Cellular and Molecular Life Sciences

, Volume 71, Issue 17, pp 3199–3218 | Cite as

Control of cerebral size and thickness

  • Tran Cong Tuoc
  • Evangelos Pavlakis
  • Marco Andreas Tylkowski
  • Anastassia StoykovaEmail author


The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.


Cortex Growth Surface/radial expansion Progenitor diversity Molecular determinants Epigenetic regulation MicroRNA 



We apologize to colleagues whose work we may not have been able to include in this review due to space constraints. We thank J. Staiger for his support, T. Schneider and A. Dudek for proofreading and discussion. This work was supported by the Research Program, Faculty of Medicine, Georg-August-University of Göttingen and TU432/1-1 DFG grant (T.C.T), the Max Planck Gesellschaft (A.S. and A.P.); the Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (A.S. and M.A.T.). The authors declare no competing financial interests.


  1. 1.
    Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21:23–35PubMedGoogle Scholar
  2. 2.
    Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788PubMedGoogle Scholar
  3. 3.
    Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36PubMedCentralPubMedGoogle Scholar
  4. 4.
    Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30:24–32PubMedGoogle Scholar
  5. 5.
    Corbeil D, Joester A, Fargeas CA, Jaszai J, Garwood J, Hellwig A, Werner HB, Huttner WB (2009) Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia 57:860–874PubMedGoogle Scholar
  6. 6.
    Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430PubMedCentralPubMedGoogle Scholar
  7. 7.
    Bultje RS, Castaneda-Castellanos DR, Jan LY, Jan YN, Kriegstein AR, Shi SH (2009) Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63:189–202PubMedCentralPubMedGoogle Scholar
  8. 8.
    Gotz M, Steindler D (2003) To be glial or not-how glial are the precursors of neurons in development and adulthood? Glia 43:1–3PubMedGoogle Scholar
  9. 9.
    Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044PubMedGoogle Scholar
  10. 10.
    Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735PubMedCentralPubMedGoogle Scholar
  11. 11.
    Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741PubMedGoogle Scholar
  12. 12.
    Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30PubMedGoogle Scholar
  13. 13.
    Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Gotz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764PubMedGoogle Scholar
  14. 14.
    Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263PubMedGoogle Scholar
  15. 15.
    Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60PubMedGoogle Scholar
  16. 16.
    Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720PubMedGoogle Scholar
  17. 17.
    Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173PubMedGoogle Scholar
  18. 18.
    Taverna E, Huttner WB (2010) Neural progenitor nuclei IN motion. Neuron 67:906–914PubMedGoogle Scholar
  19. 19.
    Cappello S, Attardo A, Wu X, Iwasato T, Itohara S, Wilsch-Brauninger M, Eilken HM, Rieger MA, Schroeder TT, Huttner WB, Brakebusch C, Gotz M (2006) The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 9:1099–1107PubMedGoogle Scholar
  20. 20.
    Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26:1045–1056PubMedCentralPubMedGoogle Scholar
  21. 21.
    Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355PubMedGoogle Scholar
  22. 22.
    Stancik EK, Navarro-Quiroga I, Sellke R, Haydar TF (2010) Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci 30:7028–7036PubMedCentralPubMedGoogle Scholar
  23. 23.
    Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201 (Epub 2004 Feb 3112)PubMedCentralPubMedGoogle Scholar
  24. 24.
    Pilz GA, Shitamukai A, Reillo I, Pacary E, Schwausch J, Stahl R, Ninkovic J, Snippert HJ, Clevers H, Godinho L et al (2013) Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nat Commun 4:2125PubMedCentralPubMedGoogle Scholar
  25. 25.
    Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S, Irmler M, Sanz-Aquela JM, Beckers J, Blum R, Borrell V et al (2013) Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153:535–549PubMedGoogle Scholar
  26. 26.
    Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144PubMedGoogle Scholar
  27. 27.
    Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145PubMedGoogle Scholar
  28. 28.
    Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251PubMedGoogle Scholar
  29. 29.
    Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F, Hodge R, Attardo A, Bell C, Huttner WB, Hevner RF (2009) Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex 19:2439–2450PubMedCentralPubMedGoogle Scholar
  30. 30.
    Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55:223–233PubMedGoogle Scholar
  31. 31.
    Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, Khoury SJ, Cunningham J, Gotz M, Walsh CA (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol 479:168–180PubMedGoogle Scholar
  32. 32.
    Zimmer C, Tiveron MC, Bodmer R, Cremer H (2004) Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex 14:1408–1420 (Epub 2004 Jul 1406)PubMedGoogle Scholar
  33. 33.
    Farkas LM, Haffner C, Giger T, Khaitovich P, Nowick K, Birchmeier C, Paabo S, Huttner WB (2008) Insulinoma-associated 1 has a panneurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex. Neuron 60:40–55PubMedGoogle Scholar
  34. 34.
    Tarabykin V, Stoykova A, Usman N, Gruss P (2001) Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128:1983–1993PubMedGoogle Scholar
  35. 35.
    Shitamukai A, Konno D, Matsuzaki F (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31:3683–3695PubMedGoogle Scholar
  36. 36.
    Wang X, Tsai JW, LaMonica B, Kriegstein AR (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14:555–561PubMedCentralPubMedGoogle Scholar
  37. 37.
    Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R et al (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699PubMedGoogle Scholar
  38. 38.
    Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561PubMedGoogle Scholar
  39. 39.
    Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694PubMedGoogle Scholar
  40. 40.
    Martinez-Cerdeno V, Cunningham CL, Camacho J, Antczak JL, Prakash AN, Cziep ME, Walker AI, Noctor SC (2012) Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents. PLoS ONE 7:e30178PubMedCentralPubMedGoogle Scholar
  41. 41.
    Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, Matsuzaki F, Lebrand C, Sasaki E, Schwamborn JC et al (2012) Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex 22:469–481PubMedCentralPubMedGoogle Scholar
  42. 42.
    Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53PubMedCentralPubMedGoogle Scholar
  43. 43.
    Borrell V, Reillo I (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 72:955–971PubMedGoogle Scholar
  44. 44.
    Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8:438–450PubMedGoogle Scholar
  45. 45.
    Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353–364PubMedCentralPubMedGoogle Scholar
  46. 46.
    Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176PubMedGoogle Scholar
  47. 47.
    Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13:541–549PubMedGoogle Scholar
  48. 48.
    Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641PubMedGoogle Scholar
  49. 49.
    Kosodo Y, Roper K, Haubensak W, Marzesco AM, Corbeil D, Huttner WB (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324PubMedCentralPubMedGoogle Scholar
  50. 50.
    Lamonica BE, Lui JH, Hansen DV, Kriegstein AR (2013) Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat Commun 4:1665PubMedCentralPubMedGoogle Scholar
  51. 51.
    Lancaster MA, Knoblich JA (2012) Spindle orientation in mammalian cerebral cortical development. Curr Opin Neurobiol 22:737–746PubMedCentralPubMedGoogle Scholar
  52. 52.
    Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44PubMedCentralPubMedGoogle Scholar
  53. 53.
    Calegari F, Haubensak W, Haffner C, Huttner WB (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25:6533–6538PubMedGoogle Scholar
  54. 54.
    Calegari F, Huttner WB (2003) An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116:4947–4955PubMedGoogle Scholar
  55. 55.
    Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388PubMedGoogle Scholar
  56. 56.
    Caviness VS Jr, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18:379–383PubMedGoogle Scholar
  57. 57.
    Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890PubMedGoogle Scholar
  58. 58.
    Anthony TE, Mason HA, Gridley T, Fishell G, Heintz N (2005) Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev 19:1028–1033PubMedCentralPubMedGoogle Scholar
  59. 59.
    Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404PubMedGoogle Scholar
  60. 60.
    Yoon KJ, Koo BK, Im SK, Jeong HW, Ghim J, Kwon MC, Moon JS, Miyata T, Kong YY (2008) Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58:519–531PubMedGoogle Scholar
  61. 61.
    Tiberi L, Vanderhaeghen P, van den Ameele J (2012) Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Curr Opin Cell Biol 24:269–276PubMedGoogle Scholar
  62. 62.
    Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369PubMedGoogle Scholar
  63. 63.
    Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337PubMedGoogle Scholar
  64. 64.
    Haydar TF, Kuan CY, Flavell RA, Rakic P (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb Cortex 9:621–626PubMedGoogle Scholar
  65. 65.
