silva A, Rodrigues M, Tenreiro S, Franssens V, Reichert AS, Outeiro TF, Winderickx J, Ludovico P (2012) SNCA (alpha-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8(10):1494–1509. doi: 10.4161/Auto.21275 PubMedGoogle Scholar
  26. 26.
    Zondler L, Miller-Fleming L, Repici M, Goncalves S, Tenreiro S, Rosado-Ramos R, Betzer C, Straatman KR, Jensen PH, Giorgini F, Outeiro TF (2014) DJ-1 interactions with alpha-synuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease. Cell Death Dis 5:e1350. doi: 10.1038/cddis.2014.307cddis2014307 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311(5766):1471–1474. doi: 10.1126/science.1124514 PubMedGoogle Scholar
  28. 28.
    Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 99(16):10417–10422. doi: 10.1073/pnas.152161099152161099 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Volovik Y, Marques FC, Cohen E (2014) The nematode Caenorhabditis elegans: a versatile model for the study of proteotoxicity and aging. Methods 68(3):458–464. doi: 10.1016/j.ymeth.2014.04.014 PubMedGoogle Scholar
  30. 30.
    Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610. doi: 10.1126/science.1124646 PubMedGoogle Scholar
  31. 31.
    Douglas PM, Treusch S, Ren HY, Halfmann R, Duennwald ML, Lindquist S, Cyr DM (2008) Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc Natl Acad Sci USA 105(20):7206–7211. doi: 10.1073/pnas.08025931050802593105 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Johnson BS, McCaffery JM, Lindquist S, Gitler AD (2008) A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA 105(17):6439–6444. doi: 10.1073/pnas.08020821050802082105 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Liu J, Shinobu LA, Ward CM, Young D, Cleveland DW (2005) Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis. J Neurochem 93(4):875–882. doi: 10.1111/j.1471-4159.2005.03054.x PubMedGoogle Scholar
  34. 34.
    Parone PA, Da Cruz S, Han JS, McAlonis-Downes M, Vetto AP, Lee SK, Tseng E, Cleveland DW (2013) Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J Neurosci 33(11):4657–4671. doi: 10.1523/Jneurosci.1119-12.2013 PubMedCentralPubMedGoogle Scholar
  35. 35.
    D’Angelo F, Vignaud H, Di Martino J, Salin B, Devin A, Cullin C, Marchal C (2013) A yeast model for amyloid-beta aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Dis Model Mech 6(1):206–216. doi: 10.1242/dmm.010108dmm.010108 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Miller J, Arrasate M, Shaby BA, Mitra S, Masliah E, Finkbeiner S (2010) Quantitative relationships BETWEEN huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into Huntington’s disease molecular pathogenesis. J Neurosci 30(31):10541–10550. doi: 10.1523/Jneurosci.0146-10.2010 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Nucifora LG, Burke KA, Feng X, Arbez N, Zhu S, Miller J, Yang G, Ratovitski T, Delannoy M, Muchowski PJ, Finkbeiner S, Legleiter J, Ross CA, Poirier MA (2012) Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem 287(19):16017–16028. doi: 10.1074/jbc.M111.252577M111.252577 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F (2012) A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol Microbiol 86(6):1531–1547. doi: 10.1111/mmi.12075 PubMedGoogle Scholar
  39. 39.
    Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA (2008) Cytoplasmic diffusion: molecular motors mix it up. J Cell Biol 183(4):583–587. doi: 10.1083/jcb.200806149 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Hyman AA, Brangwynne CP (2011) Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev Cell 21(1):14–16. doi: 10.1016/j.devcel.2011.06.013 PubMedGoogle Scholar
  41. 41.
    Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR, Goldman RD, Lippincott-Schwartz J, Mackintosh FC, Weitz DA (2014) Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158(4):822–832. doi: 10.1016/j.cell.2014.06.051 PubMedGoogle Scholar
  42. 42.
    Weber SC, Spakowitz AJ, Theriot JA (2012) Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. P Natl Acad Sci USA 109(19):7338–7343. doi: 10.1073/pnas.1119505109 Google Scholar
  43. 43.
    Parry BR, Surovtsev IV, Cabeen MT, O’Hem CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156(1–2):183–194. doi: 10.1016/j.cell.2013.11.028 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Lee CF, Brangwynne CP, Gharakhani J, Hyman AA, Julicher F (2013) Spatial organization of the cell cytoplasm by position-dependent phase separation. Phys Rev Lett 111(26):088101. doi: 10.1103/Physrevlett.111.269902 PubMedGoogle Scholar
  45. 45.
    Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149(6):1188–1191. doi: 10.1016/j.cell.2012.05.022 PubMedGoogle Scholar
  46. 46.
    Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454(7208):U1036–U1088. doi: 10.1038/Nature07195 Google Scholar
  47. 47.
    Walter GM, Smith MC, Wisen S, Basrur V, Elenitoba-Johnson KSJ, Duennwald ML, Kumar A, Gestwicki JE (2011) Ordered assembly of heat shock proteins, Hsp26, Hsp70 Hsp90, and Hsp104, on expanded polyglutamine fragments revealed by chemical probes. J Biol Chem 286(47):40486–40493. doi: 10.1074/jbc.M111.284448 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Haslbeck M, Miess A, Stromer T, Walter S, Buchner J (2005) Disassembling protein aggregates in the yeast cytosol: the cooperation of Hsp26 with SSA1 and Hsp104. J Biol Chem 280(25):23861–23868. doi: 10.1074/jbc.M502697200 PubMedGoogle Scholar
  49. 49.
    Alberti S (2012) Molecular mechanisms of spatial protein quality control. Prion 6(5):2–4. doi: 10.4161/Pri.22470
  50. 50.
    Shiber A, Breuer W, Brandeis M, Ravid T (2013) Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol Biol Cell 24(13):2076–2087. doi: 10.1091/mbc.E13-01-0010 PubMedCentralPubMedGoogle Scholar
  51. 51.
    Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, Kaganovich D (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2(4):738–747. doi: 10.1016/j.celrep.2012.08.024 PubMedGoogle Scholar
  52. 52.
    Ogrodnik M, Salmonowicz H, Brown R, Turkowska J, Sredniawa W, Pattabiraman S, Amen T, Abraham AC, Eichler N, Lyakhovetsky R, Kaganovich D (2014) Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin. Proc Natl Acad Sci USA 111(22):8049–8054. doi: 10.1073/pnas.13240351111324035111 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Weisberg SJ, Lyakhovetsky R, Werdiger AC, Gitler AD, Soen Y, Kaganovich D (2012) Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. Proc Natl Acad Sci USA 109(39):15811–15816. doi: 10.1073/pnas.1205829109 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 23(16):3041–3056. doi: 10.1091/mbc.E12-03-0194 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Gallagher PS, Oeser ML, Abraham AC, Kaganovich D, Gardner RG (2014) Cellular maintenance of nuclear protein homeostasis. Cell Mol Life Sci 71(10):1865–1879. doi: 10.1007/s00018-013-1530-y PubMedGoogle Scholar
  56. 56.
    Fredrickson EK, Gallagher PS, Candadai SVC, Gardner RG (2013) Substrate recognition in nuclear protein quality control degradation is governed by exposed hydrophobicity that correlates with aggregation and insolubility. J Biol Chem 288(9):6130–6139. doi: 10.1074/jbc.M112.406710 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Tyedmers J (2012) Patterns of [PSI+] aggregation allow insights into cellular organization of yeast prion aggregates. Prion 6(3):191–200. doi: 10.4161/Pri.18986 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Treusch S, Lindquist S (2012) An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component. J Cell Biol 197(3):369–379. doi: 10.1083/jcb.201108146 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Tyedmers J, Treusch S, Dong J, McCaffery JM, Bevis B, Lindquist S (2010) Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. P Natl Acad Sci USA 107(19):8633–8638. doi: 10.1073/pnas.1003895107 Google Scholar
  60. 60.
    Kanneganti V, Kama R, Gerst JE (2011) Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast. Mol Biol Cell 22(10):1648–1663. doi: 10.1091/mbc.E10-11-0878 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Polling S, Mok YF, Ramdzan YM, Turner BJ, Yerbury JJ, Hill AF, Hatters DM (2014) Misfolded polyglutamine, polyalanine, and superoxide dismutase 1 aggregate via distinct pathways in the cell. J Biol Chem 289(10):6669–6680. doi: 10.1074/jbc.M113.520189 PubMedGoogle Scholar
  62. 62.
    Oling D, Eisele F, Kvint K, Nystrom T (2014) Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance. EMBO J 33(7):747–761. doi: 10.1002/embj.201386822 PubMedGoogle Scholar
  63. 63.
    Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. Mol Biol Cell 10:86aGoogle Scholar
  64. 64.
    Hill SM, Hao X, Liu B, Nystrom T (2014) Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 344(6190):1389–1392. doi: 10.1126/science.1252634 PubMedGoogle Scholar
  65. 65.
    Song J, Yang Q, Yang J, Larsson L, Hao X, Zhu X, Malmgren-Hill S, Cvijovic M, Fernandez-Rodriguez J, Grantham J, Gustafsson CM, Liu B, Nystrom T (2014) Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates. PLoS Genet 10(7):e1004539. doi: 10.1371/journal.pgen.1004539PGENETICS-D-13-03187 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Petrovska I, Nuske E, Munder MC, Kulasegaran G, Malinovska L, Kroschwald S, Richter D, Fahmy K, Gibson K, Verbavatz JM, Alberti S (2014) Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. Elife 3:5–11. doi: 10.7554/Elife.02409
  67. 67.
    Ben-Gedalya T, Lyakhovetsky R, Yedidia Y, Bejerano-Sagie M, Kogan NM, Karpuj MV, Kaganovich D, Cohen E (2011) Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments. J Cell Sci 124(Pt 11):1891–1902. doi: 10.1242/jcs.077693jcs.077693 PubMedGoogle Scholar
  68. 68.
    Thirumalai D, Reddy G, Straub JE (2012) Role of water in protein aggregation and amyloid polymorphism. Accounts Chem Res 45(1):83–92. doi: 10.1021/Ar2000869 Google Scholar
  69. 69.
    Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 170(5):847Google Scholar
  70. 70.
    Stoecklin G, Kedersha N (2013) Relationship of GW/P-bodies with stress granules. Adv Exp Med Biol 768:197–211. doi: 10.1007/978-1-4614-5107-5_12 PubMedGoogle Scholar
  71. 71.
    Liu BD, Larsson L, Franssens V, Hao XX, Hill SM, Andersson V, Hoglund D, Song J, Yang XX, Oling D, Grantham J, Winderickx J, Nystrom T (2011) Segregation of protein aggregates involves actin and the polarity machinery. Cell 147(5):959–961. doi: 10.1016/j.cell.2011.11.018 PubMedGoogle Scholar
  72. 72.
    Summers DW, Wolfe KJ, Ren HY, Cyr DM (2013) The type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLoS ONE 8(1):e52099. doi: 10.1371/journal.pone.0052099PONE-D-12-30428 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Shorter J, Lindquist S (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304(5678):1793–1797. doi: 10.1126/science.1098007 PubMedGoogle Scholar
  74. 74.
    Shorter J, Lindquist S (2008) Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J 27(20):2712–2724. doi: 10.1038/emboj.2008.194 PubMedCentralPubMedGoogle Scholar
  75. 75.
    DeSantis ME, Leung EH, Sweeny EA, Jackrel ME, Cushman-Nick M, Neuhaus-Follini A, Vashist S, Sochor MA, Knight MN, Shorter J (2012) Operational plasticity enables Hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell 151(4):778–793. doi: 10.1016/j.cell.2012.09.038 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Satpute-Krishnan P, Langseth SX, Serio TR (2007) Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol 5(2):251–262. doi: 10.1371/journal.pbio.0050024 Google Scholar
  77. 77.
    Zaarur N, Meriin AB, Gabai VL, Sherman MY (2008) Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1. J Biol Chem 283(41):27575–27584. doi: 10.1074/jbc PubMedGoogle Scholar
  78. 78.
    Zaarur N, Meriin AB, Bejarano E, Xu XB, Gabai VL, Cuervo AM, Sherman MY (2014) Proteasome failure promotes positioning of lysosomes around the aggresome via local block of microtubule-dependent transport. Mol Cell Biol 34(7):1336–1348. doi: 10.1128/Mcb.00103-14 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Muchowski PJ, Ning K, D’Souza-Schorey C, Fields S (2002) Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. P Natl Acad Sci USA 99(2):727–732. doi: 10.1073/pnas.022628699 Google Scholar
  80. 80.
    Strom AL, Shi P, Zhang FJ, Gal J, Kilty R, Hayward LJ, Zhu HN (2008) Interaction of amyotrophic lateral sclerosis (ALS)-related mutant copper-zinc superoxide dismutase with the dynein-dynactin complex contributes to inclusion formation. J Biol Chem 283(33):22795–22805. doi: 10.1074/jbc.M800276200 PubMedCentralPubMedGoogle Scholar
  81. 81.
