Skip to main content

Advertisement

Log in

Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is the primary bacterial pathogen causing contact lens related keratitis. Available ophthalmic agents have reduced efficacy and antimicrobial peptides (AMPs) hold promise as future antibiotics. Here we investigated the in vitro and in vivo anti-Pseudomonal activity of esculentin-1a(1-21)NH2, derived from a frog skin AMP. The data revealed a minimum inhibitory concentration between 2 and 16 μM against reference strains or drug-resistant clinical isolates of P. aeruginosa without showing toxicity to human corneal epithelial cells up to 50 μM. At 1 μM the peptide rapidly killed bacterial cells and this activity was fully retained in 150 mM sodium chloride and 70 % (v/v) human basal tears, particularly against the virulent ATCC 19660 strain. Furthermore, its dropwise administration at 40 μM to the ocular surface in a murine model of P. aeruginosa keratitis (three times daily, for 5 days post-infection) resulted in a significant reduction of infection. The mean clinical score was 2.89 ± 0.26 compared to 3.92 ± 0.08 for the vehicle control. In addition, the corneal level of viable bacteria in the peptide treated animals was significantly lower with a difference of 4 log10 colony counts, compared to 7.7 log10 cells recovered in the control. In parallel, recruitment of inflammatory cells was reduced by half compared to that found in the untreated eyes. Similar results were obtained when esculentin-1a(1-21)NH2 was applied prior to induction of keratitis. Overall, our findings highlight esculentin-1a(1-21)NH2 as an attractive candidate for the development of novel topical pharmaceuticals against Pseudomonas keratitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

BAC:

Benzalkonium chloride

CFU:

Colony-forming units

Esc-1a(1-21)NH2 :

Esculentin-1a(1-21)NH2

hTCEpi:

Telomerase-immortalized human cornel epithelial cells

LB:

Luria-Bertani

MH:

Mueller–Hinton

MIC:

Minimal inhibitory concentration

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MPO:

Myeloperoxidase

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

References

  1. Evans DJ, Fleiszig SM (2013) Why does the healthy cornea resist Pseudomonas aeruginosa infection? Am J Ophthalmol 155:961–970

    Article  PubMed Central  PubMed  Google Scholar 

  2. Keay L, Edwards K, Naduvilath T, Taylor HR, Snibson GR, Forde K, Stapleton F (2006) Microbial keratitis predisposing factors and morbidity. Ophthalmology 113:109–116

    Article  PubMed  Google Scholar 

  3. Thomas PA, Geraldine P (2007) Infectious keratitis. Curr Opin Infect Dis 20:129–141

    Article  PubMed  Google Scholar 

  4. Al-Mujaini A, Al-Kharusi N, Thakral A, Wali UK (2009) Bacterial keratitis: perspective on epidemiology, clinico-pathogenesis, diagnosis and treatment. Sultan Qaboos Univ Med J 9:184–195

    PubMed Central  PubMed  Google Scholar 

  5. Green M, Apel A, Stapleton F (2008) Risk factors and causative organisms in microbial keratitis. Cornea 27:22–27

    Article  PubMed  Google Scholar 

  6. Mela EK, Giannelou IP, Koliopoulos JX, Gartaganis SP (2003) Ulcerative keratitis in contact lens wearers. Eye Contact Lens 29:207–209

    Article  PubMed  Google Scholar 

  7. Schein OD, McNally JJ, Katz J, Chalmers RL, Tielsch JM, Alfonso E, Bullimore M, O’Day D, Shovlin J (2005) The incidence of microbial keratitis among wearers of a 30-day silicone hydrogel extended-wear contact lens. Ophthalmology 112:2172–2179

    Article  PubMed  Google Scholar 

  8. Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65

    Article  PubMed Central  PubMed  Google Scholar 

  9. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilm: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  10. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  CAS  PubMed  Google Scholar 

