Skip to main content

Advertisement

Log in

Proteolytic control of TGF-β co-receptor activity by BMP-1/tolloid-like proteases revealed by quantitative iTRAQ proteomics

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The metalloproteinase BMP-1 (bone morphogenetic protein-1) plays a major role in the control of extracellular matrix (ECM) assembly and growth factor activation. Most of the growth factors activated by BMP-1 are members of the TGF-β superfamily known to regulate multiple biological processes including embryonic development, wound healing, inflammation and tumor progression. In this study, we used an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic approach to reveal the release of proteolytic fragments from the cell surface or the ECM by BMP-1. Thirty-eight extracellular proteins were found in significantly higher or lower amounts in the conditioned medium of HT1080 cells overexpressing BMP-1 and thus, could be considered as candidate substrates. Strikingly, three of these new candidates (betaglycan, CD109 and neuropilin-1) were TGF-β co-receptors, also acting as antagonists when released from the cell surface, and were chosen for further substrate validation. Betaglycan and CD109 proved to be directly cleaved by BMP-1 and the corresponding cleavage sites were extensively characterized using a new mass spectrometry approach. Furthermore, we could show that the ability of betaglycan and CD109 to interact with TGF-β was altered after cleavage by BMP-1, leading to increased and prolonged SMAD2 phosphorylation in BMP-1-overexpressing cells. Betaglycan processing was also observed in primary corneal keratocytes, indicating a general and novel mechanism by which BMP-1 directly affects signaling by controlling TGF-β co-receptor activity. The proteomic data have been submitted to ProteomeXchange with the identifier PXD000786 and doi:10.6019/PXD000786.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BG:

Betaglycan

BMP:

Bone Morphogenetic Protein

BSA:

Bovine Serum Albumin

BTP:

BMP-1/Tolloid-like Proteinase

DTT:

Dithiothreitol

ECM:

Extracellular Matrix

GAG:

Glycosaminoglycan

mTLD:

Mammalian Tolloid

mTLL-1:

Mammalian Tolloid-like 1

SDS-PAGE:

Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis

TGF-β:

Transforming Growth Factor-β

ZP:

Zona Pellucida

References

  1. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki N, Labosky PA, Furuta Y, Hargett L, Dunn R, Fogo AB, Takahara K, Peters DM, Greenspan DS, Hogan BL (1996) Failure of ventral body wall closure in mouse embryos lacking a procollagen C-proteinase encoded by Bmp1, a mammalian gene related to Drosophila tolloid. Development 122:3587–3595

    CAS  PubMed  Google Scholar 

  3. Muir AM, Ren Y, Butz DH, Davis NA, Blank RD, Birk DE, Lee SJ, Rowe D, Feng JQ, Greenspan DS (2014) Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum Mol Genet 23(12):3085–3101

    Article  CAS  PubMed  Google Scholar 

  4. Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P et al (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90:661–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Martinez-Glez V, Valencia M, Caparros-Martin JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D et al (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Moali C, Hulmes DJ (2009) Extracellular and cell surface proteases in wound healing: new players are still emerging. Eur J Dermatol 19:552–564

    CAS  PubMed  Google Scholar 

  7. Grgurevic L, Macek B, Healy DR, Brault AL, Erjavec I, Cipcic A, Grgurevic I, Rogic D, Galesic K, Brkljacic J et al (2011) Circulating bone morphogenetic protein 1–3 isoform increases renal fibrosis. J Am Soc Nephrol 22:681–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, Yamada C, Liu TC, Huang G, Basson CT et al (2009) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11:46–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Tovar-Vidales T, Fitzgerald AM, Clark AF, Wordinger RJ (2013) Transforming growth factor-beta2 induces expression of biologically active bone morphogenetic protein-1 in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 54:4741–4748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lopez B, Gonzalez A, Beaumont J, Querejeta R, Larman M, Diez J (2007) Identification of a potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart failure. J Am Coll Cardiol 50:859–867

    Article  CAS  PubMed  Google Scholar 

  11. Moali C, Hulmes DJ (2012) Roles and regulation of BMP-1/tolloid-like proteinases : collagen/matrix assembly, growth factor activation and beyond. In: Karamanos M (ed) Extracellular matrix : pathobiology and signaling. De Gruyter, Berlin