    Yao TP (2010) The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer 1(7):779–786. doi: 10.1177/1947601910383277 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478(7368):260–263 10.1038/nature10430PubMedCentralPubMedGoogle Scholar
  83. 83.
    Wustner D, Solanko LM, Lund FW, Sage D, Schroll HJ, Lomholt MA (2012) Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation. BMC Bioinformatics 13:296. doi: 10.1186/1471-2105-13-296 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Fossati M, Borgese N, Colombo SF, Francolini M (2014) Visualization of endoplasmic reticulum subdomains in cultured cells. J Vis Exp 84:e50985. doi: 10.3791/50985 PubMedGoogle Scholar
  85. 85.
    Couthouis J, Hart MP, Erion R, King OD, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Mojsilovic-Petrovic J, Panossian S, Kim CE, Frackelton EC, Solski JA, Williams KL, Clay-Falcone D, Elman L, McCluskey L, Greene R, Hakonarson H, Kalb RG, Lee VM, Trojanowski JQ, Nicholson GA, Blair IP, Bonini NM, Van Deerlin VM, Mourelatos Z, Shorter J, Gitler AD (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21(13):2899–2911. doi: 10.1093/hmg/dds116dds116 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Gitler AD, Shorter J (2011) RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5(3):179–187. doi: 10.4161/pri.5.3.17230 PubMedCentralPubMedGoogle Scholar
  87. 87.
    West JP 3rd, Gitler AD (2014) Cell biology. Clogging information flow in ALS. Science 345(6201):1118–1119. doi: 10.1126/science.1259461345/6201/1118 PubMedGoogle Scholar
  88. 88.
    Hart MP, Brettschneider J, Lee VMY, Trojanowski JQ, Gitler AD (2012) Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions. Acta Neuropathol 124(2):221–230. doi: 10.1007/s00401-012-0985-5 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Bonini NM, Gitler AD (2011) Model organisms reveal insight into human neurodegenerative disease: ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS. J Mol Neurosci 45(3):676–683. doi: 10.1007/s12031-011-9548-9 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201(3):361–372. doi: 10.1083/jcb.201302044 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Gitler AD (2012) TDP-43 and FUS/TLS yield a target-rich haul in ALS. Nat Neurosci 15(11):1467–1469PubMedGoogle Scholar
  92. 92.
    Liu-Yesucevitz L, Lin AY, Ebata A, Boon JY, Reid W, Xu YF, Kobrin K, Murphy GJ, Petrucelli L, Wolozin B (2014) ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. J Neurosci 34(12):4167–4174. doi: 10.1523/Jneurosci.2350-13.2014 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Kim HJ, Raphael AR, LaDow ES, McGurk L, Weber RA, Trojanowski JQ, Lee VM, Finkbeiner S, Gitler AD, Bonini NM (2014) Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46(2):152–160. doi: 10.1038/ng.2853ng.2853 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Wang J, Farr GW, Zeiss CJ, Rodriguez-Gil DJ, Wilson JH, Furtak K, Rutkowski DT, Kaufman RJ, Ruse CI, Yates JR, Perrin S, Feany MB, Horwich AL (2009) Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. P Natl Acad Sci USA 106(5):1392–1397. doi: 10.1073/pnas.0813045106 Google Scholar
  95. 95.
    Wang J, Farr GW, Hall DH, Li F, Furtak K, Dreier L, Horwich AL (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. Plos Genet 5(1):2–6. doi: 10.1371/journal.pgen.1000350
  96. 96.
    Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J (2009) Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284(37):25459. doi: 10.1074/jbc.A109.010264 PubMedCentralGoogle Scholar
  97. 97.
    Mishra RS, Bose S, Gu Y, Li R, Singh N (2003) Aggresome formation by mutant prion proteins: the unfolding role of proteasomes in familial prion disorders. J Alzheimers Dis 5(1):15–23PubMedGoogle Scholar
  98. 98.
    Swinnen E, Buttner S, Outeiro TF, Galas MC, Madeo F, Winderickx J, Franssens V (2011) Aggresome formation and segregation of inclusions influence toxicity of alpha-synuclein and synphilin-1 in yeast. Biochem Soc Trans 39(5):1476–1481. doi: 10.1042/BST0391476BST0391476 PubMedGoogle Scholar
  99. 99.
