Skip to main content

Advertisement

Log in

Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The MiTF/TFE family of basic helix–loop–helix leucine zipper transcription factors includes MITF, TFEB, TFE3, and TFEC. The involvement of some family members in the development and proliferation of specific cell types, such as mast cells, osteoclasts, and melanocytes, is well established. Notably, recent evidence suggests that the MiTF/TFE family plays a critical role in organelle biogenesis, nutrient sensing, and energy metabolism. The MiTF/TFE family is also implicated in human disease. Mutations or aberrant expression of most MiTF/TFE family members has been linked to different types of cancer. At the same time, they have recently emerged as novel and very promising targets for the treatment of neurological and lysosomal diseases. The characterization of this fascinating family of transcription factors is greatly expanding our understanding of how cells synchronize environmental signals, such as nutrient availability, with gene expression, energy production, and cellular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AKT:

v-akt murine thymoma viral oncogene

ARPE-19:

Retinal pigmented epithelium cell line

ASPL:

Alveolar soft part sarcoma chromosome region, candidate 1

ASPS:

Alveolar soft part sarcoma

ATF1:

Activating transcription factor 1

ATG1:

unc-51-like autophagy activating kinase 1

ATG13:

Autophagy-related 13

ATG16L:

Autophagy-related 16-like (S. cerevisiae)

ATG9B:

Autophagy-related 9B

ATP6V:

ATPase, H+ transporting, lysosomal

BCL2:

B-cell CLL/lymphoma 2

bHLH-LZ:

Basic/helix–loop–helix/leucine zipper

c-MET:

Receptor tyrosine kinase

C. elegans :

Caenorhabditis elegans

CCS:

Clear cell sarcoma

CDK2:

Cyclin-dependent kinase 2

CLEAR:

Coordinated lysosomal expression and regulation

CLTC:

Clathrin, heavy chain (Hc)

ERK2:

Mitogen-activated protein kinase 1

FOXO3:

Forkhead box O3

GAGs:

Glycosaminoglycans

GLUT4:

Solute carrier family 2 (facilitated glucose transporter, member 4)

GSK3β:

Glycogen synthase kinase 3 beta

GYS:

Glycogen synthase

HD:

Huntington’s disease

HIF1:

Hypoxia inducible factor 1

HK2:

Hexokinase 2

HLH-30:

Caenorhabditis elegans TFEB orthologue

HPS4:

Hermansky–Pudlak syndrome 4

IRF3:

Interferon regulatory factor 3

IRF7:

Interferon regulatory factor 7

IRS2:

Insulin receptor substrate 2

ISGs:

Interferon-stimulated genes

LAMP1:

Lysosomal-associated membrane protein 1

LROs:

Lysosome-related organelles

LSDs:

Lysosomal storage disorders

LYST:

Lysosomal trafficking regulator

MAP1LC3B:

Microtubule-associated protein 1 light chain 3 beta

MAX:

MYC-associated factor X

MCOLN1:

Mucolipin 1

MITF:

Microphthalmia-associated transcription factor

MPS-IIIA:

Mucopolysaccharidosis type IIIA

MSD:

Multiple sulfatase deficiency

MTORC1:

Mechanistic target of rapamycin (serine/threonine kinase) complex 1

MYC:

v-myc avian myelocytomatosis viral oncogene homolog

NONO:

Non-POU domain-containing, octamer-binding

NSCs:

Neuronal stem cells

p16:

Cyclin-dependent kinase inhibitor 2A

p21:

Cyclin-dependent kinase inhibitor 1A (p21, Cip1)

PD:

Parkinson’s disease

RCC:

Renal cell carcinoma

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PPARA:

Peroxisome proliferator-activated receptor alpha

PPARGC1A:

Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha

PRCC:

Papillary renal cell carcinoma (translocation-associated)

PKCβ:

Protein kinase C, beta

PSEN2:

Presenilin 2 (Alzheimer disease 4)

PSF:

Splicing factor proline/glutamine-rich

RANKL:

Tumor necrosis factor (ligand) superfamily, member 11

RHEB:

