Skip to main content

Advertisement

Log in

Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NAPs:

Nucleoid associated proteins

BTB:

Bric-a-Brac/Tramtrack/Broad Complex

CTCF:

CCCTC-binding factor protein

BEAF-32:

Boundary element-associated factor of 32kD

Su(Hw):

Suppressor of Hairy wing

CP190:

Centrosomal Protein 190kD

Mod(mdg4)67.2:

Modifier of mdg4

GAF:

GAGA Factor

Dwg/Zw5:

Deformed wings

HSV-1:

Herpes simplex virus 1

EBV:

Epstein–Barr virus

KSHV:

Kaposi’s sarcoma-associated herpesvirus

SINE:

Short Interspersed Element

AS1/AS2:

Asymmetric leaves 1 and 2

L(3)mbt:

Lethal(3) malignant brain tumor

TADs:

Topologically associating domains

ESCs:

Embryonic stem cells

NPCs:

Neural progenitor cells

LCR:

Locus control regions

PRE:

Polycomb Response Element

eve:

Even skipped

ORC:

Origin recognition complex proteins

pre-RC:

Pre-replication complex

SBS:

Su(Hw) binding site

PARylation:

Poly (ADP-ribosyl)ation

PARP:

Poly (ADP-ribose) polymerase

SUMO:

Small ubiquitin-like modifier

References

  1. Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F. C. W. Vogel, Leipzig

    Google Scholar 

  2. Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G, Nislow C, Reinberg D (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. eLife 1. doi:10.7554/eLife.00078

  3. Pereira SL, Grayling RA, Lurz R, Reeve JN (1997) Archaeal nucleosomes. Proc Natl Acad Sci 94(23):12633–12637

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Pereira SL, Reeve JN (1998) Histones and nucleosomes in Archaea and Eukarya: a comparative analysis. Extremophiles 2(3):141–148. doi:10.1007/s007920050053

    PubMed  CAS  Google Scholar 

  5. Le TBK, Imakaev MV, Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342(6159):731–734. doi:10.1126/science.1242059

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Thanbichler M, Wang SC, Shapiro L (2005) The bacterial nucleoid: a highly organized and dynamic structure. J Cell Biochem 96(3):506–521. doi:10.1002/jcb.20519

    PubMed  CAS  Google Scholar 

  7. Wang W, Li G-W, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333(6048):1445–1449. doi:10.1126/science.1204697

    PubMed  CAS  PubMed Central  Google Scholar 

  8. MacAlpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5(8). doi:10.1101/cshperspect.a010207

  9. Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445(7126):379–381

    PubMed  CAS  Google Scholar 

  10. Smolle M, Venkatesh S (2014) Transcription through chromatin. In: Workman JL, Abmayr SM (eds) Fundamentals of chromatin. Springer, New York, pp 427–489. doi:10.1007/978-1-4614-8624-4_11

  11. Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46(6):722–734

    PubMed  CAS  Google Scholar 

  12. Vagnarelli P (2012) Mitotic chromosome condensation in vertebrates. Exp Cell Res 318(12):1435–1441. doi:10.1016/j.yexcr.2012.03.017

    PubMed  CAS  Google Scholar 

  13. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20(3):290–299

    PubMed  CAS  Google Scholar 

  15. Hnilicová J, Staněk D (2011) Where splicing joins chromatin. Nucleus 2(3):182–188

    PubMed  PubMed Central  Google Scholar 

  16. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172

    PubMed  CAS  Google Scholar 

  17. Marsman J, Horsfield JA (2012) Long distance relationships: enhancer–promoter communication and dynamic gene transcription. Biochim Biophys Acta 1819(11–12):1217–1227. doi:10.1016/j.bbagrm.2012.10.008

    PubMed  CAS  Google Scholar 

  18. Kellum R, Schedl P (1991) A position-effect assay for boundaries of higher order chromosomal domains. Cell 64(5):941–950

    PubMed  CAS  Google Scholar 

  19. Udvardy A, Maine E, Schedl P (1985) The 87A7 chromomere: identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol 185(2):341–358

    PubMed  CAS  Google Scholar 

  20. Wallace HA, Plata MP, Kang HJ, Ross M, Labrador M (2010) Chromatin insulators specifically associate with different levels of higher-order chromatin organization in Drosophila. Chromosoma 119(2):177–194. doi:10.1007/s00412-009-0246-0

    PubMed  Google Scholar 

  21. Zhao K, Hart CM, Laemmli UK (1995) Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81(6):879–889

    PubMed  CAS  Google Scholar 

  22. Blanton J, Gaszner M, Schedl P (2003) Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev 17(5):664–675

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Bushey AM, Ramos E, Corces VG (2009) Three subclasses of a Drosophila insulator show distinct and cell type-specific genomic distributions. Genes Dev 23(11):1338–1350. doi:10.1101/gad.1798209

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Hou C, Dale R, Dean A (2010) Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci USA 107(8):3651–3656. doi:10.1073/pnas.0912087107

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Hou C, Li L, Qin ZS, Corces VG (2012) Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell 48(3):471–484

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Hou C, Zhao H, Tanimoto K, Dean A (2008) CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci USA 105(51):20398–20403. doi:10.1073/pnas.0808506106