    Wang H, Ying Z, Wang G (2012) Ataxin-3 regulates aggresome formation of copper-zinc superoxide dismutase (SOD1) by editing K63-linked polyubiquitin chains. J Biol Chem 287(34):28576–28585. doi: 10.1074/jbc.M111.299990M111.299990 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Adachi H, Kurooka T, Otsu W, Inaba M (2010) The forced aggresome formation of a bovine anion exchanger 1 (AE1) mutant through association with deltaF508-cystic fibrosis transmembrane conductance regulator upon proteasome inhibition in HEK293 cells. Jpn J Vet Res 58(2):101–110PubMedGoogle Scholar
  101. 101.
    Cohen E, Taraboulos A (2003) Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J 22(3):404–417. doi: 10.1093/Emboj/Cdg045 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Bounedjah O, Desforges B, Wu TD, Pioche-Durieu C, Marco S, Hamon L, Curmi PA, Guerquin-Kern JL, Pietrement O, Pastre D (2014) Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules. Nucleic Acids Res 42(13):8678–8691. doi: 10.1093/nar/gku582 PubMedGoogle Scholar
  103. 103.
    Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137(1):146–158. doi: 10.1016/j.cell.2009.02.044 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Halfmann R, Alberti S, Lindquist S (2010) Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol 20(3):125–133. doi: 10.1016/j.tcb.2009.12.003 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610. doi: 10.1126/science.1124646 PubMedGoogle Scholar
  106. 106.
    Prudencio M, Borchelt DR (2011) Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Mol Neurodegener 6:77. doi: 10.1186/1750-1326-6-771750-1326-6-77 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Sacino AN, Thomas MA, Ceballos-Diaz C, Cruz PE, Rosario AM, Lewis J, Giasson BI, Golde TE (2013) Conformational templating of alpha-synuclein aggregates in neuronal-glial cultures. Mol Neurodegener 8:17. doi: 10.1186/1750-1326-8-171750-1326-8-17 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Young D, Mayer F, Vidotto N, Schweizer T, Berth R, Abramowski D, Shimshek DR, van der Putten PH, Schmid P (2013) Mutant huntingtin gene-dose impacts on aggregate deposition, DARPP32 expression and neuroinflammation in HdhQ150 mice. PLoS ONE 8(9):e75108. doi: 10.1371/journal.pone.0075108PONE-D-12-35261 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. P Natl Acad Sci USA 106(35):14914–14919. doi: 10.1073/pnas.0902882106 Google Scholar
  110. 110.
    Nussbaum-Krammer CI, Morimoto RI (2014) Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases. Dis Models Mech 7(1):31–39. doi: 10.1242/Dmm.013011 Google Scholar
  111. 111.
    Gitler AD, Lehmann R (2012) Modeling human disease. Science 337(6092):269. doi: 10.1126/science.1227179 PubMedGoogle Scholar
  112. 112.
    Auluck PK, Caraveo G, Lindquist S (2010) Alpha-synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 26:211–233. doi: 10.1146/annurev.cellbio.042308.113313 PubMedGoogle Scholar
  113. 113.
    Eisbach SE, Outeiro TF (2013) Alpha-synuclein and intracellular trafficking: impact on the spreading of Parkinson’s disease pathology. J Mol Med (Berl) 91(6):693–703. doi: 10.1007/s00109-013-1038-9 Google Scholar
  114. 114.
    Tenreiro S, Reimao-Pinto MM, Antas P, Rino J, Wawrzycka D, Macedo D, Rosado-Ramos R, Amen T, Waiss M, Magalhaes F, Gomes A, Santos CN, Kaganovich D, Outeiro TF (2014) Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson’s disease. PLoS Genet 10(5):11–14. doi: 10.1371/journal.pgen.1004302
  115. 115.
    Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302(5651):1772–1775. doi: 10.1126/science.1090439 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Nystrom T, Liu BD (2014) Protein quality control in time and space—links to cellular aging. FEMS Yeast Res 14(1):40–48. doi: 10.1111/1567-1364.12095 PubMedGoogle Scholar
  117. 117.
    Nystrom T (2013) Aging: filtering out bad mitochondria. Curr Biol 23(23):R1037–R1039. doi: 10.1016/j.cub.2013.10.049 PubMedGoogle Scholar
  118. 118.