Ras homolog enriched in brain

SCAP:

SREBF chaperone

SNP:

Single nucleotide polymorphism

SQSTM1:

Sequestosome 1

SREBP:

Sterol regulatory element-binding protein

STING:

Stimulator of interferon genes

TBK1:

TANK-binding kinase 1

TFE3:

Transcription factor binding to IGHM enhancer 3

TFEB:

Transcription factor EB

TFEC:

Transcription factor EC

P53:

Tumor protein p53

tRCC:

Translocation renal cell carcinoma

TREX1:

Three prime repair exonuclease 1

TSC2:

Tuberous sclerosis 2

USF:

Upstream transcription factor

UVRAG:

UV radiation resistance associated

VPS11:

Vacuolar protein sorting 11 homolog (S. cerevisiae)

VPS18:

Vacuolar protein sorting 18 homolog (S. cerevisiae)

WIPI1:

WD repeat domain, phosphoinositide interacting 1

ZKSCAN3:

Zinc finger with KRAB and SCAN domains 3

References

  1. Carr CS, Sharp PA (1990) A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Mol Cell Biol 10(8):4384–4388

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74(2):395–404

    CAS  PubMed  Google Scholar 

  3. Hughes MJ, Lingrel JB, Krakowsky JM, Anderson KP (1993) A helix-loop-helix transcription factor-like gene is located at the mi locus. J Biol Chem 268(28):20687–20690

    CAS  PubMed  Google Scholar 

  4. Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365–411. doi:10.1146/annurev.genet.38.072902.092717

    CAS  PubMed  Google Scholar 

  5. Zhao GQ, Zhao Q, Zhou X, Mattei MG, de Crombrugghe B (1993) TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol Cell Biol 13(8):4505–4512

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA, Fisher DE (1994) Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 8(22):2770–2780

    CAS  PubMed  Google Scholar 

  7. Pogenberg V, Ogmundsdottir MH, Bergsteinsdottir K, Schepsky A, Phung B, Deineko V, Milewski M, Steingrimsson E, Wilmanns M (2012) Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev 26(23):2647–2658. doi:10.1101/gad.198192.112

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Aksan I, Goding CR (1998) Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol Cell Biol 18(12):6930–6938

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA (1999) TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J Immunol 162(3):1559–1565

    CAS  PubMed  Google Scholar 

  10. Beckmann H, Su LK, Kadesch T (1990) TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev 4(2):167–179

    CAS  PubMed  Google Scholar 

  11. Steingrimsson E, Tessarollo L, Reid SW, Jenkins NA, Copeland NG (1998) The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development 125(23):4607–4616

    CAS  PubMed  Google Scholar 

  12. Bharti K, Liu W, Csermely T, Bertuzzi S, Arnheiter H (2008) Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development 135(6):1169–1178. doi:10.1242/dev.014142

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Steingrimsson E (2008) All for one, one for all: alternative promoters and Mitf. Pigment Cell Melanoma Res 21(4):412–414. doi:10.1111/j.1755-148X.2008.00473.x

    PubMed  Google Scholar 

  14. Kuiper RP, Schepens M, Thijssen J, Schoenmakers EF, van Kessel AG (2004) Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Res 32(8):2315–2322. doi:10.1093/nar/gkh571

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414. doi:10.1016/j.molmed.2006.07.008

    CAS  PubMed  Google Scholar 

  16. Hershey CL, Fisher DE (2004) Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 34(4):689–696. doi:10.1016/j.bone.2003.08.014

    CAS  PubMed  Google Scholar 

  17. Steingrimsson E, Tessarollo L, Pathak B, Hou L, Arnheiter H, Copeland NG, Jenkins NA (2002) Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc Natl Acad Sci USA 99(7):4477–4482. doi:10.1073/pnas.072071099

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Kitamura Y, Oboki K, Ito A (2006) Molecular mechanisms of mast cell development. Immunol Allergy Clin North Am 26(3):387–405; v. doi:10.1016/j.iac.2006.05.004