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 103(28):10684–10689

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Nègre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RAH, Stein L, Henikoff S, Kellis M, White KP (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6(1):e1000814. doi:10.1371/journal.pgen.1000814

    PubMed  PubMed Central  Google Scholar 

  29. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472

    PubMed  CAS  Google Scholar 

  30. Schuettengruber B, Cavalli G (2013) Polycomb domain formation depends on short and long distance regulatory cues. PLoS One 8(2):e56531. doi:10.1371/journal.pone.0056531

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Schwartz YB, Linder-Basso D, Kharchenko PV, Tolstorukov MY, Kim M, Li HB, Gorchakov AA, Minoda A, Shanower G, Alekseyenko AA, Riddle NC, Jung YL, Gu T, Plachetka A, Elgin SC, Kuroda MI, Park PJ, Savitsky M, Karpen GH, Pirrotta V (2012) Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res 22(11):2188–2198

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Van Bortle K, Ramos E, Takenaka N, Yang J, Wahi JE, Corces VG (2012) Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Res 22(11):2176–2187. doi:10.1101/gr.136788.111

    PubMed  PubMed Central  Google Scholar 

  33. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489(7414):109–113

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Xu Z, Wei G, Chepelev I, Zhao K, Felsenfeld G (2011) Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription. Nat Struct Mol Biol 18(3):372–378

    PubMed  CAS  Google Scholar 

  35. Eldholm V, Haugen A, Zienolddiny S (2014) CTCF mediates the TERT enhancer–promoter interactions in lung cancer cells: identification of a novel enhancer region involved in the regulation of TERT gene. Int J Cancer 134(10):2305–2313. doi:10.1002/ijc.28570

    PubMed  CAS  Google Scholar 

  36. Erokhin M, Davydova A, Kyrchanova O, Parshikov A, Georgiev P, Chetverina D (2011) Insulators form gene loops by interacting with promoters in Drosophila. Development 138(18):4097–4106. doi:10.1242/dev.062836

    PubMed  CAS  Google Scholar 

  37. Chung J, Whiteley M, Felsenfeld G (1993) A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74(3):505–514

    PubMed  CAS  Google Scholar 

  38. Chung JÄ, Bell AÄ, Felsenfeld G (1997) Characterization of the chicken Beta-globin insulator. Proc Natl Acad Sci USA 94(2):575–580

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Farrell CM, West AG, Felsenfeld G (2002) Conserved CTCF insulator elements flank the mouse and human β-globin loci. Mol Cell Biol 22(11):3820–3831. doi:10.1128/mcb.22.11.3820-3831.2002

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Guo M, Thomas J, Collins G, Timmermans MCP (2008) Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell Online 20(1):48–58. doi:10.1105/tpc.107.056127

    CAS  Google Scholar 

  41. Hily J-M, Singer S, Yang Y, Liu Z (2009) A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana. Plant Cell Rep 28(7):1095–1104. doi:10.1007/s00299-009-0700-8

    PubMed  CAS  Google Scholar 

  42. Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109(5):551–562

    PubMed  CAS  Google Scholar 

  43. Ishii K, Laemmli UK (2003) Structural and dynamic functions establish chromatin domains. Mol Cell 11(1):237–248

    PubMed  CAS  Google Scholar 

  44. Palla F, Melfi R, Anello L, Di Bernardo M, Spinelli G (1997) Enhancer blocking activity located near the 3′ end of the sea urchin early H2A histone gene. Proc Natl Acad Sci USA 94(6):2272–2277

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Yang Y, Singer S, Liu Z (2011) Evaluation and comparison of the insulation efficiency of three enhancer-blocking insulators in plants. Plant Cell Tissue Organ Cult 105(3):405–414. doi:10.1007/s11240-010-9880-8

    CAS  Google Scholar 

  46. Heger P, George R, Wiehe T (2013) Successive gain of insulator proteins in arthropod evolution. Evolution 67(10):2945–2956. doi:10.1111/evo.12155

    PubMed  CAS  Google Scholar 

  47. Heger P, Marin B, Bartkuhn M, Schierenberg E, Wiehe T (2012) The chromatin insulator CTCF and the emergence of metazoan diversity. Proc Natl Acad Sci USA 109(43):17507–17512. doi:10.1073/pnas.1111941109

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Heger P, Marin B, Schierenberg E (2009) Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 10(1):84

    PubMed  PubMed Central  Google Scholar 

  49. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. http://www.nature.com/nature/journal/v489/n7414/abs/nature11247.html#supplementary-information

  50. Cuddapah S, Jothi R, Schones DE, Roh T-Y, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19(1):24–32. doi:10.1101/gr.082800.108

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green Roland D, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6):1231–1245. doi:10.1016/j.cell.2006.12.048

  52. Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F, Lee K, Canfield T, Weaver M, Sandstrom R, Thurman RE, Kaul R, Myers RM, Stamatoyannopoulos JA (2012) Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 22(9):1680–1688. doi:10.1101/gr.136101.111

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Blumenthal T, Gleason KS (2003) Caenorhabditis elegans operons: form and function. Nat Rev Genet 4(2):110–118

    Google Scholar 

  54. Boycheva S, Daviet L, Wolfender J-L, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci. doi:10.1016/j.tplants.2014.01.013