    Depaepe V, Suarez-Gonzalez N, Dufour A, Passante L, Gorski JA, Jones KR, Ledent C, Vanderhaeghen P (2005) Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435:1244–1250PubMedGoogle Scholar
  66. 66.
    Sahara S, O’Leary DD (2009) Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63:48–62PubMedCentralPubMedGoogle Scholar
  67. 67.
    Yoon K, Nery S, Rutlin ML, Radtke F, Fishell G, Gaiano N (2004) Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J Neurosci 24:9497–9506PubMedGoogle Scholar
  68. 68.
    Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074PubMedGoogle Scholar
  69. 69.
    Garel S, Huffman KJ, Rubenstein JL (2003) Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130:1903–1914PubMedGoogle Scholar
  70. 70.
    Mallamaci A, Stoykova A (2006) Gene networks controlling early cerebral cortex arealization. Eur J Neurosci 23:847–856PubMedGoogle Scholar
  71. 71.
    O’Leary DD, Chou SJ, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56:252–269PubMedGoogle Scholar
  72. 72.
    Sahara S, Kawakami Y, Izpisua Belmonte JC, O’Leary DD (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2:10PubMedCentralPubMedGoogle Scholar
  73. 73.
    Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK, Martin GR, Rubenstein JL (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133:1831–1844PubMedGoogle Scholar
  74. 74.
    Borello U, Cobos I, Long JE, McWhirter JR, Murre C, Rubenstein JL (2008) FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development. Neural Dev 3:17PubMedCentralPubMedGoogle Scholar
  75. 75.
    Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33:10802–10814PubMedCentralPubMedGoogle Scholar
  76. 76.
    Rash BG, Lim HD, Breunig JJ, Vaccarino FM (2011) FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J Neurosci 31:15604–15617PubMedCentralPubMedGoogle Scholar
  77. 77.
    Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10:93–101PubMedGoogle Scholar
  78. 78.
    Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132:583–597PubMedGoogle Scholar
  79. 79.
    Morin X, Bellaiche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21:102–119PubMedGoogle Scholar
  80. 80.
    Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374PubMedGoogle Scholar
  81. 81.
    Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ (2011) MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 13:1325–1334PubMedGoogle Scholar
  82. 82.
    Feng Y, Walsh CA (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44:279–293PubMedGoogle Scholar
  83. 83.
    Manzini MC, Tambunan DE, Hill RS, Yu TW, Maynard TM, Heinzen EL, Shianna KV, Stevens CR, Partlow JN, Barry BJ et al (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker–Warburg syndrome. Am J Hum Genet 91:541–547PubMedCentralPubMedGoogle Scholar
  84. 84.
    Bond J, Woods CG (2006) Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18:95–101PubMedGoogle Scholar
  85. 85.
    Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB (2006) Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA 103:10438–10443PubMedCentralPubMedGoogle Scholar
  86. 86.
    Asami M, Pilz GA, Ninkovic J, Godinho L, Schroeder T, Huttner WB, Gotz M (2011) The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development 138:5067–5078PubMedGoogle Scholar
  87. 87.
    Postiglione MP, Juschke C, Xie Y, Haas GA, Charalambous C, Knoblich JA (2011) Mouse inscuteable induces apical-Basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72:269–284PubMedCentralPubMedGoogle Scholar
  88. 88.
    Xie Y, Juschke C, Esk C, Hirotsune S, Knoblich JA (2013) The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. Neuron 79:254–265PubMedCentralPubMedGoogle Scholar
  89. 89.
    Molnar Z, Metin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006) Comparative aspects of cerebral cortical development. Eur J Neurosci 23:921–934PubMedCentralPubMedGoogle Scholar
  90. 90.
    Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56–69PubMedCentralPubMedGoogle Scholar
  91. 91.
    Arnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa S, Bikoff EK, Molnar Z, Robertson EJ, Groszer M (2008) The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev 22:2479–2484PubMedCentralPubMedGoogle Scholar
  92. 92.
    Colasante G, Simonet JC, Calogero R, Crispi S, Sessa A, Cho G, Golden JA, Broccoli V (2013) ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. Cereb Cortex. doi: 10.1093/cercor/bht222
  93. 93.