    Google Scholar 

  19. Yagil Z, Hadad Erlich T, Ofir-Birin Y, Tshori S, Kay G, Yekhtin Z, Fisher DE, Cheng C, Wong WS, Hartmann K, Razin E, Nechushtan H (2012) Transcription factor E3, a major regulator of mast cell-mediated allergic response. J Allergy Clin Immunol 129 (5):1357–1366 e1355. doi:10.1016/j.jaci.2011.11.051

    Google Scholar 

  20. Huan C, Kelly ML, Steele R, Shapira I, Gottesman SR, Roman CA (2006) Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 7(10):1082–1091. doi:10.1038/ni1378

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Read AP, Newton VE (1997) Waardenburg syndrome. J Med Genet 34(8):656–665

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635. doi:10.1038/nrm2745

    CAS  PubMed  Google Scholar 

  23. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8(8):622–632. doi:10.1038/nrm2217

    CAS  PubMed  Google Scholar 

  24. Helip-Wooley A, Thoene JG (2004) Sucrose-induced vacuolation results in increased expression of cholesterol biosynthesis and lysosomal genes. Exp Cell Res 292(1):89–100

    CAS  PubMed  Google Scholar 

  25. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477. doi:10.1126/science.1174447

    CAS  PubMed  Google Scholar 

  26. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20(19):3852–3866. doi:10.1093/hmg/ddr306

    CAS  PubMed  Google Scholar 

  27. Singh R, Cuervo AM (2011) Autophagy in the cellular energetic balance. Cell Metab 13(5):495–504. doi:10.1016/j.cmet.2011.04.004

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433. doi:10.1126/science.1204592

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi:10.1128/MCB.00166-09

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134. doi:10.1016/j.cell.2006.05.034

    CAS  PubMed  Google Scholar 

  31. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. doi:10.1016/j.cmet.2007.11.001

    CAS  PubMed  Google Scholar 

  32. Chauhan S, Goodwin JG, Manyam G, Wang J, Kamat AM, Boyd DD (2013) ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 50(1):16–28. doi:10.1016/j.molcel.2013.01.024

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, Wollenberg AC, Di Bernardo D, Chan L, Irazoqui JE, Ballabio A (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15(8):1016. doi:10.1038/ncb2814

    CAS  Google Scholar 

  34. Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914. doi:10.4161/auto.19653

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5(228):ra42. doi:10.1126/scisignal.2002790

    PubMed Central  PubMed  Google Scholar 

  36. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31(5):1095–1108. doi:10.1038/emboj.2012.32

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150(6):1196–1208. doi:10.1016/j.cell.2012.07.032

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303. doi:10.1016/j.cell.2010.02.024

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi:10.1126/science.1157535

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683. doi:10.1126/science.1207056

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5(6):566–571. doi:10.1038/ncb996

    CAS  PubMed  Google Scholar 

  43. Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5(6):559–565. doi:10.1038/ncb995

    CAS  PubMed  Google Scholar 

  44. Martina JA, Puertollano R (2013) Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol 200(4):475–491. doi:10.1083/jcb.201209135

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991. doi:10.1091/mbc.E08-12-1248

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5(7):973–979

    CAS  PubMed  Google Scholar 

  47. Ferron M, Settembre C, Shimazu J, Lacombe J, Kato S, Rawlings DJ, Ballabio A, Karsenty G (2013) A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev 27(8):955–969. doi:10.1101/gad.213827.113

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Pena-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, Zou L, Xie XJ, Corey DR, Brugarolas J (2011) Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30(16):3242–3258. doi:10.1038/emboj.2011.257

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Platt FM, Boland B, van der Spoel AC (2012) The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199(5):723–734. doi:10.1083/jcb.201208152

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hasan M, Koch J, Rakheja D, Pattnaik AK, Brugarolas J, Dozmorov I, Levine B, Wakeland EK, Lee-Kirsch MA, Yan N (2013) Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nat Immunol 14(1):61–71. doi:10.1038/ni.2475