    Google Scholar 

  12. Muir A, Greenspan DS (2011) Metalloproteinases in Drosophila to humans that are central players in developmental processes. J Biol Chem 286:41905–41911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ge G, Greenspan DS (2006) BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 175:111–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lee S, Solow-Cordero DE, Kessler E, Takahara K, Greenspan DS (1997) Transforming growth factor-beta regulation of bone morphogenetic protein-1/procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes. J Biol Chem 272:19059–19066

    Article  CAS  PubMed  Google Scholar 

  15. Wu MY, Hill CS (2009) TGF-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343

    Article  CAS  PubMed  Google Scholar 

  16. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11:790–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  18. Wang XF, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA (1991) Expression cloning and characterization of the TGF-beta type III receptor. Cell 67:797–805

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massague J (1991) Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell 67:785–795

    Article  CAS  PubMed  Google Scholar 

  20. Gougos A, Letarte M (1988) Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J. Immunol. 141:1925–1933

    CAS  PubMed  Google Scholar 

  21. Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265:8361–8364

    CAS  PubMed  Google Scholar 

  22. Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, Bizet AA, Philip A (2006) Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes. FASEB J. 20:1525–1527

    Article  CAS  PubMed  Google Scholar 

  23. Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, Buschmann MD, Philip A (2011) The TGF-beta co-receptor, CD109, promotes internalization and degradation of TGF-beta receptors. Biochim Biophys Acta 1813:742–753

    Article  CAS  PubMed  Google Scholar 

  24. Glinka Y, Prud’homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84:302–310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Glinka Y, Stoilova S, Mohammed N, Prud’homme GJ (2011) Neuropilin-1 exerts co-receptor function for TGF-beta-1 on the membrane of cancer cells and enhances responses to both latent and active TGF-beta. Carcinogenesis 32:613–621

    Article  CAS  PubMed  Google Scholar 

  26. Cackowski FC, Xu L, Hu B, Cheng SY (2004) Identification of two novel alternatively spliced Neuropilin-1 isoforms. Genomics 84:82–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hagiwara S, Murakumo Y, Mii S, Shigetomi T, Yamamoto N, Furue H, Ueda M, Takahashi M (2010) Processing of CD109 by furin and its role in the regulation of TGF-beta signaling. Oncogene 29:2181–2191

    Article  CAS  PubMed  Google Scholar 

  28. Litvinov IV, Bizet AA, Binamer Y, Jones DA, Sasseville D, Philip A (2011) CD109 release from the cell surface in human keratinocytes regulates TGF-beta receptor expression, TGF-beta signalling and STAT3 activation: relevance to psoriasis. Exp Dermatol 20:627–632

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Casillas F, Payne HM, Andres JL, Massague J (1994) Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 124:557–568

    Article  CAS  PubMed  Google Scholar 

  30. Velasco-Loyden G, Arribas J, Lopez-Casillas F (2004) The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1. J Biol Chem 279:7721–7733

    Article  CAS  PubMed  Google Scholar 

  31. Dean RA, Overall CM (2007) Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol Cell Proteomics 6:611–623

    Article  CAS  PubMed  Google Scholar 

  32. Bandyopadhyay A, Lopez-Casillas F, Malik SN, Montiel JL, Mendoza V, Yang J, Sun LZ (2002) Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res 62:4690–4695

    CAS  PubMed  Google Scholar 

  33. Vilchis-Landeros MM, Montiel JL, Mendoza V, Mendoza-Hernandez G, Lopez-Casillas F (2001) Recombinant soluble betaglycan is a potent and isoform-selective transforming growth factor-beta neutralizing agent. Biochem J 355:215–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bijakowski C, Vadon-Le GS, Delolme F, Bourhis JM, Lecorche P, Ruggiero F, Becker-Pauly C, Yiallouros I, Stocker W, Dive V et al (2012) Sizzled is unique among secreted frizzled-related proteins for its ability to specifically inhibit bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases. J Biol Chem 287:33581–33593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Moali C, Font B, Ruggiero F, Eichenberger D, Rousselle P, Francois V, Oldberg A, Bruckner-Tuderman L, Hulmes DJ (2005) Substrate-specific modulation of a multisubstrate proteinase. C-terminal processing of fibrillar procollagens is the only BMP-1-dependent activity to be enhanced by PCPE-1. J Biol Chem 280:24188–24194