    Nystrom T, Liu BD (2014) The mystery of aging and rejuvenation—a budding topic. Curr Opin Microbiol 18:61–67. doi: 10.1016/j.mib.2014.02.003 PubMedGoogle Scholar
  119. 119.
    Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Frei SB, Snapp EL, Barral Y (2014) A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. Elife 3:3–11. doi: 10.7554/eLife.01883
  120. 120.
    Lippuner AD, Julou T, Barral Y (2014) Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 38(2):300–325. doi: 10.1111/1574-6976.12060 Google Scholar
  121. 121.
    Lindner AB, Madden R, Dernarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. P Natl Acad Sci USA 105(8):3076–3081. doi: 10.1073/pnas.0708931105 Google Scholar
  122. 122.
    Coelho M, Dereli A, Haese A, Kuhn S, Malinovska L, DeSantis ME, Shorter J, Alberti S, Gross T, Tolic-Norrelykke IM (2013) Fission yeast does not age under favorable conditions, but does so after stress. Curr Biol 23(19):1844–1852. doi: 10.1016/j.cub.2013.07.084 PubMedGoogle Scholar
  123. 123.
    Anderson P, Kedersha N (2006) RNA granules. Journal of Cell Biology 172(6):803–808. doi: 10.1083/jcb.200512082 Google Scholar
  124. 124.
    Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MAWH, van der Want JJL, de Vos RAI, Brunt ER, Sibon OCM, Kampinga HH (2006) Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 4(12):2325–2335. doi: 10.1371/journal.pbio.0040417 Google Scholar
  125. 125.
    Bufalino MR, DeVeale B, van der Kooy D (2013) The asymmetric segregation of damaged proteins is stem cell-type dependent. J Cell Biol 201(4):523–530. doi: 10.1083/jcb.201207052 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM (2008) Asymmetric mitosis: unequal segregation of proteins destined for degradation. P Natl Acad Sci USA 105(22):7732–7737. doi: 10.1073/pnas.0803027105 Google Scholar
  127. 127.
    Sinsimer KS, Lee JJ, Thiberge SY, Gavis ER (2013) Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Rep 5(5):1169–1177. doi: 10.1016/j.celrep.2013.10.045 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. P Natl Acad Sci USA 104(26):10877–10881. doi: 10.1073/pnas.0701634104 Google Scholar
  129. 129.
    Erjavec N, Cvijovic M, Klipp E, Nystrom T (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. P Natl Acad Sci USA 105(48):18764–18769. doi: 10.1073/pnas.0804550105 Google Scholar
  130. 130.
    Liu B, Larsson L, Franssens V, Hao X, Hill SM, Andersson V, Hoglund D, Song J, Yang X, Oling D, Grantham J, Winderickx J, Nystrom T (2011) Segregation of protein aggregates involves actin and the polarity machinery. Cell 147(5):959–961. doi: 10.1016/j.cell.2011.11.018 PubMedGoogle Scholar
  131. 131.
    Li J, Li T, Zhang X, Tang Y, Yang J, Le W (2014) Human superoxide dismutase 1 overexpression in motor neurons of Caenorhabditis elegans causes axon guidance defect and neurodegeneration. Neurobiol Aging 35(4):837–846. doi: 10.1016/j.neurobiolaging.2013.09.003 PubMedGoogle Scholar
  132. 132.
    Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, Warren ST, Wolozin B (2011) Local RNA translation at the synapse and in disease. J Neurosci 31(45):16086–16093. doi: 10.1523/Jneurosci.4105-11.2011 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9(4):e1000614. doi: 10.1371/journal.pbio.1000614 PubMedCentralPubMedGoogle Scholar
  134. 134.
    Spokoini R, Shamir M, Keness A, Kaganovich D (2013) 4D imaging of protein aggregation in live cells. J Vis Exp 74:4–6. doi: 10.3791/50083
  135. 135.
    Shipley FB, Clark CM, Alkema MJ, Leifer AM (2014) Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans. Front Neural Circuits 8:28. doi: 10.3389/fncir.2014.00028 PubMedCentralPubMedGoogle Scholar
  136. 136.
    Baker SM, Buckheit RW 3rd, Falk MM (2010) Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 11:15. doi: 10.1186/1471-2121-11-151471-2121-11-15 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of Cell and Developmental Biology, Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
  2. 2.Alexander Grass Center for BioengineeringHebrew University of JerusalemJerusalemIsrael

Personalised recommendations