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Martina JA, Diab HI, Lishu L, Jeong-A L, Patange S, Raben N, Puertollano R (2014) TFE3 activates in response to nutrient deprivation and promotes autophagy, lysosomal biogenesis and cellular clearance. Sci Signal 7(309). doi:10.1126/scisignal.2004754

  52. Nakagawa Y, Shimano H, Yoshikawa T, Ide T, Tamura M, Furusawa M, Yamamoto T, Inoue N, Matsuzaka T, Takahashi A, Hasty AH, Suzuki H, Sone H, Toyoshima H, Yahagi N, Yamada N (2006) TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat Med 12(1):107–113. doi:10.1038/nm1334

    CAS  PubMed  Google Scholar 

  53. Iwasaki H, Naka A, Iida KT, Nakagawa Y, Matsuzaka T, Ishii KA, Kobayashi K, Takahashi A, Yatoh S, Yahagi N, Sone H, Suzuki H, Yamada N, Shimano H (2012) TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am J Physiol Endocrinol Metab 302(7):E896–E902. doi:10.1152/ajpendo.00204.2011

    CAS  PubMed  Google Scholar 

  54. Shimano H (2007) SREBP-1c and TFE3, energy transcription factors that regulate hepatic insulin signaling. J Mol Med 85(5):437–444. doi:10.1007/s00109-007-0158-5

    CAS  PubMed  Google Scholar 

  55. Fujimoto Y, Nakagawa Y, Satoh A, Okuda K, Shingyouchi A, Naka A, Matsuzaka T, Iwasaki H, Kobayashi K, Yahagi N, Shimada M, Yatoh S, Suzuki H, Yogosawa S, Izumi T, Sone H, Urayama O, Yamada N, Shimano H (2013) TFE3 controls lipid metabolism in adipose tissue of male mice by suppressing lipolysis and thermogenesis. Endocrinology. doi:10.1210/en.2013-1203

    PubMed  Google Scholar 

  56. Merrell K, Wells S, Henderson A, Gorman J, Alt F, Stall A, Calame K (1997) The absence of the transcription activator TFE3 impairs activation of B cells in vivo. Mol Cell Biol 17(6):3335–3344

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Cheli Y, Ohanna M, Ballotti R, Bertolotto C (2010) Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23(1):27–40. doi:10.1111/j.1755-148X.2009.00653.x

    CAS  PubMed  Google Scholar 

  58. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (2008) Novel MITF targets identified using a two-step DNA microarray strategy. Pigment Cell Melanoma Res 21(6):665–676. doi:10.1111/j.1755-148X.2008.00505.x

    CAS  PubMed  Google Scholar 

  60. Ho H, Kapadia R, Al-Tahan S, Ahmad S, Ganesan AK (2011) WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J Biol Chem 286(14):12509–12523. doi:10.1074/jbc.M110.200543

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hah YS, Cho HY, Lim TY, Park DH, Kim HM, Yoon J, Kim JG, Kim CY, Yoon TJ (2012) Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells. Ann Dermatol 24(2):151–157. doi:10.5021/ad.2012.24.2.151

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Bennicelli JL, Barr FG (2002) Chromosomal translocations and sarcomas. Curr Opin Oncol 14(4):412–419

    CAS  PubMed  Google Scholar 

  63. Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, Eble JN, Fleming S, Ljungberg B, Medeiros LJ, Moch H, Reuter VE, Ritz E, Roos G, Schmidt D, Srigley JR, Storkel S, van den Berg E, Zbar B (1997) The Heidelberg classification of renal cell tumours. J Pathol 183(2):131–133. doi:10.1002/(SICI)1096-9896(199710)183:2<131:AID-PATH931>3.0.CO;2-G

    CAS  PubMed  Google Scholar 

  64. Linehan WM, Ricketts CJ (2013) The metabolic basis of kidney cancer. Semin Cancer Biol 23(1):46–55. doi:10.1016/j.semcancer.2012.06.002