    PubMed  Google Scholar 

  55. Allen MA, Hillier LW, Waterston RH, Blumenthal T (2011) A global analysis of C. elegans trans-splicing. Genome Res 21(2):255–264. doi:10.1101/gr.113811.110

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Emberly E, Blattes R, Schuettengruber B, Hennion M, Jiang N, Hart C, Kas E, Cuvier O (2008) BEAF regulates cell-cycle genes through the controlled deposition of H3K9 methylation marks into its conserved dual-core binding sites. PLoS Biol 6(12):2896–2910

    PubMed  CAS  Google Scholar 

  57. Schoborg TA, Labrador M (2010) The phylogenetic distribution of non-CTCF insulator proteins is limited to insects and reveals that BEAF-32 is Drosophila lineage specific. J Mol Evol 70(1):74–84. doi:10.1007/s00239-009-9310-x

    PubMed  CAS  Google Scholar 

  58. Yang J, Ramos E, Corces VG (2012) The BEAF-32 insulator coordinates genome organization and function during the evolution of Drosophila species. Genome Res 22(11):2199–2207. doi:10.1101/gr.142125.112

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Raab JR, Kamakaka RT (2010) Insulators and promoters: closer than we think. Nat Rev Genet 11(6):439–446

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Spivakov M, Akhtar J, Kheradpour P, Beal K, Girardot C, Koscielny G, Herrero J, Kellis M, Furlong E, Birney E (2012) Analysis of variation at transcription factor binding sites in Drosophila and humans. Genome Biol 13(9):R49

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Whitfield T, Wang J, Collins P, Partridge EC, Aldred S, Trinklein N, Myers R, Weng Z (2012) Functional analysis of transcription factor binding sites in human promoters. Genome Biol 13(9):R50

    PubMed  PubMed Central  Google Scholar 

  62. Raab JR, Chiu J, Zhu J, Katzman S, Kurukuti S, Wade PA, Haussler D, Kamakaka RT (2012) Human tRNA genes function as chromatin insulators. EMBO J 31(2):330–350. doi:10.1038/emboj.2011.406

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Valenzuela L, Dhillon N, Kamakaka RT (2009) Transcription independent insulation at TFIIIC-dependent insulators. Genetics 183(1):131–148. doi:10.1534/genetics.109.106203

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Van Bortle K, Corces VG (2012) tDNA insulators and the emerging role of TFIIIC in genome organization. Biochem Soc Symp 3(6):277–284. doi:10.4161/trns.21579

    Google Scholar 

  65. Geyer PK (1997) The role of insulator elements in defining domains of gene expression. Curr Opin Genet Dev 7(2):242–248

    PubMed  CAS  Google Scholar 

  66. Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew J-L, Ruan Y, Wei C-L, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18(11):1752–1762. doi:10.1101/gr.080663.108

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Jacques PE, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9(5):e1003504. doi:10.1371/journal.pgen.1003504

  68. Johnson R, Gamblin RJ, Ooi L, Bruce AW, Donaldson IJ, Westhead DR, Wood IC, Jackson RM, Buckley NJ (2006) Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Res 34(14):3862–3877. doi:10.1093/nar/gkl525

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Schmidt D, Schwalie Petra C, Wilson Michael D, Ballester B, Gonçalves Â, Kutter C, Brown Gordon D, Marshall A, Flicek P, Odom Duncan T (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1–2):335–348. doi:10.1016/j.cell.2011.11.058

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Conte C, Dastugue B, Vaury C (2002) Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes. Mol Cell Biol 22(6):1767–1777. doi:10.1128/mcb.22.6.1767-1777.2002

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Modolell J, Bender W, Meselson M (1983) Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc Natl Acad Sci USA 80(6):1678–1682

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Guerrero PA, Maggert KA (2011) The CCCTC-binding factor (CTCF) of Drosophila contributes to the regulation of the ribosomal DNA and nucleolar stability. PLoS One 6(1):e16401. doi:10.1371/journal.pone.0016401

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Galliano H, Müller AE, Lucht JM, Meyer P (1995) The transformation booster sequence from Petunia hybrida is a retrotransposon derivative that binds to the nuclear scaffold. Mol Gen Genet 247(5):614–622. doi:10.1007/BF00290353

    PubMed  CAS  Google Scholar 

  74. Mlynárová L, Hricová A, Loonen A, Nap J-P (2003) The presence of a chromatin boundary appears to shield a transgene in tobacco from RNA silencing. Plant Cell Online 15(9):2203–2217. doi:10.1105/tpc.012070

    Google Scholar 

  75. Crepaldi L, Policarpi C, Coatti A, Sherlock WT, Jongbloets BC, Down TA, Riccio A (2013) Binding of TFIIIC to SINE elements controls the relocation of activity-dependent neuronal genes to transcription factories. PLoS Genet 9(8):e1003699. doi:10.1371/journal.pgen.1003699

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Lunyak VV, Prefontaine GG, Núñez E, Cramer T, Ju B-G, Ohgi KA, Hutt K, Roy R, García-Díaz A, Zhu X, Yung Y, Montoliu L, Glass CK, Rosenfeld MG (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317(5835):248–251. doi:10.1126/science.1140871