    Article  CAS  PubMed  Google Scholar 

  36. Broder C, Arnold P, Vadon-Le GS, Konerding MA, Bahr K, Muller S, Overall CM, Bond JS, Koudelka T, Tholey A et al (2013) Metalloproteases meprin alpha and meprin beta are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc Natl Acad Sci USA 110:14219–14224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Doucet A, Overall CM (2011) Broad coverage identification of multiple proteolytic cleavage site sequences in complex high molecular weight proteins using quantitative proteomics as a complement to edman sequencing. Mol Cell Proteomics 10(M110):003533

    PubMed  Google Scholar 

  38. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, Sun Z, Nilsson E, Pratt B, Prazen B et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Keller A, Shteynberg D (2011) Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline. Methods Mol Biol 694:169–189

    Article  CAS  PubMed  Google Scholar 

  40. Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J et al (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41:D1063–D1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Builles N, Bechetoille N, Justin V, Ducerf A, Auxenfans C, Burillon C, Sergent M, Damour O (2006) Development of an optimised culture medium for keratocytes in monolayer. Biomed Mater Eng 16:S95–S104

    CAS  PubMed  Google Scholar 

  42. Turtle E, Chow N, Yang C, Sosa S, Bauer U, Brenner M, Solow-Cordero D, Ho WB (2012) Design and synthesis of procollagen C-proteinase inhibitors. Bioorg Med Chem Lett 22:7397–7401

    Article  CAS  PubMed  Google Scholar 

  43. Garrigue-Antar L, Barker C, Kadler KE (2001) Identification of amino acid residues in bone morphogenetic protein-1 important for procollagen C-proteinase activity. J Biol Chem 276:26237–26242

    Article  CAS  PubMed  Google Scholar 

  44. Dennler S, Itoh S, Vivien D, ten DP, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pommier RM, Gout J, Vincent DF, Cano CE, Kaniewski B, Martel S, Rodriguez J, Fourel G, Valcourt U, Marie JC et al (2012) The human NUPR1/P8 gene is transcriptionally activated by transforming growth factor beta via the SMAD signalling pathway. Biochem J 445:285–293

    CAS  PubMed  Google Scholar 

  46. Massague J (1987) Identification of receptors for type-beta transforming growth factor. Methods Enzymol 146:174–195

    Article  CAS  PubMed  Google Scholar 

  47. Lopez-Casillas F, Wrana JL, Massague J (1993) Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435–1444

    Article  CAS  PubMed  Google Scholar 

  48. Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E et al (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027

    Article  CAS  PubMed  Google Scholar 

  49. Unwin RD, Griffiths JR, Whetton AD (2010) Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat Protoc 5:1574–1582

    Article  CAS  PubMed  Google Scholar 

  50. Amano S, Scott IC, Takahara K, Koch M, Champliaud MF, Gerecke DR, Keene DR, Hudson DL, Nishiyama T, Lee S et al (2000) Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem 275:22728–22735

    Article  CAS  PubMed  Google Scholar 

  51. Solomon KR, Sharma P, Chan M, Morrison PT, Finberg RW (2004) CD109 represents a novel branch of the alpha2-macroglobulin/complement gene family. Gene 327:171–183

    Article  CAS  PubMed  Google Scholar 

  52. Andres JL, Stanley K, Cheifetz S, Massague J (1989) Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. J Cell Biol 109:3137–3145

    Article  CAS  PubMed  Google Scholar 

  53. Lin SJ, Hu Y, Zhu J, Woodruff TK, Jardetzky TS (2011) Structure of betaglycan zona pellucida (ZP)-C domain provides insights into ZP-mediated protein polymerization and TGF-beta binding. Proc. Natl. Acad. Sci. U. S. A 108:5232–5236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Monne M, Han L, Schwend T, Burendahl S, Jovine L (2008) Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature 456:653–657

    Article  CAS  PubMed  Google Scholar 

  55. Fortelny N, Cox J, Lange PF, Kappelhof R, Pavlidis P, Overall CM (2014) Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol 12:e1001869

