Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3–5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–264

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Gordon P, Corcia P, Meininger V (2013) New therapy options for amyotrophic lateral sclerosis. Expert Opin Pharmacother 14:1907–1917

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. 5.

    Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Yang W, Strong MJ (2012) Widespread neuronal and glial hyperphosphorylated tau deposition in ALS with cognitive impairment. Amyotroph Lateral Scler 13:178–193

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 3:CD001447

    PubMed  Google Scholar 

  8. 8.

    Dupuis L, Gonzalez de Aguilar JL, Echaniz-Laguna A, Eschbach J, Rene F (2009) Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons. PLoS One 4:e5390

    PubMed Central  PubMed  Google Scholar 

  9. 9.

    Nizzardo M, Simone C, Falcone M, Riboldi G, Rizzo F et al (2012) Research advances in gene therapy approaches for the treatment of amyotrophic lateral sclerosis. Cell Mol Life Sci 69:1641–1650

    CAS  PubMed  Google Scholar 

  10. 10.

    Boulis NM, Federici T, Glass JD, Lunn JS, Sakowski SA et al (2011) Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 8:172–176

    PubMed  Google Scholar 

  11. 11.

    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  12. 12.

    Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    CAS  PubMed  Google Scholar 

  13. 13.

    Corti S, Locatelli F, Papadimitriou D, Donadoni C, Del Bo R et al (2006) Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 15:167–187

    CAS  PubMed  Google Scholar 

  14. 14.

    Corti S, Locatelli F, Papadimitriou D, Del Bo R, Nizzardo M et al (2007) Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain 130:1289–1305

    PubMed  Google Scholar 

  15. 15.

    Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, et al (2014) Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 23:342–354

    Google Scholar 

  16. 16.

    Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S et al (2008) Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 118:3316–3330

    CAS  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    CAS  PubMed  Google Scholar 

  18. 18.

    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122

    CAS  PubMed Central  PubMed  Google Scholar 

  19. 19.

    Wyatt TJ, Rossi SL, Siegenthaler MM, Frame J, Robles R et al (2011) Human motor neuron progenitor transplantation leads to endogenous neuronal sparing in three models of motor neuron loss. Stem Cells Int 2011:207230

    PubMed Central  PubMed  Google Scholar 

  20. 20.

    Erceg S, Ronaghi M, Oria M, Rosello MG, Arago MA et al (2010) Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 28:1541–1549

    PubMed Central  PubMed  Google Scholar 

  21. 21.

    Valori CF, Brambilla L, Martorana F, Rossi D (2014) The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 71:287–297

    Google Scholar 

  22. 22.

    Boucherie C, Schafer S, Lavand’homme P, Maloteaux JM, Hermans E (2009) Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 87:2034–2046

    CAS  PubMed  Google Scholar 

  23. 23.

    Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS et al (2008) Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 11:1294–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  24. 24.

    Suzuki M, McHugh J, Tork C, Shelley B, Hayes A et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16:2002–2010

    CAS  PubMed Central  PubMed  Google Scholar 

  25. 25.

    Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM et al (2011) Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 6:201–213

    PubMed Central  PubMed  Google Scholar 

  26. 26.

    Borlongan CV (2012) Recent preclinical evidence advancing cell therapy for Alzheimer’s disease. Exp Neurol 237:142–146

    CAS  PubMed Central  PubMed  Google Scholar 

  27. 27.

    Lee ST, Chu K, Jung KH, Kim SJ, Kim DH et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629

    PubMed  Google Scholar 

  28. 28.

    Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    CAS  PubMed  Google Scholar 

  29. 29.

    Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S et al (2010) Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 19:3782–3796

    CAS  PubMed  Google Scholar 

  30. 30.

    Kerr DA, Llado J, Shamblott MJ, Maragakis NJ, Irani DN et al (2003) Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 23:5131–5140

    CAS  PubMed  Google Scholar 

  31. 31.

    Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K et al (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521

    CAS  PubMed  Google Scholar 

  32. 32.