    PubMed  CAS  Google Scholar 

  77. Román AC, González-Rico FJ, Moltó E, Hernando H, Neto A, Vicente-Garcia C, Ballestar E, Gómez-Skarmeta JL, Vavrova-Anderson J, White RJ, Montoliu L, Fernández-Salguero PM (2011) Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 21(3):422–432. doi:10.1101/gr.111203.110

    PubMed  PubMed Central  Google Scholar 

  78. Amelio AL, McAnany PK, Bloom DC (2006) A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol 80(5):2358–2368. doi:10.1128/jvi.80.5.2358-2368.2006

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Chau CM, Zhang X-Y, McMahon SB, Lieberman PM (2006) Regulation of Epstein–Barr virus latency type by the chromatin boundary factor CTCF. J Virol 80(12):5723–5732. doi:10.1128/jvi.00025-06

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Ertel MK, Cammarata AL, Hron RJ, Neumann DM (2012) CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent manner. J Virol 86(23):12741–12759. doi:10.1128/jvi.01655-12

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM (2011) Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog 7(8):e1002140. doi:10.1371/journal.ppat.1002140

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM (2008) Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 27(4):654–666. http://www.nature.com/emboj/journal/v27/n4/suppinfo/emboj20081a_S1.html

  83. Tempera I, Wiedmer A, Dheekollu J, Lieberman PM (2010) CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 6(8):e1001048. doi:10.1371/journal.ppat.1001048

    PubMed  PubMed Central  Google Scholar 

  84. Matharu NK, Hussain T, Sankaranarayanan R, Mishra RK (2010) Vertebrate homologue of Drosophila GAGA factor. J Mol Biol 400(3):434–447. doi:10.1016/j.jmb.2010.05.010

  85. Srivastava S, Puri D, Garapati H, Dhawan J, Mishra R (2013) Vertebrate GAGA factor associated insulator elements demarcate homeotic genes in the HOX clusters. Epigenet Chromatin 6(1):8

    CAS  Google Scholar 

  86. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12(7):1048–1059. doi:10.1101/gr.174302

    PubMed  CAS  PubMed Central  Google Scholar 

  87. She W, Lin W, Zhu Y, Chen Y, Jin W, Yang Y, Han N, Bian H, Zhu M, Wang J (2010) The gypsy insulator of Drosophila melanogaster, together with its binding protein suppressor of Hairy-wing, facilitate high and precise expression of transgenes in Arabidopsis thaliana. Genetics 185(4):1141–1150. doi:10.1534/genetics.110.117960

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Gerasimova TI, Gdula DA, Gerasimov DV, Simonova O, Corces VG (1995) A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell 82(4):587–597

    PubMed  CAS  Google Scholar 

  89. Pai CY, Lei EP, Ghosh D, Corces VG (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 16(5):737–748. doi:10.1016/j.molcel.2004.11.004

    PubMed  CAS  Google Scholar 

  90. Guruharsha KG, Rual J-F, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, VijayRaghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S (2011) A protein complex network of Drosophila melanogaster. Cell 147(3):690–703

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Matzat LH, Dale RK, Moshkovich N, Lei EP (2012) Tissue-specific regulation of chromatin insulator function. PLoS Genet 8(11):e1003069

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, Lei EP (2011) RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev 25(16):1686–1701. doi:10.1101/gad.16651211

  93. Richter C, Oktaba K, Steinmann J, Müller J, Knoblich JA (2011) The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nat Cell Biol 13(9):1029–1039

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Kurshakova M, Maksimenko O, Golovnin A, Pulina M, Georgieva S, Georgiev P, Krasnov A (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol Cell 27(2):332–338

    PubMed  CAS  Google Scholar 

  95. Capelson M, Corces VG (2005) The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol Cell 20(1):105–116. doi:10.1016/j.molcel.2005.08.031

    PubMed  CAS  Google Scholar 

  96. Lei EP, Corces VG (2006) RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38(8):936–941. http://www.nature.com/ng/journal/v38/n8/suppinfo/ng1850_S1.html

  97. Ramos E, Torre EA, Bushey AM, Gurudatta BV, Corces VG (2011) DNA topoisomerase II modulates insulator function in Drosophila. PLoS One 6(1):e16562. doi:10.1371/journal.pone.0016562

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Kellner WA, Van Bortle K, Li L, Ramos E, Takenaka N, Corces VG (2013) Distinct isoforms of the Drosophila Brd4 homologue are present at enhancers, promoters and insulator sites. Nucleic Acids Res. doi:10.1093/nar/gkt722

    PubMed  PubMed Central  Google Scholar 

  99. Lim SJ, Boyle PJ, Chinen M, Dale RK, Lei EP (2013) Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Res 41(5):2963–2980. doi:10.1093/nar/gkt037

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Vorobyeva NE, Mazina MU, Golovnin AK, Kopytova DV, Gurskiy DY, Nabirochkina EN, Georgieva SG, Georgiev PG, Krasnov AN (2013) Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome. Nucleic Acids Res 41(11):5717–5730. doi:10.1093/nar/gkt297

