Skip to main content

Advertisement

Log in

Drosophila Nesprin-1 controls glutamate receptor density at neuromuscular junctions

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nesprin-1 is a core component of a protein complex connecting nuclei to cytoskeleton termed LINC (linker of nucleoskeleton and cytoskeleton). Nesprin-1 is anchored to the nuclear envelope by its C-terminal KASH domain, the disruption of which has been associated with neuronal and neuromuscular pathologies, including autosomal recessive cerebellar ataxia and Emery–Dreifuss muscular dystrophy. Here, we describe a new and unexpected role of Drosophila Nesprin-1, Msp-300, in neuromuscular junction. We show that larvae carrying a deletion of Msp-300 KASH domain (Msp-300 ∆KASH ) present a locomotion defect suggestive of a myasthenia, and demonstrate the importance of muscle Msp-300 for this phenotype, using tissue-specific RNAi knock-down. We show that Msp-300 ∆KASH mutants display abnormal neurotransmission at the larval neuromuscular junction, as well as an imbalance in postsynaptic glutamate receptor composition with a decreased percentage of GluRIIA-containing receptors. We could rescue Msp-300 ∆KASH locomotion phenotypes by GluRIIA overexpression, suggesting that the locomotion impairment associated with the KASH domain deletion is due to a reduction in junctional GluRIIA. In summary, we found that Msp-300 controls GluRIIA density at the neuromuscular junction. Our results suggest that Drosophila is a valuable model for further deciphering how Nesprin-1 and LINC disruption may lead to neuronal and neuromuscular pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANC-1:

Nuclear anchorage protein-1

ARCA1:

Autosomal recessive cerebellar ataxia

Dlg:

Discs-large

EDMD:

Emery–Dreifuss muscular dystrophy

ER:

Endoplasmic reticulum

eEJC:

Evoked excitatory junctional current

eEJP:

Evoked excitatory junctional potential

GluRII:

Glutamate receptor type II

IkB:

Inhibitor of kappa B

KASH:

Klarsicht/ANC-1/Syne homology

LINC:

Linker of nucleoskeleton and cytoskeleton

MAGUK:

Membrane-associated guanylate kinase

mEJC:

Miniature excitatory junctional current

mEJP:

Miniature excitatory junctional potential

MHC:

Myosin heavy chain

Msp-300:

Muscle-specific protein-300

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NMJ:

Neuromuscular junction

RNAi:

RNA interference

ROI:

Region of interest

SR:

Spectrin repeats

SSR:

Subsynaptic reticulum

WT:

Wild type

References

  1. Razafsky D, Zang S, Hodzic D (2011) unLINCing the nuclear envelope: towards an understanding of the physiological significance of nuclear positioning. Biochem Soc Trans 39:1790–1794

    Article  CAS  PubMed  Google Scholar 

  2. Starr DA (2009) A nuclear-envelope bridge positions nuclei and moves chromosomes. J Cell Sci 122:577–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wang N, Tytell JD, Ingber DE (2009) mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, Verreault S, Sanes JR, Bouchard JP, Rouleau GA (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT et al (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery–Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833

    Article  CAS  PubMed  Google Scholar 

  8. Emery AE (2000) Emery–Dreifuss muscular dystrophy—a 40-year retrospective. Neuromuscul Disord 10:228–232

    Article  CAS  PubMed  Google Scholar 

  9. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

    Article  CAS  PubMed  Google Scholar 

  10. Schaeffer L, de Kerchove d’Exaerde A, Changeux JP (2001) Targeting transcription to the neuromuscular synapse. Neuron 31:15–22

    Article  CAS  PubMed  Google Scholar 

  11. Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M (2005) Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci USA 102:4359–4364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Puckelwartz MJ, Kessler E, Zhang Y, Hodzic D, Randles KN, Morris G, Earley JU, Hadhazy M, Holaska JM, Mewborn SK et al (2009) Disruption of nesprin-1 produces an Emery–Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang J, Felder A, Liu Y, Guo LT, Lange S, Dalton ND, Gu Y, Peterson KL, Mizisin AP, Shelton GD et al (2010) Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19:329–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Volk T (1992) A new member of the spectrin superfamily may participate in the formation of embryonic muscle attachments in Drosophila. Development 116:721–730