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Komai Y, Fujiwara M, Fujii Y, Mukai H, Yonese J, Kawakami S, Yamamoto S, Migita T, Ishikawa Y, Kurata M, Nakamura T, Fukui I (2009) Adult Xp11 translocation renal cell carcinoma diagnosed by cytogenetics and immunohistochemistry. Clin Cancer Res 15(4):1170–1176. doi:10.1158/1078-0432.CCR-08-1183

    CAS  PubMed  Google Scholar 

  66. Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786(2):139–152. doi:10.1016/j.bbcan.2008.07.005

    CAS  PubMed  Google Scholar 

  67. Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA, Motyckova G, Valencia P, Perez-Atayde AR, Argani P, Ladanyi M, Fletcher JA, Fisher DE (2003) Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA 100(10):6051–6056. doi:10.1073/pnas.0931430100

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E, Bridge J, Schuuring E, Schoenmakers EF, van Kessel AG (2003) Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum Mol Genet 12(14):1661–1669

    CAS  PubMed  Google Scholar 

  69. Guru SC, Olufemi SE, Manickam P, Cummings C, Gieser LM, Pike BL, Bittner ML, Jiang Y, Chinault AC, Nowak NJ, Brzozowska A, Crabtree JS, Wang Y, Roe BA, Weisemann JM, Boguski MS, Agarwal SK, Burns AL, Spiegel AM, Marx SJ, Flejter WL, de Jong PJ, Collins FS, Chandrasekharappa SC (1997) A 2.8-Mb clone contig of the multiple endocrine neoplasia type 1 (MEN1) region at 11q13. Genomics 42(3):436–445. doi:10.1006/geno.1997.4783

    CAS  PubMed  Google Scholar 

  70. van Asseldonk M, Schepens M, de Bruijn D, Janssen B, Merkx G, Geurts van Kessel A (2000) Construction of a 350-kb sequence-ready 11q13 cosmid contig encompassing the markers D11S4933 and D11S546: mapping of 11 genes and 3 tumor-associated translocation breakpoints. Genomics 66(1):35–42. doi:10.1006/geno.2000.6194

    PubMed  Google Scholar 

  71. Pecciarini L, Cangi MG, Lo Cunsolo C, Macri E, Dal Cin E, Martignoni G, Doglioni C (2007) Characterization of t(6;11)(p21;q12) in a renal-cell carcinoma of an adult patient. Genes Chromosomes Cancer 46(5):419–426. doi:10.1002/gcc.20422

    CAS  PubMed  Google Scholar 

  72. Argani P, Lui MY, Couturier J, Bouvier R, Fournet JC, Ladanyi M (2003) A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 22(34):5374–5378. doi:10.1038/sj.onc.1206686

    CAS  PubMed  Google Scholar 

  73. Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS (1997) Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15(18):2233–2239. doi:10.1038/sj.onc.1201394

    CAS  PubMed  Google Scholar 

  74. Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, Healey JH, Ueda T, Yoshikawa H, Meloni-Ehrig A, Sorensen PH, Mertens F, Mandahl N, van den Berghe H, Sciot R, Dal Cin P, Bridge J (2001) The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20(1):48–57. doi:10.1038/sj.onc.1204074

    CAS  PubMed  Google Scholar 

  75. Gao CF, Vande Woude GF (2005) HGF/SF-Met signaling in tumor progression. Cell Res 15(1):49–51. doi:10.1038/sj.cr.7290264

    PubMed  Google Scholar 

  76. Tsuda M, Davis IJ, Argani P, Shukla N, McGill GG, Nagai M, Saito T, Lae M, Fisher DE, Ladanyi M (2007) TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 67(3):919–929. doi:10.1158/0008-5472.CAN-06-2855

    CAS  PubMed  Google Scholar 

  77. Reis H, Hager T, Wohlschlaeger J, Bauer S, Katenkamp K, Katenkamp D, Baba HA (2013) Mammalian target of rapamycin pathway activity in alveolar soft part sarcoma. Hum Pathol. doi:10.1016/j.humpath.2013.04.018

    Google Scholar 

  78. Weterman MA, van Groningen JJ, Tertoolen L, van Kessel AG (2001) Impairment of MAD2B-PRCC interaction in mitotic checkpoint defective t(X;1)-positive renal cell carcinomas. Proc Natl Acad Sci USA 98(24):13808–13813. doi:10.1073/pnas.241304198