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Yang J, Sung E, Donlin-Asp PG, Corces VG (2013) A subset of Drosophila myc sites remain associated with mitotic chromosomes colocalized with insulator proteins. Nat Commun 4:1464. http://www.nature.com/ncomms/journal/v4/n2/suppinfo/ncomms2469_S1.html

  102. Aoki T, Sarkeshik A, Yates J, Schedl P, Kadonaga J (2012) Elba, a novel developmentally regulated chromatin boundary factor is a hetero-tripartite DNA binding complex. eLife 1. doi:10.7554/eLife.00171

  103. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132(3):422–433

    PubMed  CAS  Google Scholar 

  104. Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 105(24):8309–8314. doi:10.1073/pnas.0801273105

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters J-M (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801. http://www.nature.com/nature/journal/v451/n7180/suppinfo/nature06634_S1.html

  106. Xiao T, Wallace J, Felsenfeld G (2011) Specific sites in the c terminus of CTCF interact with the sa2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol 31(11):2174–2183. doi:10.1128/mcb.05093-11

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M (2009) Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460(7253):410–413. http://www.nature.com/nature/journal/v460/n7253/suppinfo/nature08079_S1.html

  108. Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, Krueger C, Reik W, Peters J-M, Murrell A (2009) Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet 5(11):e1000739. doi:10.1371/journal.pgen.1000739

    PubMed  PubMed Central  Google Scholar 

  109. Li Y, Huang W, Niu L, Umbach D, Covo S, Li L (2013) Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes. BMC Genom 14(1):553

    CAS  Google Scholar 

  110. Bartkuhn M, Straub T, Herold M, Herrmann M, Rathke C, Saumweber H, Gilfillan GD, Becker PB, Renkawitz R (2009) Active promoters and insulators are marked by the centrosomal protein 190. EMBO J 28(7):877–888. http://www.nature.com/emboj/journal/v28/n7/suppinfo/emboj200934a_S1.html

  111. Galli GG, Carrara M, Francavilla C, Honnens de Lichtenberg K, Olsen JV, Calogero RA, Lund AH (2013) Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells. Mol Cell Biol 33(22):4504–4516. doi:10.1128/mcb.00545-13

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP, Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S, Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, Lacroute P, Leng J, Lian J, Monahan H, O’Geen H, Ouyang Z, Partridge EC, Patacsil D, Pauli F, Raha D, Ramirez L, Reddy TE, Reed B, Shi M, Slifer T, Wang J, Wu L, Yang X, Yip KY, Zilberman-Schapira G, Batzoglou S, Sidow A, Farnham PJ, Myers RM, Weissman SM, Snyder M (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414):91–100. http://www.nature.com/nature/journal/v489/n7414/abs/nature11245.html#supplementary-information

  113. Cavalieri V, Melfi R, Spinelli G (2013) The Compass-like Locus, exclusive to the Ambulacrarians, encodes a chromatin insulator binding protein in the sea urchin embryo. PLoS Genet 9(9):e1003847. doi:10.1371/journal.pgen.1003847

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Akasaka K, Nishimura A, Takata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Shimada H (1999) Upstream element of the sea urchin arylsulfatase gene serves as an insulator. Cell Mol Biol 45(5):555–565

    PubMed  CAS  Google Scholar 

  115. Yajima M, Fairbrother WG, Wessel GM (2012) ISWI contributes to ArsI insulator function in development of the sea urchin. Development 139(19):3613–3622. doi:10.1242/dev.081828

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Li M, Belozerov VE, Cai HN (2010) Modulation of chromatin boundary activities by nucleosome-remodeling activities in Drosophila melanogaster. Mol Cell Biol 30(4):1067–1076. doi:10.1128/mcb.00183-09

    PubMed  PubMed Central  Google Scholar 

  117. Di Simone P, Di Leonardo A, Costanzo G, Melfi R, Spinelli G (2001) The sea urchin sns insulator blocks cmv enhancer following integration in human cells. Biochem Biophys Res Commun 284(4):987–992. doi:10.1006/bbrc.2001.5082

  118. Nagaya S, Yoshida K, Kato K, Akasaka K, Shinmyo A (2001) An insulator element from the sea urchin Hemicentrotus pulcherrimus suppresses variation in transgene expression in cultured tobacco cells. Mol Genet Genomics 265(3):405–413

    PubMed  CAS  Google Scholar 

  119. Tajima S, Shinohara K, Fukumoto M, Zaitsu R, Miyagawa J, Hino S, Fan J, Akasaka K, Matsuoka M (2006) Ars insulator identified in sea urchin possesses an activity to ensure the transgene expression in mouse cells. J Biochem 139(4):705–714. doi:10.1093/jb/mvj075

    PubMed  CAS  Google Scholar 

  120. Watanabe S, Watanabe S, Sakamoto N, Sato M, Akasaka K (2006) Functional analysis of the sea urchin-derived arylsulfatase (Ars)-element in mammalian cells. Genes Cells 11(9):1009–1021. doi:10.1111/j.1365-2443.2006.00996.x

    PubMed  CAS  Google Scholar 

  121. Corces VG (1995) Keeping enhancers under control. Nature 376(6540):462–463

    PubMed  CAS  Google Scholar 

  122. Gerasimova TI, Byrd K, Corces VG (2000) A chromatin insulator determines the nuclear localization of DNA. Mol Cell 6(5):1025–1035