  11. McDermott AM (2013) Antimicrobial compounds in tears. Exp Eye Res 117:53–61

    Article  CAS  PubMed  Google Scholar 

  12. Robertson DM (2013) The effects of silicone hydrogel lens wear on the corneal epithelium and risk for microbial keratitis. Eye Contact Lens 39:67–72

    Article  PubMed Central  PubMed  Google Scholar 

  13. Evans DJ, Fleiszig SM (2013) Microbial keratitis: could contact lens material affect disease pathogenesis? Eye Contact Lens 39:73–78

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 74:621–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Willcox MD (2011) Review of resistance of ocular isolates of Pseudomonas aeruginosa and staphylococci from keratitis to ciprofloxacin, gentamicin and cephalosporins. Clin Exp Optom 94:161–168

    Article  PubMed  Google Scholar 

  16. Szczotka-Flynn LB, Imamura Y, Chandra J, Yu C, Mukherjee PK, Pearlman E, Ghannoum MA (2009) Increased resistance of contact lens-related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea 28:918–926

    Article  PubMed Central  PubMed  Google Scholar 

  17. Maviglia R, Nestorini R, Pennisi M (2009) Role of old antibiotics in multidrug resistant bacterial infections. Curr Drug Targets 10:895–905

    Article  CAS  PubMed  Google Scholar 

  18. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  19. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  20. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  PubMed  Google Scholar 

  21. Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    CAS  Google Scholar 

  22. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135:1–11

    Article  CAS  PubMed  Google Scholar 

  23. Dempsey CE, Hawrani A, Howe RA, Walsh TR (2010) Amphipathic antimicrobial peptides—from biophysics to therapeutics? Protein Pept Lett 17:1334–1344

    Article  CAS  PubMed  Google Scholar 

  24. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  PubMed  Google Scholar 

  25. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Haney EF, Hancock RB (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100:572–583

    Article  PubMed Central  PubMed  Google Scholar 

  27. Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29:27–43

    Article  CAS  PubMed  Google Scholar 

  28. Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30

    Article  CAS  PubMed  Google Scholar 

  29. Mangoni ML, Miele R, Renda TG, Barra D, Simmaco M (2001) The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J 15:1431–1432

    CAS  PubMed  Google Scholar 

  30. Mangoni ML (2006) Temporins, anti-infective peptides with expanding properties. Cell Mol Life Sci 63:1060–1069

    Article  CAS  PubMed  Google Scholar 

  31. Conlon JM, Iwamuro S, King JD (2009) Dermal cytolytic peptides and the system of innate immunity in anurans. Ann N Y Acad Sci 1163:75–82

    Article  CAS  PubMed  Google Scholar 

  32. Simmaco M, Mignogna G, Barra D, Bossa F (1994) Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem 269:11956–11961

    CAS  PubMed  Google Scholar 

  33. Islas-Rodriguez AE, Marcellini L, Orioni B, Barra D, Stella L, Mangoni ML (2009) Esculentin 1-21: a linear antimicrobial peptide from frog skin with inhibitory effect on bovine mastitis-causing bacteria. J Pept Sci 15:607–614

    Article  CAS  PubMed  Google Scholar 

  34. Luca V, Stringaro A, Colone M, Pini A, Mangoni ML (2013) Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 70:2773–2786

    Article  CAS  PubMed  Google Scholar 

  35. Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149

    Article  CAS  PubMed  Google Scholar 

  36. Mangoni ML, Shai Y (2011) Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action. Cell Mol Life Sci 68:2267–2280

    Article  CAS  PubMed  Google Scholar 

  37. Levy SB (2002) The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. J Antimicrob Chemother 49:25–30

    Article  CAS  PubMed  Google Scholar 

  38. Huang LC, Redfern RL, Narayanan S, Reins RY, McDermott AM (2007) In vitro activity of human beta-defensin 2 against Pseudomonas aeruginosa in the presence of tear fluid. Antimicrob Agents Chemother 51:3853–3860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, Wright WE, Cavanagh HD, Jester JV (2005) Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis Sci 46:470–478