    Glickstein SB, Monaghan JA, Koeller HB, Jones TK, Ross ME (2009) Cyclin D2 is critical for intermediate progenitor cell proliferation in the embryonic cortex. J Neurosci 29:9614–9624PubMedCentralPubMedGoogle Scholar
  94. 94.
    Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32:1817–1828PubMedCentralPubMedGoogle Scholar
  95. 95.
    Pinto L, Drechsel D, Schmid MT, Ninkovic J, Irmler M, Brill MS, Restani L, Gianfranceschi L, Cerri C, Weber SN et al (2009) AP2gamma regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nat Neurosci 12:1229–1237PubMedGoogle Scholar
  96. 96.
    Volpe M, Shpungin S, Barbi C, Abrham G, Malovani H, Wides R, Nir U (2006) trnp: A conserved mammalian gene encoding a nuclear protein that accelerates cell-cycle progression. DNA Cell Biol 25:331–339PubMedGoogle Scholar
  97. 97.
    Hevner RF, Haydar TF (2012) The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. Cereb Cortex 22:465–468PubMedCentralPubMedGoogle Scholar
  98. 98.
    Poluch S, Juliano SL (2013) Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex. Cereb Cortex. doi: 10.1093/cercor/bht232
  99. 99.
    Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437PubMedGoogle Scholar
  100. 100.
    Richman DP, Stewart RM, Caviness VS Jr (1974) Cerebral microgyria in a 27-week fetus: an architectonic and topographic analysis. J Neuropathol Exp Neurol 33:374–384PubMedGoogle Scholar
  101. 101.
    Takahashi T, Nowakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16:6183–6196PubMedGoogle Scholar
  102. 102.
    Kornack DR, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95:1242–1246PubMedCentralPubMedGoogle Scholar
  103. 103.
    Defelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:29PubMedCentralPubMedGoogle Scholar
  104. 104.
    Caviness VS Jr, Goto T, Tarui T, Takahashi T, Bhide PG, Nowakowski RS (2003) Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb Cortex 13:592–598PubMedGoogle Scholar
  105. 105.
    McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254:282–285PubMedGoogle Scholar
  106. 106.
    Hanashima C, Li SC, Shen L, Lai E, Fishell G (2004) Foxg1 suppresses early cortical cell fate. Science 303:56–59PubMedGoogle Scholar
  107. 107.
    Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, Muller U (2012) Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337:746–749PubMedGoogle Scholar
  108. 108.
    Hevner RF, Daza RA, Rubenstein JL, Stunnenberg H, Olavarria JF, Englund C (2003) Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci 25:139–151PubMedGoogle Scholar
  109. 109.
    Guo C, Eckler MJ, McKenna WL, Mckinsey GL, Rubenstein JLR, Chen B (2013) Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80:1167–1174Google Scholar
  110. 110.
    Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, Brown C, Langevin LM, Seibt J, Tang H et al (2004) Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J 23:2892–2902PubMedCentralPubMedGoogle Scholar
  111. 111.
    Guillemot F, Molnár Z, Tarabykin V, Stoykova A (2006) Molecular mechanisms of cortical differentiation. Eur J Neurosci 23:857–868PubMedGoogle Scholar
  112. 112.
    Land PW, Monaghan AP (2003) Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex 13:921–931PubMedCentralPubMedGoogle Scholar
  113. 113.
    Yun K, Mantani A, Garel S, Rubenstein J, Israel MA (2004) Id4 regulates neural progenitor proliferation and differentiation in vivo. Development 131:5441–5448PubMedGoogle Scholar
  114. 114.
    Harrison SJ, Nishinakamura R, Jones KR, Monaghan AP (2012) Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome. Dis Models Mech 5:351–365Google Scholar
  115. 115.
    Siegenthaler JA, Tremper-Wells BA, Miller MW (2008) Foxg1 haploinsufficiency reduces the population of cortical intermediate progenitor cells: effect of increased p21 expression. Cereb Cortex 18:1865–1875PubMedCentralPubMedGoogle Scholar
  116. 116.
    Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47:817–831PubMedGoogle Scholar
  117. 117.
    Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221PubMedGoogle Scholar
  118. 118.
    Frantz GD, Weimann JM, Levin ME, McConnell SK (1994) Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci 14:5725–5740PubMedGoogle Scholar
  119. 119.