    PubMed  CAS  Google Scholar 

  123. Gerasimova TI, Corces VG (1998) Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92(4):511–521

    PubMed  CAS  Google Scholar 

  124. Gerasimova TI, Lei EP, Bushey AM, Corces VG (2007) Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila. Mol Cell 28(5):761–772. doi:10.1016/j.molcel.2007.09.024

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Schoborg T, Rickels R, Barrios J, Labrador M (2013) Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death. J Cell Biol 202(2):261–276. doi:10.1083/jcb.201304181

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Cai HN, Shen P (2001) Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. Science 291(5503):493–495. doi:10.1126/science.291.5503.493

    PubMed  CAS  Google Scholar 

  127. Muravyova E, Golovnin A, Gracheva E, Parshikov A, Belenkaya T, Pirrotta V, Georgiev P (2001) Loss of insulator activity by paired Su(Hw) chromatin insulators. Science 291(5503):495–498. doi:10.1126/science.291.5503.495

    PubMed  CAS  Google Scholar 

  128. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. doi:10.1126/science.1067799

    PubMed  CAS  Google Scholar 

  129. Splinter E, Heath H, Kooren J, Palstra R-J, Klous P, Grosveld F, Galjart N, de Laat W (2006) CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev 20(17):2349–2354. doi:10.1101/gad.399506

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. doi:10.1038/nature11082

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363–367. http://www.nature.com/nature/journal/v465/n7296/suppinfo/nature08973_S1.html

  132. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi:10.1126/science.1181369

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Bluthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385. http://www.nature.com/nature/journal/v485/n7398/abs/nature11049.html#supplementary-information

  134. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P, Lee M, Fu Z, Noma K-i (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res. doi:10.1093/nar/gkq955

  135. Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2. doi:10.1186/1471-2148-4-2

    PubMed  PubMed Central  Google Scholar 

  136. Phillips-Cremins Jennifer E, Sauria Michael EG, Sanyal A, Gerasimova Tatiana I, Lajoie Bryan R, Bell Joshua SK, Ong C-T, Hookway Tracy A, Guo C, Sun Y, Bland Michael J, Wagstaff W, Dalton S, McDevitt Todd C, Sen R, Dekker J, Taylor J, Corces Victor G (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153(6):1281–1295. doi:10.1016/j.cell.2013.04.053

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Wood AM, Van Bortle K, Ramos E, Takenaka N, Rohrbaugh M, Jones BC, Jones KC, Corces VG (2011) Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. Mol Cell 44(1):29–38. doi:10.1016/j.molcel.2011.07.035

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Junier I, Dale RK, Hou C, Képès F, Dean A (2012) CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus. Nucleic Acids Res. doi:10.1093/nar/gks536

    Google Scholar 

  139. Comet I, Savitskaya E, Schuettengruber B, Nègre N, Lavrov S, Parshikov A, Juge F, Gracheva E, Georgiev P, Cavalli G (2006) PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter. Dev Cell 11(1):117–124. doi:10.1016/j.devcel.2006.05.009

  140. Mallin DR, Myung JS, Patton JS, Geyer PK (1998) Polycomb group repression is blocked by the Drosophila suppressor of Hairy-wing [SU(HW)] insulator. Genetics 148(1):331–339

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Sigrist CJA, Pirrotta V (1997) Chromatin insulator elements block the silencing of a target gene by the Drosophila polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics 147(1):209–221

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Comet I, Schuettengruber B, Sexton T, Cavalli G (2011) A chromatin insulator driving three-dimensional polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci USA 108(6):2294–2299

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Li HB, Müller M, Bahechar IA, Kyrchanova O, Ohno K, Georgiev P, Pirrotta V (2011) Insulators, not polycomb response elements, are required for long-range interactions between polycomb targets in Drosophila melanogaster. Mol Cell Biol 31(4):616–625

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Fujioka M, Sun G, Jaynes JB (2013) The Drosophila eve insulator Homie promotes eve expression and protects the adjacent gene from repression by polycomb spreading. PLoS Genet 9(10):e1003883. doi:10.1371/journal.pgen.1003883

    PubMed  PubMed Central  Google Scholar 

  145. Fujioka M, Wu X, Jaynes JB (2009) A chromatin insulator mediates transgene homing and very long-range enhancer–promoter communication. Development 136(18):3077–3087. doi:10.1242/dev.036467

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Iampietro C, Cléard F, Gyurkovics H, Maeda RK, Karch F (2008) Boundary swapping in the Drosophila bithorax complex. Development 135(24):3983–3987. doi:10.1242/dev.025700

    PubMed  CAS  Google Scholar 

  147. Golovnin A, Melnikova L, Volkov I, Kostuchenko M, Galkin AV, Georgiev P (2008) ‘Insulator bodies’ are aggregates of proteins but not of insulators. EMBO Rep 9(5):440–445. doi:10.1038/embor.2008.32

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Golovnin A, Volkov I, Georgiev P (2012) SUMO conjugation is required for the assembly of Drosophila Su(Hw) and Mod(mdg4) into insulator bodies that facilitate insulator complex formation. J Cell Sci 125(8):2064–2074. doi:10.1242/jcs.100172