    Article  PubMed  Google Scholar 

  40. O’Callaghan RJ, Engel LS, Hobden JA, Callegan MC, Green LC, Hill JM (1996) Pseudomonas keratitis. The role of an uncharacterized exoprotein, protease IV, in corneal virulence. Invest Ophthalmol Vis Sci 37:534–543

    PubMed  Google Scholar 

  41. Hobden JA, Masinick SA, Barrett RP, Hazlett LD (1995) Aged mice fail to upregulate ICAM-1 after Pseudomonas aeruginosa corneal infection. Invest Ophthalmol Vis Sci 36:1107–1114

    CAS  PubMed  Google Scholar 

  42. Hazlett LD, Moon MM, Strejc M, Berk RS (1987) Evidence for N-acetylmannosamine as an ocular receptor for P. aeruginosa adherence to scarified cornea. Invest Ophthalmol Vis Sci 28:1978–1985

    CAS  PubMed  Google Scholar 

  43. Cole N, Hume E, Khan S, Krockenberger M, Thakur A, Husband AJ, Willcox MD (2005) Interleukin-4 is not critical to pathogenesis in a mouse model of Pseudomonas aeruginosa corneal infection. Curr Eye Res 30:535–542

    Article  CAS  PubMed  Google Scholar 

  44. Singh S, Satani D, Patel A, Vhankade R (2012) Colored cosmetic contact lenses: an unsafe trend in the younger generation. Cornea 31:777–779

    Article  PubMed  Google Scholar 

  45. Knauf HP, Silvany R, Southern PM Jr, Risser RC, Wilson SE (1996) Susceptibility of corneal and conjunctival pathogens to ciprofloxacin. Cornea 15:66–71

    Article  CAS  PubMed  Google Scholar 

  46. Estrellas PS Jr, Alionte LG, Hobden JA (2000) A Pseudomonas aeruginosa strain isolated from a contact lens-induced acute red eye (CLARE) is protease-deficient. Curr Eye Res 20:157–165

    Article  PubMed  Google Scholar 

  47. Pinna A, Usai D, Sechi LA, Molicotti P, Zanetti S, Carta A (2008) Detection of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens-associated corneal ulcers. Cornea 27:320–326

    Article  PubMed  Google Scholar 

  48. Ormerod LD, Smith RE (1986) Contact lens-associated microbial keratitis. Arch Ophthalmol 104:79–83

    Article  CAS  PubMed  Google Scholar 

  49. Mannis MJ (2002) The use of antimicrobial peptides in ophthalmology: an experimental study in corneal preservation and the management of bacterial keratitis. Trans Am Ophthalmol Soc 100:243–271

    PubMed Central  PubMed  Google Scholar 

  50. Twining SS, Kirschner SE, Mahnke LA, Frank DW (1993) Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest Ophthalmol Vis Sci 34:2699–2712

    CAS  PubMed  Google Scholar 

  51. Chin GJ, Marx J (1994) Resistance to antibiotics. Science 264:359

    Article  CAS  PubMed  Google Scholar 

  52. Garg P, Sharma S, Rao GN (1999) Ciprofloxacin-resistant Pseudomonas keratitis. Ophthalmology 106:1319–1323

    Article  CAS  PubMed  Google Scholar 

  53. Cullor JS, Mannis MJ, Murphy CJ, Smith WL, Selsted ME, Reid TW (1990) In vitro antimicrobial activity of defensins against ocular pathogens. Arch Ophthalmol 108:861–864

    Article  CAS  PubMed  Google Scholar 

  54. Huang LC, Jean D, Proske RJ, Reins RY, McDermott AM (2007) Ocular surface expression and in vitro activity of antimicrobial peptides. Curr Eye Res 32:595–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Huang FD, Woodruff E, Mohrmann R, Broadie K (2006) Rolling blackout is required for synaptic vesicle exocytosis. J Neurosci 26:2369–2379