    Panto MR, Zappala A, Tuorto F, Cicirata F (2004) Role of the Otx1 gene in cell differentiation of mammalian cortex. Eur J Neurosci 19:2893–2902PubMedGoogle Scholar
  120. 120.
    Cubelos B, Sebastian-Serrano A, Kim S, Moreno-Ortiz C, Redondo JM, Walsh CA, Nieto M (2008) Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb Cortex 18:1758–1770PubMedGoogle Scholar
  121. 121.
    McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG (2002) Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295:1528–1532PubMedGoogle Scholar
  122. 122.
    Sugitani Y, Nakai S, Minowa O, Nishi M, Jishage K, Kawano H, Mori K, Ogawa M, Noda T (2002) Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 16:1760–1765PubMedCentralPubMedGoogle Scholar
  123. 123.
    Dominguez MH, Ayoub AE, Rakic P (2013) POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex 23:2632–2643PubMedGoogle Scholar
  124. 124.
    Mason S, Pi McKenna per M, Gronostajski RM, Richards LJ (2009) Nuclear factor one transcription factors in CNS development. Mol Neurobiol 39:10–23PubMedGoogle Scholar
  125. 125.
    McKenna WL, Betancourt J, Larkin KA, Abrams B, Guo C, Rubenstein JL, Chen B (2011) Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci 31:549–564PubMedCentralPubMedGoogle Scholar
  126. 126.
    Betancourt J, Katzman S, Chen B (2014) Nuclear factor one B regulates neural stem cell differentiation and axonal projection of corticofugal neurons. J Comp Neurol 522(1):Spc1. doi: 10.1002/cne.23490
  127. 127.
    Kwan YK, Sestan N, Anton ES (2012) Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139:1535–1546PubMedCentralPubMedGoogle Scholar
  128. 128.
    Kwan KY, Lam MM, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N (2008) SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci USA 105:16021–16026PubMedCentralPubMedGoogle Scholar
  129. 129.
    Lai T, Jabaudon D, Molyneaux BJ, Azim E, Arlotta P, Menezes JR, Macklis JD (2008) SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57:232–247PubMedGoogle Scholar
  130. 130.
    Takeuchi A, O’Leary DD (2006) Radial migration of superficial layer cortical neurons controlled by novel Ig cell adhesion molecule MDGA1. J Neurosci 26:4460–4464PubMedGoogle Scholar
  131. 131.
    MuhChyi C, Juliandi B, Matsuda T, Nakashima K (2013) Epigenetic regulation of neural stem cell fate during corticogenesis. Int J Dev Neurosci 31:424–433PubMedGoogle Scholar
  132. 132.
    Wen S, Li H, Liu J (2009) Epigenetic background of neuronal fate determination. Prog Neurobiol 87:98–117PubMedGoogle Scholar
  133. 133.
    Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14:347–359PubMedCentralPubMedGoogle Scholar
  134. 134.
    van Bokhoven H, Kramer JM (2010) Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol Dis 39:3–12PubMedGoogle Scholar
  135. 135.
    Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296PubMedCentralPubMedGoogle Scholar
  136. 136.
    Van Holde KE (1988) Chromatin: Springer series in molecular biology. Springer, New YorkGoogle Scholar
  137. 137.
    Wolffe AP (1999) Chromatin: structure and function, 3rd edn. Academic, San DiegoGoogle Scholar
  138. 138.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedGoogle Scholar
  139. 139.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1079PubMedGoogle Scholar
  140. 140.
    Sun G, Yu RT, Evans RM, Shi Y (2007) Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci USA 104:15282–15287PubMedCentralPubMedGoogle Scholar
  141. 141.
    Thomas T, Voss AK, Chowdhury K, Gruss P (2000) Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development 127:2537–2548PubMedGoogle Scholar
  142. 142.
    Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532PubMedGoogle Scholar
  143. 143.
    Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN et al (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:351–357PubMedGoogle Scholar
  144. 144.
    Juliandi B, Abematsu M, Sanosaka T, Tsujimura K, Smith A, Nakashima K (2012) Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid. Neurosci Res 72:23–31PubMedGoogle Scholar
  145. 145.
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476PubMedGoogle Scholar
  146. 146.