    PubMed  CAS  Google Scholar 

  149. de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12(12):833–845

    PubMed  Google Scholar 

  150. Seong KH, Li D, Shimizu H, Nakamura R, Ishii S (2011) Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145(7):1049–1061. doi:10.1016/j.cell.2011.05.029

    PubMed  CAS  Google Scholar 

  151. Weiner A, Chen HV, Liu CL, Rahat A, Klien A, Soares L, Gudipati M, Pfeffner J, Regev A, Buratowski S, Pleiss JA, Friedman N, Rando OJ (2012) Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 10(7):e1001369. doi:10.1371/journal.pbio.1001369

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM (2010) Conserved nucleosome positioning defines replication origins. Genes Dev 24(8):748–753. doi:10.1101/gad.1913210

    PubMed  CAS  PubMed Central  Google Scholar 

  153. MacAlpine HK, Gordân R, Powell SK, Hartemink AJ, MacAlpine DM (2010) Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20(2):201–211. doi:10.1101/gr.097873.109

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Xu J, Yanagisawa Y, Tsankov A, Hart C, Aoki K, Kommajosyula N, Steinmann K, Bochicchio J, Russ C, Regev A, Rando O, Nusbaum C, Niki H, Milos P, Weng Z, Rhind N (2012) Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 13(4):R27

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4(7):e1000138. doi:10.1371/journal.pgen.1000138

    PubMed  PubMed Central  Google Scholar 

  156. Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272(5264):1030–1033. doi:10.1126/science.272.5264.1030

    PubMed  CAS  Google Scholar 

  157. Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, Sanchez-Cespedes M, Mendez J, Antequera F, Serrano M (2006) Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440(7084):702–706. http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04585_S1.html

  158. Sideridou M, Zakopoulou R, Evangelou K, Liontos M, Kotsinas A, Rampakakis E, Gagos S, Kahata K, Grabusic K, Gkouskou K, Trougakos IP, Kolettas E, Georgakilas AG, Volarevic S, Eliopoulos AG, Zannis-Hadjopoulos M, Moustakas A, Gorgoulis VG (2011) Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins. J Cell Biol 195(7):1123–1140. doi:10.1083/jcb.201108121

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Bergström R, Whitehead J, Kurukuti S, Ohlsson R (2007) CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain. Cell Cycle 6(4):450–454

    PubMed  Google Scholar 

  160. Cleary JD, Tome S, Lopez Castel A, Panigrahi GB, Foiry L, Hagerman KA, Sroka H, Chitayat D, Gourdon G, Pearson CE (2010) Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 17(99):1079–1087. http://www.nature.com/nsmb/journal/v17/n9/abs/nsmb.1876.html#supplementary-information

  161. Guillou E, Ibarra A, Coulon V, Casado-Vela J, Rico D, Casal I, Schwob E, Losada A, Méndez J (2010) Cohesin organizes chromatin loops at DNA replication factories. Genes Dev 24(24):2812–2822. doi:10.1101/gad.608210

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Price BD, D’Andrea AD (2013) Chromatin remodeling at DNA double-strand breaks. Cell 152(6):1344–1354

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, Bryson BD, Rameseder J, Lee MJ, Blake EJ, Fydrych A, Ho R, Greenberger BA, Chen GC, Maffa A, Del Rosario AM, Root DE, Carpenter AE, Hahn WC, Sabatini DM, Chen CC, White FM, Bradner JE, Yaffe MB (2013) The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. doi:10.1038/nature12147. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12147.html#supplementary-information

  164. Lankenau D-H, Peluso MV, Lankenau S (2000) The Su(Hw) chromatin insulator protein alters double-strand break repair frequencies in the Drosophila germ line. Chromosoma 109(1–2):148–160. doi:10.1007/s004120050423

    PubMed  CAS  Google Scholar 

  165. Baniahmad A, Steiner C, Kohne AC, Renkawitz R (1990) Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61(3):505–514

    PubMed  CAS  Google Scholar 

  166. Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98(3):387–396

    PubMed  CAS  Google Scholar 

  167. Vostrov AA, Quitschke WW (1997) The zinc finger protein CTCF binds to the APBeta domain of the amyloid beta protein precursor promoter. J Biol Chem 272(52):33353–33359

    PubMed  CAS  Google Scholar 

  168. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435. http://www.nature.com/nature/journal/v467/n7314/abs/nature09380.html#supplementary-information

  169. Lee B-K, Iyer VR (2012) Genome-wide studies of CCCTC-binding Factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem 287(37):30906–30913. doi:10.1074/jbc.R111.324962

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Soshnev AA, Baxley RM, Manak JR, Tan K, Geyer PK (2013) The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary. Development 140(17):3613–3623. doi:10.1242/dev.094953

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Klug WS, Bodenstein D, King RC (1968) Oogenesis in the suppressor of hairy-wing mutant of Drosophila melanogaster. I. Phenotypic characterization and transplantation experiments. J Exp Zool 167(2):151–156. doi:10.1002/jez.1401670203

    PubMed  CAS  Google Scholar 

  172. Baxley RM, Soshnev AA, Koryakov DE, Zhimulev IF, Geyer PK (2011) The role of the Suppressor of Hairy-wing insulator protein in Drosophila oogenesis. Dev Biol 356(2):398–410. doi:10.1016/j.ydbio.2011.05.666

