Skip to main content
Log in

A “SYDE” effect of hierarchical phosphorylation: possible relevance to the cystic fibrosis basic defect

  • Visions and reflections
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The motif “SYDE”, incorporating the protein kinase CK2 consensus sequence (S-x-x-E) has been found to be phosphorylated at both its serine and tyrosine residues in several proteins. Of special interest is the case of cystic fibrosis Transmembrane-conductance Regulator (CFTR), where this motif is close to the residue (F508), whose deletion is the by far commonest cause of cystic fibrosis. Intriguingly, however, CFTR S511 cannot be phosphorylated by CK2 to any appreciable extent. Using a number of peptide substrates encompassing the CFTR “SYDE” site we have recently shown that: (1) failure of CK2 to phosphorylate the S511YDE motif is due to the presence of Y512; (2) CK2 readily phosphorylates S511 if Y512 is replaced by a phospho-tyrosine; (3) the Src family protein tyrosine kinase Lyn phosphorylates Y512 in a manner that is enhanced by the deletion of F508. These data, in conjunction with the recent observation that by inhibiting CK2 the degradation of F508delCFTR is reduced, lead us to hypothesize that the hierarchical phosphorylation of the motif SYDE by the concerted action of protein tyrosine kinases and CK2 is one of the mechanisms that cooperate to the premature degradation of F508delCFTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Salvi M, Sarno S, Cesaro L et al (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793:847–859

    Article  CAS  PubMed  Google Scholar 

  2. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314:191–225

    Article  CAS  PubMed  Google Scholar 

  4. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  CAS  PubMed  Google Scholar 

  5. Kartner N, Augustinas O, Jensen TJ et al (1992) Mislocalization of ΔF508 CFTR in cystic fibrosis sweat gland. Nat Genet 1:321–327

    Article  CAS  PubMed  Google Scholar 

  6. Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269:25710–25718

    CAS  PubMed  Google Scholar 

  7. Jensen TJ, Loo MA, Pind S et al (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    Article  CAS  PubMed  Google Scholar 

  8. Qu BH, Thomas PJ (1996) Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J Biol Chem 271:7261–7264

    Article  CAS  PubMed  Google Scholar 

  9. Heda GD, Tanwani M, Marino CR (2001) The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am J Physiol Cell Physiol 280:C166–C174

    CAS  PubMed  Google Scholar 

  10. Dalemans W, Barbry P, Champigny G et al (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    Article  CAS  PubMed  Google Scholar 

  11. Pagano MA, Arrigoni G, Marin O et al (2008) Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47:7925–7936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hornbeck PV, Kornhauser JM, Tkachev S et al (2011) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270

    Article  PubMed Central  PubMed  Google Scholar 

  13. Meggio F, Perich JW, Reynolds EC, Pinna LA (1991) Phosphotyrosine as a specificity determinant for casein kinase-2, a growth related Ser/Thr-specific protein kinase. FEBS Lett 279:307–309

    Article  CAS  PubMed  Google Scholar 

  14. Mendes AI, Matos P, Moniz S et al (2011) Antagonistic regulation of cystic fibrosis transmembrane conductance regulator cell surface expression by protein kinases WNK4 and spleen tyrosine kinase. Mol Cell Biol 31:4076–4086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cesaro L, Marin O, Venerando A et al (2013) Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508. Amino Acids 45:1423–1429

    Article  CAS  PubMed  Google Scholar 

  16. Torres J, Pulido R (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276:993–998

    Article  CAS  PubMed  Google Scholar 

  17. Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 Is a C-terminal ikappab kinase responsible for NF-kappaB activation during the UV response. Mol Cell 12:829–839

    Article  CAS  PubMed  Google Scholar 

  18. Scaglioni PP, Yung TM, Cai LF et al (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126:269–283

    Article  CAS  PubMed  Google Scholar 

  19. Pagano MA, Marin O, Cozza G et al (2010) Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2. Biochem J 426:19–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Luz S, Kongsuphol P, Mendes AI et al (2011) Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity. Mol Cell Biol 31:4392–4404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Venerando A, Franchin C, Cant N et al (2013) Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. PLoS One. doi:10.1371/journal.pone.0074232

    PubMed Central  PubMed  Google Scholar 

  22. Roach PJ (1991) Multisite and hierarchal protein phosphorylation. J Biol Chem 266:14139–14142

    CAS  PubMed  Google Scholar 

  23. Ubersax JA, Ferrell JE (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol. doi:10.1038/nrm2235

    PubMed  Google Scholar 

  24. Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3:281–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Anjard C, Loomis WF (2002) Evolutionary analyses of ABC transporters of Dictyostelium discoideum. Eukaryot Cell 1:643–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. P.R. Fisher (La Trobe University, Australia) for helpful suggestions about Dictyostelium discoideum ABC proteins. Financial support from the Fondazione per la Ricerca sulla Fibrosi Cistica (grant #3/2011 adopted by Delegazione FFC della Valdadige and Associazione Trentina FC Fiaba “Il Villaggio di Natale” in ricordo di Massimiliano e Sebastiano) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pinna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venerando, A., Cesaro, L., Marin, O. et al. A “SYDE” effect of hierarchical phosphorylation: possible relevance to the cystic fibrosis basic defect. Cell. Mol. Life Sci. 71, 2193–2196 (2014). https://doi.org/10.1007/s00018-014-1581-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1581-8

Keywords

Navigation