    CAS  PubMed  Google Scholar 

  15. Zhang Q, Ragnauth C, Greener MJ, Shanahan CM, Roberts RG (2002) The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics 80:473–481

    Article  CAS  PubMed  Google Scholar 

  16. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  17. Rohrbough J, Pinto S, Mihalek RM, Tully T, Broadie K (1999) latheo, a Drosophila gene involved in learning, regulates functional synaptic plasticity. Neuron 23:55–70

    Article  CAS  PubMed  Google Scholar 

  18. Feng Y, Ueda A, Wu CF (2004) A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet 18:377–402

    Article  CAS  PubMed  Google Scholar 

  19. Marrus SB, Portman SL, Allen MJ, Moffat KG, DiAntonio A (2004) Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci 24:1406–1415

    Article  CAS  PubMed  Google Scholar 

  20. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  21. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2003–2007

    Article  Google Scholar 

  22. Rosenberg-Hasson Y, Renert-Pasca M, Volk T (1996) A Drosophila dystrophin-related protein, MSP-300, is required for embryonic muscle morphogenesis. Mech Dev 60:83–94

    Article  CAS  PubMed  Google Scholar 

  23. Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275:31986–31995

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114:4485–4498

    CAS  PubMed  Google Scholar 

  25. Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118:673–687

    Article  CAS  PubMed  Google Scholar 

  26. Xie X, Fischer JA (2008) On the roles of the Drosophila KASH domain proteins Msp-300 and Klarsicht. Fly 2:74–81

    Google Scholar 

  27. Starr DA, Han M (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409

    Article  CAS  PubMed  Google Scholar 

  28. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  29. Kim K, Lee YS, Harris D, Nakahara K, Carthew RW (2006) The RNAi pathway initiated by Dicer-2 in Drosophila. Cold Spring Harb Symp Quant Biol 71:39–44

    Article  CAS  PubMed  Google Scholar 

  30. Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A (1997) Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19:1237–1248

    Article  CAS  PubMed  Google Scholar 

  31. DiAntonio A, Petersen SA, Heckmann M, Goodman CS (1999) Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J Neurosci 19:3023–3032

    CAS  PubMed  Google Scholar 

  32. Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, Kappei D, Ponimaskin E, Heckmann M, Sigrist SJ (2005) Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J Neurosci 25:3209–3218

    Article  CAS  PubMed  Google Scholar 

  33. Featherstone DE, Rushton E, Rohrbough J, Liebl F, Karr J, Sheng Q, Rodesch CK, Broadie K (2005) An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J Neurosci 25:3199–3208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Schuster CM, Ultsch A, Schloss P, Cox JA, Schmitt B, Betz H (1991) Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254:112–114

    Article  CAS  PubMed  Google Scholar 

  35. Sigrist SJ, Reiff DF, Thiel PR, Steinert JR, Schuster CM (2003) Experience-dependent strengthening of Drosophila neuromuscular junctions. J Neurosci 23:6546–6556

    CAS  PubMed  Google Scholar 

  36. Chen K, Featherstone DE (2005) Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila. BMC Biol 3:1–13f

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cantera R, Kozlova T, Barillas-Mury C, Kafatos FC (1999) Muscle structure and innervation are affected by loss of Dorsal in the fruit fly, Drosophila melanogaster. Mol Cell Neurosci 13:131–141

    Article  CAS  PubMed  Google Scholar 

  38. Heckscher ES, Fetter RD, Marek KW, Albin SD, Davis GW (2007) NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ. Neuron 55:859–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Elhanany-Tamir H, Yu YV, Shnayder M, Jain A, Welte M, Volk T (2012) Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J Cell Biol 198:833–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lei K, Zhang X, Ding X, Guo X, Chen M, Zhu B, Xu T, Zhuang Y, Xu R, Han M (2009) SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc Natl Acad Sci USA 106:10207–10212