  173. Harrison DA, Gdula DA, Coyne RS, Corces VG (1993) A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes Dev 7(10):1966–1978. doi:10.1101/gad.7.10.1966

    PubMed  CAS  Google Scholar 

  174. Soshnev AA, He B, Baxley RM, Jiang N, Hart CM, Tan K, Geyer PK (2012) Genome-wide studies of the multi-zinc finger Drosophila Suppressor of Hairy-wing protein in the ovary. Nucleic Acids Res 40(12):5415–5431

    PubMed  CAS  PubMed Central  Google Scholar 

  175. van Bemmel JG, Filion GJ, Rosado A, Talhout W, de Haas M, van Welsem T, van Leeuwen F, van Steensel B (2013) A network model of the molecular organization of chromatin in Drosophila. Mol Cell 49(4):759–771

    PubMed  Google Scholar 

  176. Berger C, Harzer H, Burkard TR, Steinmann J, van der Horst S, Laurenson A-S, Novatchkova M, Reichert H, Knoblich JA (2012) FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for klumpfuss in self-renewal. Cell Rep 2(2):407–418

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Torrano V, Navascués J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, León J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119(9):1746–1759. doi:10.1242/jcs.02890

    PubMed  CAS  Google Scholar 

  178. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13(2):291–298. doi:10.1016/S1097-2765(04)00029-2

    PubMed  CAS  Google Scholar 

  179. Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, Docquier F, Farrar D, Tavoosidana G, Mukhopadhyay R, Kanduri C, Oshimura M, Feinberg AP, Lobanenkov V, Klenova E, Ohlsson R (2004) Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 36(10):1105–1110

    PubMed  CAS  Google Scholar 

  180. Ong C-T, Van Bortle K, Ramos E, Corces Victor G (2013) Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell 155(1):148–159. doi:10.1016/j.cell.2013.08.052

  181. MacPherson MJ, Beatty LG, Zhou W, Du M, Sadowski PD (2009) The CTCF insulator protein is posttranslationally modified by SUMO. Mol Cell Biol 29(3):714–725. doi:10.1128/mcb.00825-08

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Capelson M, Corces VG (2006) SUMO conjugation attenuates the activity of the gypsy chromatin insulator. EMBO J 25(9):1906–1914. doi:10.1038/sj.emboj.7601068

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Carmo-Fonseca M, Berciano MT, Lafarga M (2010) Orphan nuclear bodies. Cold Spring Harb Perspect Biol 2(9). doi:10.1101/cshperspect.a000703

  184. Klenova EM, Chernukhin IV, El-Kady A, Lee RE, Pugacheva EM, Loukinov DI, Goodwin GH, Delgado D, Filippova GN, León J, Morse Iii HC, Neiman PE, Lobanenkov VV (2001) Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF. Mol Cell Biol 21(6):2221–2234

  185. El-Kady A, Klenova E (2005) Regulation of the transcription factor, CTCF, by phosphorylation with protein kinase CK2. FEBS Lett 579(6):1424–1434. doi:10.1016/j.febslet.2005.01.044

  186. Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi C-F, Wolffe A, Ohlsson R, Lobanenkov VV (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10(14):853–856. doi:10.1016/S0960-9822(00)00597-2

  187. Pant V, Mariano P, Kanduri C, Mattsson A, Lobanenkov V, Heuchel R, Ohlsson R (2003) The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev 17(5):586–590. doi:10.1101/gad.254903

    PubMed  CAS  PubMed Central  Google Scholar 

  188. Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485

    PubMed  CAS  Google Scholar 

  189. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486–489

    PubMed  CAS  Google Scholar 

  190. Filippova GN, Thienes CP, Penn BH, Cho DH, Hu YJ, Moore JM, Klesert TR, Lobanenkov VV, Tapscott SJ (2001) CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet 28(4):335–343

    PubMed  CAS  Google Scholar 

  191. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476

    PubMed  CAS  Google Scholar 

  192. Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13(2):167–173. http://www.nature.com/ncb/journal/v13/n2/abs/ncb2157.html#supplementary-information

  193. Matzat LH, Dale RK, Lei EP (2013) Messenger RNA is a functional component of a chromatin insulator complex. EMBO Rep 14(10):916–922. doi:10.1038/embor.2013.118

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the current and former members of the Labrador Lab, including Hyuck-Joon Kang, Heather Wallace, Shaofei Zhang, Srilalitha Kuruganti, Maria P. Plata, Shih-Jui Hsu, Ran An, Ryan Rickels and Josh Barrios for collaboration and discussion. Work in the Labrador Lab was supported by Grants NIH GM78132-2 and NSF MCB-0616081 plus additional support from the College of Arts and Sciences, the Department of Biochemistry and Cellular and Molecular Biology and the Office of Research at the University of Tennessee, Knoxville. TS was supported by a Graduate Research Fellowship from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Todd Schoborg or Mariano Labrador.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoborg, T., Labrador, M. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function. Cell. Mol. Life Sci. 71, 4089–4113 (2014). https://doi.org/10.1007/s00018-014-1672-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1672-6

Keywords

Navigation