Abstract
The MiTF/TFE family of basic helix–loop–helix leucine zipper transcription factors includes MITF, TFEB, TFE3, and TFEC. The involvement of some family members in the development and proliferation of specific cell types, such as mast cells, osteoclasts, and melanocytes, is well established. Notably, recent evidence suggests that the MiTF/TFE family plays a critical role in organelle biogenesis, nutrient sensing, and energy metabolism. The MiTF/TFE family is also implicated in human disease. Mutations or aberrant expression of most MiTF/TFE family members has been linked to different types of cancer. At the same time, they have recently emerged as novel and very promising targets for the treatment of neurological and lysosomal diseases. The characterization of this fascinating family of transcription factors is greatly expanding our understanding of how cells synchronize environmental signals, such as nutrient availability, with gene expression, energy production, and cellular homeostasis.
Similar content being viewed by others
Abbreviations
- AKT:
-
v-akt murine thymoma viral oncogene
- ARPE-19:
-
Retinal pigmented epithelium cell line
- ASPL:
-
Alveolar soft part sarcoma chromosome region, candidate 1
- ASPS:
-
Alveolar soft part sarcoma
- ATF1:
-
Activating transcription factor 1
- ATG1:
-
unc-51-like autophagy activating kinase 1
- ATG13:
-
Autophagy-related 13
- ATG16L:
-
Autophagy-related 16-like (S. cerevisiae)
- ATG9B:
-
Autophagy-related 9B
- ATP6V:
-
ATPase, H+ transporting, lysosomal
- BCL2:
-
B-cell CLL/lymphoma 2
- bHLH-LZ:
-
Basic/helix–loop–helix/leucine zipper
- c-MET:
-
Receptor tyrosine kinase
- C. elegans :
-
Caenorhabditis elegans
- CCS:
-
Clear cell sarcoma
- CDK2:
-
Cyclin-dependent kinase 2
- CLEAR:
-
Coordinated lysosomal expression and regulation
- CLTC:
-
Clathrin, heavy chain (Hc)
- ERK2:
-
Mitogen-activated protein kinase 1
- FOXO3:
-
Forkhead box O3
- GAGs:
-
Glycosaminoglycans
- GLUT4:
-
Solute carrier family 2 (facilitated glucose transporter, member 4)
- GSK3β:
-
Glycogen synthase kinase 3 beta
- GYS:
-
Glycogen synthase
- HD:
-
Huntington’s disease
- HIF1:
-
Hypoxia inducible factor 1
- HK2:
-
Hexokinase 2
- HLH-30:
-
Caenorhabditis elegans TFEB orthologue
- HPS4:
-
Hermansky–Pudlak syndrome 4
- IRF3:
-
Interferon regulatory factor 3
- IRF7:
-
Interferon regulatory factor 7
- IRS2:
-
Insulin receptor substrate 2
- ISGs:
-
Interferon-stimulated genes
- LAMP1:
-
Lysosomal-associated membrane protein 1
- LROs:
-
Lysosome-related organelles
- LSDs:
-
Lysosomal storage disorders
- LYST:
-
Lysosomal trafficking regulator
- MAP1LC3B:
-
Microtubule-associated protein 1 light chain 3 beta
- MAX:
-
MYC-associated factor X
- MCOLN1:
-
Mucolipin 1
- MITF:
-
Microphthalmia-associated transcription factor
- MPS-IIIA:
-
Mucopolysaccharidosis type IIIA
- MSD:
-
Multiple sulfatase deficiency
- MTORC1:
-
Mechanistic target of rapamycin (serine/threonine kinase) complex 1
- MYC:
-
v-myc avian myelocytomatosis viral oncogene homolog
- NONO:
-
Non-POU domain-containing, octamer-binding
- NSCs:
-
Neuronal stem cells
- p16:
-
Cyclin-dependent kinase inhibitor 2A
- p21:
-
Cyclin-dependent kinase inhibitor 1A (p21, Cip1)
- PD:
-
Parkinson’s disease
- RCC:
-
Renal cell carcinoma
- PI3K:
-
Phosphatidylinositol-4,5-bisphosphate 3-kinase
- PPARA:
-
Peroxisome proliferator-activated receptor alpha
- PPARGC1A:
-
Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha
- PRCC:
-
Papillary renal cell carcinoma (translocation-associated)
- PKCβ:
-
Protein kinase C, beta
- PSEN2:
-
Presenilin 2 (Alzheimer disease 4)
- PSF:
-
Splicing factor proline/glutamine-rich
- RANKL:
-
Tumor necrosis factor (ligand) superfamily, member 11
- RHEB:
-
Ras homolog enriched in brain
- SCAP:
-
SREBF chaperone
- SNP:
-
Single nucleotide polymorphism
- SQSTM1:
-
Sequestosome 1
- SREBP:
-
Sterol regulatory element-binding protein
- STING:
-
Stimulator of interferon genes
- TBK1:
-
TANK-binding kinase 1
- TFE3:
-
Transcription factor binding to IGHM enhancer 3
- TFEB:
-
Transcription factor EB
- TFEC:
-
Transcription factor EC
- P53:
-
Tumor protein p53
- tRCC:
-
Translocation renal cell carcinoma
- TREX1:
-
Three prime repair exonuclease 1
- TSC2:
-
Tuberous sclerosis 2
- USF:
-
Upstream transcription factor
- UVRAG:
-
UV radiation resistance associated
- VPS11:
-
Vacuolar protein sorting 11 homolog (S. cerevisiae)
- VPS18:
-
Vacuolar protein sorting 18 homolog (S. cerevisiae)
- WIPI1:
-
WD repeat domain, phosphoinositide interacting 1
- ZKSCAN3:
-
Zinc finger with KRAB and SCAN domains 3
References