    Article  PubMed Central  PubMed  Google Scholar 

  42. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chen K, Merino C, Sigrist SJ, Featherstone DE (2005) The 4.1 protein coracle mediates subunit-selective anchoring of Drosophila glutamate receptors to the postsynaptic actin cytoskeleton. J Neurosci 25:6667–6675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Puckelwartz MJ, Kessler EJ, Kim G, Dewitt MM, Zhang Y, Earley JU, Depreux FF, Holaska J, Mewborn SK, Pytel P et al (2010) Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell Cardiol 48:600–608

    Google Scholar 

  45. Bupp J, Martin AE, Stensrud ES, Jaspersen SL (2007) Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J Cell Biol 179:845–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT (2005) Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 170:781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Brosig M, Ferralli J, Gelman L, Chiquet M, Chiquet-Ehrismann R (2010) Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. Int J Biochem Cell Biol 42:1717–1728

    Article  CAS  PubMed  Google Scholar 

  49. Mejat A, Decostre V, Li J, Renou L, Kesari A, Hantai D, Stewart CL, Xiao X, Hoffman E, Bonne G et al (2009) Lamin A/C-mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. J Cell Biol 184:31–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Qiu S, Li X-Y, Zhuo M (2011) Post-translational modification of NMDA receptor GluN2B subunit and its roles in chronic pain and memory. Sem Cell Dev Biol 22:521–529

    Article  CAS  Google Scholar 

  51. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3:944–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Pendin D, McNew JA, Daga A (2011) Balancing ER dynamics: shaping, bending, severing, and mending membranes. Curr Opin Cell Biol 23:435–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Park SH, Blackstone C (2010) Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep 11:515–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Frescas D, Mavrakis M, Lorenz H, Delotto R, Lippincott-Schwartz J (2006) The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J Cell Biol 173:219–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Gough LL, Fan J, Chu S, Winnick S, Beck KA (2003) Golgi Localization of Syne-1. Mol Biol Cell 14:2410–2424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Lu Z, Joseph D, Bugnard E, Zaal KJ, Ralston E (2001) Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol Biol Cell 12:795–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Beck KA (2005) Spectrins and the Golgi. Biochim Biophys Acta 1744:374–382

    Article  CAS  PubMed  Google Scholar 

  58. Dupre N, Gros-Louis F, Chrestian N, Verreault S, Brunet D, de Verteuil D, Brais B, Bouchard JP, Rouleau GA (2007) Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 62:93–98

    Article  CAS  PubMed  Google Scholar 

  59. Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z, Melki J (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank E. Goillot, E. Delaune, E. Girard, and N. Morel for critical comments on this manuscript and fruitful advice. We also thank C. Chamot, C. Lionnet, and O. Duc (Platim, ENS-Lyon) for their help with image acquisition and analysis, and V. Krakoviack for his help with locomotion analysis. We thank T. Volk, A. DiAntonio, S. Wassermann, and K. Giesler for generously sharing antibodies, A. DiAntonio, G. Davis, M. Baylies, Bloomington Stock Center and Vienna Drosophila RNAi Center for providing fly stocks and DSHB for providing antibodies. This work was supported by the AFM and the CNRS. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Morel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2014_1566_MOESM1_ESM.eps

Supplementary material 1 Suppl. Fig. v50192 muscle-specific RNAi results in nuclei clustering and Msp-300 disconnection from the nuclear envelope. KASH-containing Msp-300 isoforms were depleted specifically in muscles by the expression of v50192 RNAi amplicon with the 24B-Gal4 construct. (a-c) Confocal images of UAS-v50192/+ ; 24B-Gal4/+ third-instar wandering larvae showing Msp-300 subcellular localization (in grey) and nuclei (outlined by LaminA staining, in green) organization. Muscle-specific knock-down of Msp-300 KASH-containing isoforms results in nuclei clustering (a) and disconnection of Msp-300 from the nuclei (a, b) without perturbing Z-band Msp-300 localization (c), thus phenocopying the localization defects observed in Msp-300 ∆KASH mutants and validating the use of v50192 to knock-down Msp-300. Scale bar: 20 µm. (EPS 15529 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, V., Lepicard, S., N. Rey, A. et al. Drosophila Nesprin-1 controls glutamate receptor density at neuromuscular junctions. Cell. Mol. Life Sci. 71, 3363–3379 (2014). https://doi.org/10.1007/s00018-014-1566-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1566-7

Keywords

Navigation