    Article  PubMed Central  PubMed  Google Scholar 

  56. Mendoza V, Vilchis-Landeros MM, Mendoza-Hernandez G, Huang T, Villarreal MM, Hinck AP, Lopez-Casillas F, Montiel JL (2009) Betaglycan has two independent domains required for high affinity TGF-beta binding: proteolytic cleavage separates the domains and inactivates the neutralizing activity of the soluble receptor. Biochemistry 48:11755–11765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Boivin WA, Shackleford M, Vanden HA, Zhao H, Hackett TL, Knight DA, Granville DJ (2012) Granzyme B cleaves decorin, biglycan and soluble betaglycan, releasing active transforming growth factor-beta1. PLoS One 7:e33163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lamarre J, Vasudevan J, Gonias SL (1994) Plasmin cleaves betaglycan and releases a 60 kDa transforming growth factor-beta complex from the cell surface. Biochem J 302(Pt 1):199–205

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC (2008) Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 283:7628–7637

    Article  CAS  PubMed  Google Scholar 

  60. Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, Lopez-Casillas F (2001) Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A. J Biol Chem 276:14588–14596

    Article  CAS  PubMed  Google Scholar 

  61. Leighton M, Kadler KE (2003) Paired basic/Furin-like proprotein convertase cleavage of Pro-BMP-1 in the trans-Golgi network. J Biol Chem 278:18478–18484

    Article  CAS  PubMed  Google Scholar 

  62. Hanks BA, Holtzhausen A, Evans KS, Jamieson R, Gimpel P, Campbell OM, Hector-Greene M, Sun L, Tewari A, George A et al (2013) Type III TGF-beta receptor downregulation generates an immunotolerant tumor microenvironment. J Clin Invest 123:3925–3940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO (2014) Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. Elife 3:e01308

    Article  PubMed Central  PubMed  Google Scholar 

  64. Clark TG, Conway SJ, Scott IC, Labosky PA, Winnier G, Bundy J, Hogan BL, Greenspan DS (1999) The mammalian Tolloid-like 1 gene, Tll1, is necessary for normal septation and positioning of the heart. Development 126:2631–2642

    CAS  PubMed  Google Scholar 

  65. Stenvers KL, Tursky ML, Harder KW, Kountouri N, matayakul-Chantler S, Grail D, Small C, Weinberg RA, Sizeland AM, Zhu HJ (2003) Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos. Mol Cell Biol 23:4371–4385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Malecaze F, Massoudi D, Fournié P, Tricoire C, Cassagne M, Malbouyres M, Hulmes DJ, Moali C, Galiacy S (2014) Up-regulation of bone morphogenetic protein-1/mammalian tolloid and procollagen C-proteinase enhancer-1 in corneal scarring. Invest Ophthalmol Vis Sci in press

  67. Stramer BM, Zieske JD, Jung JC, Austin JS, Fini ME (2003) Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest Ophthalmol Vis Sci 44:4237–4246

    Article  PubMed  Google Scholar 

  68. Liang H, Zhang C, Ban T, Liu Y, Mei L, Piao X, Zhao D, Lu Y, Chu W, Yang B (2012) A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis. Int J Biochem Cell Biol 44:2152–2160

    Article  CAS  PubMed  Google Scholar 

  69. Ahn JY, Park S, Yun YS, Song JY (2010) Inhibition of type III TGF-beta receptor aggravates lung fibrotic process. Biomed Pharmacother 64:472–476

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Walter Stöcker for the pIRESneo2-BMP-1 construct, Larry W. Fisher for the LF-41 antibody and Fibrogen Inc for the yeast cells expressing procollagen I. The work was funded by the Consejo Nacional de Ciencia y Tecnologia of Mexico (SALUD-2010-1-142121 to F.L.C.), the Agence Nationale de la Recherche (ANR 07 PHYSIO 022 01 to C.M. and D.J.S.H), the Région Rhône-Alpes (to C.M. and M.T.), the Canadian Institutes of Health Research (to C.M.O.), the Ligue Nationale contre le Cancer (to L.B.A.), the Université Lyon I and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Moali.

Additional information

F. Delolme, C. Anastasi and L. B. Alcaraz contributed equally to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delolme, F., Anastasi, C., Alcaraz, L.B. et al. Proteolytic control of TGF-β co-receptor activity by BMP-1/tolloid-like proteases revealed by quantitative iTRAQ proteomics. Cell. Mol. Life Sci. 72, 1009–1027 (2015). https://doi.org/10.1007/s00018-014-1733-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1733-x

Keywords

Navigation