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Medendorp K, van Groningen JJ, Vreede L, Hetterschijt L, Brugmans L, van den Hurk WH, van Kessel AG (2009) The renal cell carcinoma-associated oncogenic fusion protein PRCCTFE3 provokes p21 WAF1/CIP1-mediated cell cycle delay. Exp Cell Res 315(14):2399–2409. doi:10.1016/j.yexcr.2009.04.022

    CAS  PubMed  Google Scholar 

  80. Muller-Hocker J, Babaryka G, Schmid I, Jung A (2008) Overexpression of cyclin D1, D3, and p21 in an infantile renal carcinoma with Xp11.2 TFE3-gene fusion. Pathol Res Pract 204(8):589–597. doi:10.1016/j.prp.2008.01.010

    CAS  PubMed  Google Scholar 

  81. Flaherty KT, Hodi FS, Fisher DE (2012) From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer 12(5):349–361. doi:10.1038/nrc3218

    CAS  PubMed  Google Scholar 

  82. Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V, Hofman P, Bahadoran P, Bertolotto C, Ballotti R (2011) Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30(20):2307–2318. doi:10.1038/onc.2010.598

    CAS  PubMed  Google Scholar 

  83. Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P, Bahadoran P, Lacour JP, Tartare-Deckert S, Bertolotto C, Ballotti R (2012) Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 31(19):2461–2470. doi:10.1038/onc.2011.425

    CAS  PubMed  Google Scholar 

  84. Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L, Hemmi S, Dummer R (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68(3):650–656. doi:10.1158/0008-5472.CAN-07-2491

    CAS  PubMed  Google Scholar 

  85. Wellbrock C, Marais R (2005) Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol 170(5):703–708. doi:10.1083/jcb.200505059

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122. doi:10.1038/nature03664

    CAS  PubMed  Google Scholar 

  87. Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, Larue L, Goding CR (2005) Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433(7027):764–769. doi:10.1038/nature03269

    CAS  PubMed  Google Scholar 

  88. Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE (2004) Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6(6):565–576. doi:10.1016/j.ccr.2004.10.014

    CAS  PubMed  Google Scholar 

  89. Loercher AE, Tank EM, Delston RB, Harbour JW (2005) MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168(1):35–40. doi:10.1083/jcb.200410115

    CAS  PubMed Central  PubMed  Google Scholar 

  90. McGill GG, Haq R, Nishimura EK, Fisher DE (2006) c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem 281(15):10365–10373. doi:10.1074/jbc.M513094200

    CAS  PubMed  Google Scholar 

  91. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE (2002) Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109(6):707–718

    CAS  PubMed  Google Scholar 

  92. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, Goding CR (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20(24):3426–3439. doi:10.1101/gad.406406

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, Dessen P, d’Hayer B, Mohamdi H, Remenieras A, Maubec E, de la Fouchardiere A, Molinie V, Vabres P, Dalle S, Poulalhon N, Martin-Denavit T, Thomas L, Andry-Benzaquen P, Dupin N, Boitier F, Rossi A, Perrot JL, Labeille B, Robert C, Escudier B, Caron O, Brugieres L, Saule S, Gardie B, Gad S, Richard S, Couturier J, Teh BT, Ghiorzo P, Pastorino L, Puig S, Badenas C, Olsson H, Ingvar C, Rouleau E, Lidereau R, Bahadoran P, Vielh P, Corda E, Blanche H, Zelenika D, Galan P, French Familial Melanoma Study Group, Aubin F, Bachollet B, Becuwe C, Berthet P, Bignon YJ, Bonadona V, Bonafe JL, Bonnet-Dupeyron MN, Cambazard F, Chevrant-Breton J, Coupier I, Dalac S, Demange L, d’Incan M, Dugast C, Faivre L, Vincent-Fetita L, Gauthier-Villars M, Gilbert B, Grange F, Grob JJ, Humbert P, Janin N, Joly P, Kerob D, Lasset C, Leroux D, Levang J, Limacher JM, Livideanu C, Longy M, Lortholary A, Stoppa-Lyonnet D, Mansard S, Mansuy L, Marrou K, Mateus C, Maugard C, Meyer N, Nogues C, Souteyrand P, Venat-Bouvet L, Zattara H, Chaudru V, Lenoir GM, Lathrop M, Davidson I, Avril MF, Demenais F, Ballotti R, Bressac-de Paillerets B (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98. doi:10.1038/nature10539