    Golshani P, Hutnick L, Schweizer F, Fan G (2005) Conditional Dnmt1 deletion in dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long-term potentiation. Thal Relat Syst 3:227–233Google Scholar
  147. 147.
    Feng J, Chang H, Li E, Fan G (2005) Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79:734–746PubMedGoogle Scholar
  148. 148.
    Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J, Jui J, Jin SG, Jiang Y, Pfeifer GP et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep 3:291–300PubMedCentralPubMedGoogle Scholar
  149. 149.
    Di Croce L, Helin K (2013) Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20:1147–1155PubMedGoogle Scholar
  150. 150.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043PubMedGoogle Scholar
  151. 151.
    Pereira JD, Sansom SN, Smith J, Dobenecker MW, Tarakhovsky A, Livesey FJ (2010) Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci USA 107:15957–15962PubMedCentralPubMedGoogle Scholar
  152. 152.
    Ng RK, Gurdon JB (2008) Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10:102–109PubMedGoogle Scholar
  153. 153.
    Fisher CL, Fisher AG (2011) Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 21:140–146PubMedGoogle Scholar
  154. 154.
    Papp B, Muller J (2006) Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20:2041–2054PubMedCentralPubMedGoogle Scholar
  155. 155.
    Yang YJ, Baltus AE, Mathew RS, Murphy EA, Evrony GD, Gonzalez DM, Wang EP, Marshall-Walker CA, Barry BJ, Murn J et al (2012) Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 151:1097–1112PubMedCentralPubMedGoogle Scholar
  156. 156.
    Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957PubMedGoogle Scholar
  157. 157.
    Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657PubMedGoogle Scholar
  158. 158.
    Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215PubMedCentralPubMedGoogle Scholar
  159. 159.
    Tuoc TC, Boretius S, Sansom SN, Pitulescu ME, Frahm J, Livesey FJ, Stoykova A (2013) Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev Cell 25:256–269PubMedGoogle Scholar
  160. 160.
    Tuoc TC, Narayanan R, Stoykova A (2013) BAF chromatin remodeling complex: cortical size regulation and beyond. Cell Cycle 12:2953–2959PubMedGoogle Scholar
  161. 161.
    Ninkovic J, Steiner-Mezzadri A, Jawerka M, Akinci U, Masserdotti G, Petricca S, Fischer J, von Holst A, Beckers J, Lie CD, Petrik D, Miller E, Tang J, Wu J, Lefebvre V, Demmers J, Eisch A, Metzger D, Crabtree G, Irmler M, Poot R, Götz M (2013) The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network. Cell Stem Cell 13:403–418PubMedCentralPubMedGoogle Scholar
  162. 162.
    Leone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK (2008) The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 18:28–35PubMedCentralPubMedGoogle Scholar
  163. 163.
    Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45:592–601PubMedCentralPubMedGoogle Scholar
  164. 164.
    Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Farinas I, Grosschedl R, McConnell SK (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57:364–377PubMedGoogle Scholar
  165. 165.
    Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D et al (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57:378–392PubMedGoogle Scholar
  166. 166.
    Baranek C, Dittrich M, Parthasarathy S, Bonnon CG, Britanova O, Lanshakov D, Boukhtouche F, Sommer JE, Colmenares C, Tarabykin V et al (2012) Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons. Proc Natl Acad Sci USA 109:3546–3551PubMedCentralPubMedGoogle Scholar
  167. 167.
    Coolen M, Bally-Cuif L (2009) MicroRNAs in brain development and physiology. Curr Opin Neurobiol 19:461–470PubMedGoogle Scholar
  168. 168.
    Kawahara H, Imai T, Okano H (2012) MicroRNAs in neural stem cells and neurogenesis. Front Neurosci 6:30PubMedCentralPubMedGoogle Scholar
  169. 169.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedGoogle Scholar
  170. 170.
    Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S, Neveu P, Kosik KS (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30:14931–14936PubMedCentralPubMedGoogle Scholar
  171. 171.
    Lang MF, Shi Y (2012) Dynamic roles of microRNAs in neurogenesis. Front Neurosci 6:71PubMedCentralPubMedGoogle Scholar
  172. 172.
    Cremisi F (2013) MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci 7:141PubMedCentralPubMedGoogle Scholar
  173. 173.