    Article  CAS  PubMed  Google Scholar 

  56. Schwab IR, Dries D, Cullor J, Smith W, Mannis M, Reid T, Murphy CJ (1992) Corneal storage medium preservation with defensins. Cornea 11:370–375

    Article  CAS  PubMed  Google Scholar 

  57. Sousa LB, Mannis MJ, Schwab IR, Cullor J, Hosotani H, Smith W, Jaynes J (1996) The use of synthetic Cecropin (D5C) in disinfecting contact lens solutions. CLAO J 22:114–117

    CAS  PubMed  Google Scholar 

  58. Nos-Barbera S, Portoles M, Morilla A, Ubach J, Andreu D, Paterson CA (1997) Effect of hybrid peptides of cecropin A and melittin in an experimental model of bacterial keratitis. Cornea 16:101–106

    Article  CAS  PubMed  Google Scholar 

  59. McDermott AM, Rich D, Cullor J, Mannis MJ, Smith W, Reid T, Murphy CJ (2006) The in vitro activity of selected defensins against an isolate of Pseudomonas in the presence of human tears. Br J Ophthalmol 90:609–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, Proske RJ (2003) Defensin expression by the cornea: multiple signalling pathways mediate IL-1beta stimulation of hBD-2 expression by human corneal epithelial cells. Invest Ophthalmol Vis Sci 44:1859–1865

    Article  PubMed Central  PubMed  Google Scholar 

  61. McDermott AM, Redfern RL, Zhang B (2001) Human beta-defensin 2 is up-regulated during re-epithelialization of the cornea. Curr Eye Res 22:64–67

    Article  CAS  PubMed  Google Scholar 

  62. Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102:874–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    Article  CAS  PubMed  Google Scholar 

  64. Santos CM, Kumar A, Kolar SS, Contreras-Caceres R, McDermott A, Cai C (2013) Immobilization of antimicrobial peptide IG-25 onto fluoropolymers via fluorous interactions and click chemistry. ACS Appl Mater Interfaces 5:12789–12793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Kumar A, Kolar SS, Zao M, McDermott AM, Cai C (2011) Localization of antimicrobial peptides on polymerized liposomes leading to their enhanced efficacy against Pseudomonas aeruginosa. Mol Bio Syst 7:711–713

    CAS  Google Scholar 

  66. Willcox MD, Hume EB, Aliwarga Y, Kumar N, Cole N (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol 105:1817–1825

    Article  CAS  PubMed  Google Scholar 

  67. Dutta D, Cole N, Kumar N, Willcox MD (2013) Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest Ophthalmol Vis Sci 54:175–182

    Article  CAS  PubMed  Google Scholar 

  68. Cole N, Hume EB, Vijay AK, Sankaridurg P, Kumar N, Willcox MD (2010) In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest Ophthalmol Vis Sci 51:390–395

    Article  PubMed  Google Scholar 

  69. Conlon JM, Sonnevend A, Patel M, Al-Dhaheri K, Nielsen PF, Kolodziejek J, Nowotny N, Iwamuro S, Pal T (2004) A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica. Regul Pept 118:135–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Santi Maria Recupero, Head of DESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, for allowing access to the ambulatory centre of S. Andrea Hospital to collect tears from consenting volunteers. We thank Dr. Anna Rita Blanco, at SIFI, Catania, Italy, for providing the clinical isolates from human ocular surface infections. This work was supported by grants NIH EY13175 (AMM), NIH EY07551 (UHCO Core grant), Sapienza University of Rome (prot. C26A12NPXZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Mangoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolar, S.S.N., Luca, V., Baidouri, H. et al. Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis. Cell. Mol. Life Sci. 72, 617–627 (2015). https://doi.org/10.1007/s00018-014-1694-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1694-0

Keywords

Navigation