Carr CS, Sharp PA (1990) A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Mol Cell Biol 10(8):4384–4388
Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74(2):395–404
Hughes MJ, Lingrel JB, Krakowsky JM, Anderson KP (1993) A helix-loop-helix transcription factor-like gene is located at the mi locus. J Biol Chem 268(28):20687–20690
Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365–411. doi:10.1146/annurev.genet.38.072902.092717
Zhao GQ, Zhao Q, Zhou X, Mattei MG, de Crombrugghe B (1993) TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol Cell Biol 13(8):4505–4512
Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA, Fisher DE (1994) Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 8(22):2770–2780
Pogenberg V, Ogmundsdottir MH, Bergsteinsdottir K, Schepsky A, Phung B, Deineko V, Milewski M, Steingrimsson E, Wilmanns M (2012) Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev 26(23):2647–2658. doi:10.1101/gad.198192.112
Aksan I, Goding CR (1998) Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol Cell Biol 18(12):6930–6938
Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA (1999) TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J Immunol 162(3):1559–1565
Beckmann H, Su LK, Kadesch T (1990) TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev 4(2):167–179
Steingrimsson E, Tessarollo L, Reid SW, Jenkins NA, Copeland NG (1998) The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development 125(23):4607–4616
Bharti K, Liu W, Csermely T, Bertuzzi S, Arnheiter H (2008) Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development 135(6):1169–1178. doi:10.1242/dev.014142
Steingrimsson E (2008) All for one, one for all: alternative promoters and Mitf. Pigment Cell Melanoma Res 21(4):412–414. doi:10.1111/j.1755-148X.2008.00473.x
Kuiper RP, Schepens M, Thijssen J, Schoenmakers EF, van Kessel AG (2004) Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Res 32(8):2315–2322. doi:10.1093/nar/gkh571
Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414. doi:10.1016/j.molmed.2006.07.008
Hershey CL, Fisher DE (2004) Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 34(4):689–696. doi:10.1016/j.bone.2003.08.014
Steingrimsson E, Tessarollo L, Pathak B, Hou L, Arnheiter H, Copeland NG, Jenkins NA (2002) Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc Natl Acad Sci USA 99(7):4477–4482. doi:10.1073/pnas.072071099
Kitamura Y, Oboki K, Ito A (2006) Molecular mechanisms of mast cell development. Immunol Allergy Clin North Am 26(3):387–405; v. doi:10.1016/j.iac.2006.05.004
Yagil Z, Hadad Erlich T, Ofir-Birin Y, Tshori S, Kay G, Yekhtin Z, Fisher DE, Cheng C, Wong WS, Hartmann K, Razin E, Nechushtan H (2012) Transcription factor E3, a major regulator of mast cell-mediated allergic response. J Allergy Clin Immunol 129 (5):1357–1366 e1355. doi:10.1016/j.jaci.2011.11.051
Huan C, Kelly ML, Steele R, Shapira I, Gottesman SR, Roman CA (2006) Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 7(10):1082–1091. doi:10.1038/ni1378
Read AP, Newton VE (1997) Waardenburg syndrome. J Med Genet 34(8):656–665
Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635. doi:10.1038/nrm2745
Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8(8):622–632. doi:10.1038/nrm2217
Helip-Wooley A, Thoene JG (2004) Sucrose-induced vacuolation results in increased expression of cholesterol biosynthesis and lysosomal genes. Exp Cell Res 292(1):89–100
Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477. doi:10.1126/science.1174447
Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20(19):3852–3866. doi:10.1093/hmg/ddr306
Singh R, Cuervo AM (2011) Autophagy in the cellular energetic balance. Cell Metab 13(5):495–504. doi:10.1016/j.cmet.2011.04.004
Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433. doi:10.1126/science.1204592
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi:10.1128/MCB.00166-09
Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134. doi:10.1016/j.cell.2006.05.034
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. doi:10.1016/j.cmet.2007.11.001
Chauhan S, Goodwin JG, Manyam G, Wang J, Kamat AM, Boyd DD (2013) ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 50(1):16–28. doi:10.1016/j.molcel.2013.01.024
Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, Wollenberg AC, Di Bernardo D, Chan L, Irazoqui JE, Ballabio A (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15(8):1016. doi:10.1038/ncb2814
Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914. doi:10.4161/auto.19653
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5(228):ra42. doi:10.1126/scisignal.2002790