    CAS  PubMed  Google Scholar 

  94. Davis IJ, Kim JJ, Ozsolak F, Widlund HR, Rozenblatt-Rosen O, Granter SR, Du J, Fletcher JA, Denny CT, Lessnick SL, Linehan WM, Kung AL, Fisher DE (2006) Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell 9(6):473–484. doi:10.1016/j.ccr.2006.04.021

    CAS  PubMed  Google Scholar 

  95. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544. doi:10.1523/JNEUROSCI.1920-10.2010

    CAS  PubMed  Google Scholar 

  96. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci USA 110(19):E1817–E1826. doi:10.1073/pnas.1305623110

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4(142):142ra197. doi:10.1126/scitranslmed.3003799

    Google Scholar 

  98. Pastore N, Blomenkamp K, Annunziata F, Piccolo P, Mithbaokar P, Maria Sepe R, Vetrini F, Palmer D, Ng P, Polishchuk E, Iacobacci S, Polishchuk R, Teckman J, Ballabio A, Brunetti-Pierri N (2013) Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol Med 5(3):397–412. doi:10.1002/emmm.201202046

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5(7):554–565. doi:10.1038/nrm1423

    CAS  PubMed  Google Scholar 

  100. Platt FM, Walkley SU (2004) Lysosomal disorders of brain: recent advances in molecular and cellular pathogenesis and treatment. Oxford University Press, Oxford

    Google Scholar 

  101. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21(3):421–430. doi:10.1016/j.devcel.2011.07.016

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N (2013) Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 5(5):691–706. doi:10.1002/emmm.201202176

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Abe K, Puertollano R (2011) Role of TRP channels in the regulation of the endosomal pathway. Physiology 26(1):14–22. doi:10.1152/physiol.00048.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Vergarajauregui S, Puertollano R (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7(3):337–353. doi:10.1111/j.1600-0854.2006.00387.x

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L (2013) TFEB regulates lysosomal proteostasis. Hum Mol Genet 22(10):1994–2009. doi:10.1093/hmg/ddt052

    CAS  PubMed  Google Scholar 

  106. McClive P, Pall G, Newton K, Lee M, Mullins J, Forrester L (1998) Gene trap integrations expressed in the developing heart: insertion site affects splicing of the PT1-ATG vector. Dev Dyn 212(2):267–276. doi:10.1002/(SICI)1097-0177(199806)212:2<267:AID-AJA11>3.0.CO;2-1

    CAS  PubMed  Google Scholar 

  107. Grove CA, De Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyk ML, Walhout AJ (2009) A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138(2):314–327. doi:10.1016/j.cell.2009.04.058

    CAS  PubMed Central  PubMed  Google Scholar 

  108. O’Rourke EJ, Ruvkun G (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15(6):668–676. doi:10.1038/ncb2741

    PubMed Central  PubMed  Google Scholar 

  109. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 4:2267. doi:10.1038/ncomms3267

    PubMed  Google Scholar 

  110. Lister JA, Lane BM, Nguyen A, Lunney K (2011) Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec. Dev Dyn 240(11):2529–2538. doi:10.1002/dvdy.22743

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Research Program of the National Institutes of Health, National Heart, Lung, and Blood Institute (NHLBI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Puertollano.

Additional information

J. A. Martina and H. I. Diab contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martina, J.A., Diab, H.I., Li, H. et al. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell. Mol. Life Sci. 71, 2483–2497 (2014). https://doi.org/10.1007/s00018-014-1565-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1565-8

Keywords

Navigation