    Hannon GJ, Rivas FV, Murchison EP, Steitz JA (2006) The expanding universe of noncoding RNAs. Cold Spring Harb Symp Quant Biol 71:551–564PubMedGoogle Scholar
  174. 174.
    Pasquinelli AE (2012) Birthing histone mRNAs by CSR-1 section. EMBO J 31:3790–3791PubMedCentralPubMedGoogle Scholar
  175. 175.
    De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921PubMedCentralPubMedGoogle Scholar
  176. 176.
    Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238:2800–2812PubMedCentralPubMedGoogle Scholar
  177. 177.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448PubMedCentralPubMedGoogle Scholar
  178. 178.
    Nowakowski TJ, Mysiak KS, Pratt T, Price DJ (2011) Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon. PLoS ONE 6:e23013PubMedCentralPubMedGoogle Scholar
  179. 179.
    Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330PubMedCentralPubMedGoogle Scholar
  180. 180.
    Hong J, Zhang H, Kawase-Koga Y, Sun T (2013) MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex. Front Cell Neurosci 7:151PubMedCentralPubMedGoogle Scholar
  181. 181.
    Volvert ML, Rogister F, Moonen G, Malgrange B, Nguyen L (2012) MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 19:1573–1581PubMedCentralPubMedGoogle Scholar
  182. 182.
    Bian S, Hong J, Li Q, Schebelle L, Pollock A, Knauss JL, Garg V, Sun T (2013) MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Rep 3:1398–1406PubMedCentralPubMedGoogle Scholar
  183. 183.
    Zhao C, Sun G, Ye P, Li S, Shi Y (2013) MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci Rep 3:1329PubMedCentralPubMedGoogle Scholar
  184. 184.
    Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408PubMedCentralPubMedGoogle Scholar
  185. 185.
    Akerblom M, Sachdeva R, Jakobsson J (2012) Functional studies of microRNAs in neural stem cells: problems and perspectives. Front Neurosci 6:14PubMedCentralPubMedGoogle Scholar
  186. 186.
    de Chevigny A, Coré N, Follert P, Gaudin M, Barbry P, Béclin C, Cremer H (2012) miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci 15:1120–1126PubMedGoogle Scholar
  187. 187.
    Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S (2008) MicroRNA-9 modulates Cajal–Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28:10415–10421PubMedGoogle Scholar
  188. 188.
    Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31:3407–3422PubMedGoogle Scholar
  189. 189.
    Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427PubMedCentralPubMedGoogle Scholar
  190. 190.
    Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28:14341–14346PubMedCentralPubMedGoogle Scholar
  191. 191.
    Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I, Caffarelli E (2010) A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res 38:6895–6905PubMedCentralPubMedGoogle Scholar
  192. 192.
    Sun G, Ye P, Murai K, Lang MF, Li S, Zhang H, Li W, Fu C, Yin J, Wang A, Ma X, Shi Y (2011) miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2:529PubMedCentralPubMedGoogle Scholar
  193. 193.
    Bonev B, Stanley P, Papalopulu N (2012) MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2:10–18PubMedCentralPubMedGoogle Scholar
  194. 194.
    Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646PubMedCentralPubMedGoogle Scholar
  195. 195.
    Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231PubMedCentralPubMedGoogle Scholar
  196. 196.
    Lamonica BE, Lui JH, Wang X, Kriegstein AR (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22:747–753PubMedCentralPubMedGoogle Scholar
  197. 197.
    Guillemot F (2005) Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol 17:639–647PubMedGoogle Scholar
  198. 198.
    Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, Engel T, McKiernan RC, Mouri G, Tanaka K, Sano T, Saugstad JA, Simon RP, Stallings RL, Henshall DC (2011) miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol 179:2519–2532PubMedCentralPubMedGoogle Scholar
  199. 199.
    Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CM (2011) miR-34a regulates mouse neural stem cell differentiation. PLoS ONE 6:e21396PubMedCentralPubMedGoogle Scholar
  200. 200.
    Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y, Peng J, Bordey A, Jin P, Zhao X (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28:1060–1070PubMedCentralPubMedGoogle Scholar
  201. 201.
    Bruno IG, Karam R, Huang L, Bhardwaj A, Lou CH, Shum EY, Song HW, Corbett MA, Gifford WD, Gecz J, Pfaff SL, Wilkinson MF (2011) Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42:500–510PubMedCentralPubMedGoogle Scholar
  202. 202.
    Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384PubMedGoogle Scholar
  203. 203.
    Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA 107:20382–20387PubMedCentralPubMedGoogle Scholar
  204. 204.
    Zhou CJ, Borello U, Rubenstein JL, Pleasure SJ (2006) Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway. Neuroscience 142:1119–1131PubMedGoogle Scholar
  205. 205.
    Mutch CA, Schulte JD, Olson E, Chenn A (2010) Beta-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. PLoS ONE 5:e12376PubMedCentralPubMedGoogle Scholar
  206. 206.
    Kim WY, Wang X, Wu Y, Doble BW, Patel S, Woodgett JR, Snider WD (2009) GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci 12:1390–1397PubMedGoogle Scholar
  207. 207.
    Kang W, Wong LC, Shi SH, Hebert JM (2009) The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J Neurosci 29:14571–14580PubMedCentralPubMedGoogle Scholar
  208. 208.
    Komada M, Iguchi T, Takeda T, Ishibashi M, Sato M (2013) Smoothened controls cyclin D2 expression and regulates the generation of intermediate progenitors in the developing cortex. Neurosci Lett 547:87–91PubMedGoogle Scholar
  209. 209.
    Shikata Y, Okada T, Hashimoto M, Ellis T, Matsumaru D, Shiroishi T, Ogawa M, Wainwright B, Motoyama J (2011) Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages. Dev Biol 349:147–159PubMedGoogle Scholar
  210. 210.
    Georgala PA, Manuel M, Price DJ (2011) The generation of superficial cortical layers is regulated by levels of the transcription factor Pax6. Cereb Cortex 21:81–94PubMedCentralPubMedGoogle Scholar
  211. 211.
    Tuoc TC, Radyushkin K, Tonchev AB, Pinon MC, Ashery-Padan R, Molnar Z, Davidoff MS, Stoykova A (2009) Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J Neurosci 29:8335–8349PubMedGoogle Scholar
  212. 212.
    Berger J, Berger S, Tuoc TC, D’Amelio M, Cecconi F, Gorski JA, Jones KR, Gruss P, Stoykova A (2007) Conditional activation of Pax6 in the developing cortex of transgenic mice causes progenitor apoptosis. Development 134:1311–1322PubMedGoogle Scholar
  213. 213.
    Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, Hevner RF, West JD, Price DJ (2006) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev Biol 22:22Google Scholar
  214. 214.
    Bedford L, Walker R, Kondo T, van Cruchten I, King ER, Sablitzky F (2005) Id4 is required for the correct timing of neural differentiation. Dev Biol 280:386–395PubMedGoogle Scholar
  215. 215.
    Chen JG, Rasin MR, Kwan KY, Sestan N (2005) Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl Acad Sci USA 102:17792–17797PubMedCentralPubMedGoogle Scholar
  216. 216.
    Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366PubMedGoogle Scholar
  217. 217.
    Han W, Kwan KY, Shim S, Lam MM, Shin Y, Xu X, Zhu Y, Li M, Sestan N (2011) TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc Natl Acad Sci USA 108:3041–3046PubMedCentralPubMedGoogle Scholar
  218. 218.
    Buttner N, Johnsen SA, Kugler S, Vogel T (2010) Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. Proc Natl Acad Sci USA 107:7042–7047PubMedCentralPubMedGoogle Scholar
  219. 219.
    Matsumoto S, Banine F, Struve J, Xing R, Adams C, Liu Y, Metzger D, Chambon P, Rao MS, Sherman LS (2006) Brg1 is required for murine neural stem cell maintenance and gliogenesis. Developmental Biol 289:372–383Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Tran Cong Tuoc
    • 1
  • Evangelos Pavlakis
    • 2
  • Marco Andreas Tylkowski
    • 2
    • 3
  • Anastassia Stoykova
    • 2
    • 3
    Email author
  1. 1.Institute of NeuroanatomyUniversitätsmedizin GöttingenGöttingenGermany
  2. 2.Research Group of Molecular Developmental NeurobiologyMax-Planck-Institute for Biophysical ChemistryGöttingenGermany
  3. 3.Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany

Personalised recommendations