    Mitrecic D, Nicaise C, Gajovic S, Pochet R (2010) Distribution, differentiation, and survival of intravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis. Cell Transpl 19:537–548

    Google Scholar 

  33. 33.

    Teng YD, Benn SC, Kalkanis SN, Shefner JM, Onario RC et al (2012) Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med 4:165ra164

    PubMed  Google Scholar 

  34. 34.

    Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789

    CAS  PubMed  Google Scholar 

  35. 35.

    Han SS, Williams LA, Eggan KC (2011) Constructing and deconstructing stem cell models of neurological disease. Neuron 70:626–644

    CAS  PubMed  Google Scholar 

  36. 36.

    Madhavan L, Collier TJ (2010) A synergistic approach for neural repair: cell transplantation and induction of endogenous precursor cell activity. Neuropharmacology 58:835–844

    CAS  PubMed  Google Scholar 

  37. 37.

    Chu K, Kim M, Jeong SW, Kim SU, Yoon BW (2003) Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 343:129–133

    CAS  PubMed  Google Scholar 

  38. 38.

    Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200

    CAS  PubMed  Google Scholar 

  39. 39.

    Jeong SW, Chu K, Jung KH, Kim SU, Kim M et al (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34:2258–2263

    PubMed  Google Scholar 

  40. 40.

    Pluchino S, Cossetti C (2013) How stem cells speak with host immune cells in inflammatory brain diseases. Glia 61:1379–1401

    PubMed Central  PubMed  Google Scholar 

  41. 41.

    Pluchino S, Zanotti L, Deleidi M, Martino G (2005) Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev 48:211–219

    CAS  PubMed  Google Scholar 

  42. 42.

    Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH et al (2013) Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 125:111–120

    CAS  PubMed Central  PubMed  Google Scholar 

  43. 43.

    D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H (2013) Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 65C:509–527

    Google Scholar 

  44. 44.

    Steinman L (2009) A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol 9:440–447

    CAS  PubMed  Google Scholar 

  45. 45.

    Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M et al (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223:229–237

    CAS  PubMed  Google Scholar 

  46. 46.

    Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE, Caro E, Gutierrez-Jimenez E et al (2009) Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11:26–34

    CAS  PubMed  Google Scholar 

  47. 47.

    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    PubMed Central  PubMed  Google Scholar 

  48. 48.

    Cashman N, Tan LY, Krieger C, Madler B, Mackay A et al (2008) Pilot study of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells in amyotrophic lateral sclerosis (ALS). Muscle Nerve 37:620–625

    CAS  PubMed  Google Scholar 

  49. 49.

    Chio A, Mora G, La Bella V, Caponnetto C, Mancardi G et al (2011) Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis: clinical and biological results from a prospective multicenter study. Muscle Nerve 43:189–195

    CAS  PubMed  Google Scholar 

  50. 50.

    Riley J, Glass J, Feldman EL, Polak M, Bordeau J, et al (2014) Intraspinal stem cell transplantation in ALS: a phase I trial, cervical microinjection and final surgical safety outcomes. Neurosurgery 74:77–87

    Google Scholar 

  51. 51.

    Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W (2014) Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol 5:7

    PubMed Central  PubMed  Google Scholar 

  52. 52.

    Scheiner ZS, Talib S, Feigal EG (2014) The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J Biol Chem 289:4571–4577

    CAS  PubMed  Google Scholar 

  53. 53.

    Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y et al (2012) Emerging methods for preparing iPS cells. Jpn J Clin Oncol 42:773–779

    PubMed  Google Scholar 

  54. 54.

    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    CAS  PubMed Central  PubMed  Google Scholar 

  55. 55.

    Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G et al (2010) Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci 67:3837–3847

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the ALS foundation to S.C. We also thank the ‘Associazione Amici del Centro Dino Ferrari’ for support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefania Corti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faravelli, I., Riboldi, G., Nizzardo, M. et al. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell. Mol. Life Sci. 71, 3257–3268 (2014). https://doi.org/10.1007/s00018-014-1613-4

Download citation

Keywords

  • Amyotrophic lateral sclerosis
  • Stem cells
  • Transplantation
  • Clinical translation