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31(5):1095–1108. doi:10.1038/emboj.2012.32
Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150(6):1196–1208. doi:10.1016/j.cell.2012.07.032
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303. doi:10.1016/j.cell.2010.02.024
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi:10.1126/science.1157535
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683. doi:10.1126/science.1207056
Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5(6):566–571. doi:10.1038/ncb996
Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5(6):559–565. doi:10.1038/ncb995
Martina JA, Puertollano R (2013) Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol 200(4):475–491. doi:10.1083/jcb.201209135
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991. doi:10.1091/mbc.E08-12-1248
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5(7):973–979
Ferron M, Settembre C, Shimazu J, Lacombe J, Kato S, Rawlings DJ, Ballabio A, Karsenty G (2013) A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev 27(8):955–969. doi:10.1101/gad.213827.113
Pena-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, Zou L, Xie XJ, Corey DR, Brugarolas J (2011) Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30(16):3242–3258. doi:10.1038/emboj.2011.257
Platt FM, Boland B, van der Spoel AC (2012) The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199(5):723–734. doi:10.1083/jcb.201208152
Hasan M, Koch J, Rakheja D, Pattnaik AK, Brugarolas J, Dozmorov I, Levine B, Wakeland EK, Lee-Kirsch MA, Yan N (2013) Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nat Immunol 14(1):61–71. doi:10.1038/ni.2475
Martina JA, Diab HI, Lishu L, Jeong-A L, Patange S, Raben N, Puertollano R (2014) TFE3 activates in response to nutrient deprivation and promotes autophagy, lysosomal biogenesis and cellular clearance. Sci Signal 7(309). doi:10.1126/scisignal.2004754
Nakagawa Y, Shimano H, Yoshikawa T, Ide T, Tamura M, Furusawa M, Yamamoto T, Inoue N, Matsuzaka T, Takahashi A, Hasty AH, Suzuki H, Sone H, Toyoshima H, Yahagi N, Yamada N (2006) TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat Med 12(1):107–113. doi:10.1038/nm1334
Iwasaki H, Naka A, Iida KT, Nakagawa Y, Matsuzaka T, Ishii KA, Kobayashi K, Takahashi A, Yatoh S, Yahagi N, Sone H, Suzuki H, Yamada N, Shimano H (2012) TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am J Physiol Endocrinol Metab 302(7):E896–E902. doi:10.1152/ajpendo.00204.2011
Shimano H (2007) SREBP-1c and TFE3, energy transcription factors that regulate hepatic insulin signaling. J Mol Med 85(5):437–444. doi:10.1007/s00109-007-0158-5
Fujimoto Y, Nakagawa Y, Satoh A, Okuda K, Shingyouchi A, Naka A, Matsuzaka T, Iwasaki H, Kobayashi K, Yahagi N, Shimada M, Yatoh S, Suzuki H, Yogosawa S, Izumi T, Sone H, Urayama O, Yamada N, Shimano H (2013) TFE3 controls lipid metabolism in adipose tissue of male mice by suppressing lipolysis and thermogenesis. Endocrinology. doi:10.1210/en.2013-1203
Merrell K, Wells S, Henderson A, Gorman J, Alt F, Stall A, Calame K (1997) The absence of the transcription activator TFE3 impairs activation of B cells in vivo. Mol Cell Biol 17(6):3335–3344
Cheli Y, Ohanna M, Ballotti R, Bertolotto C (2010) Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23(1):27–40. doi:10.1111/j.1755-148X.2009.00653.x
Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835
Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (2008) Novel MITF targets identified using a two-step DNA microarray strategy. Pigment Cell Melanoma Res 21(6):665–676. doi:10.1111/j.1755-148X.2008.00505.x
Ho H, Kapadia R, Al-Tahan S, Ahmad S, Ganesan AK (2011) WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J Biol Chem 286(14):12509–12523. doi:10.1074/jbc.M110.200543
Hah YS, Cho HY, Lim TY, Park DH, Kim HM, Yoon J, Kim JG, Kim CY, Yoon TJ (2012) Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells. Ann Dermatol 24(2):151–157. doi:10.5021/ad.2012.24.2.151
Bennicelli JL, Barr FG (2002) Chromosomal translocations and sarcomas. Curr Opin Oncol 14(4):412–419
Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, Eble JN, Fleming S, Ljungberg B, Medeiros LJ, Moch H, Reuter VE, Ritz E, Roos G, Schmidt D, Srigley JR, Storkel S, van den Berg E, Zbar B (1997) The Heidelberg classification of renal cell tumours. J Pathol 183(2):131–133. doi:10.1002/(SICI)1096-9896(199710)183:2<131:AID-PATH931>3.0.CO;2-G
Linehan WM, Ricketts CJ (2013) The metabolic basis of kidney cancer. Semin Cancer Biol 23(1):46–55. doi:10.1016/j.semcancer.2012.06.002
Komai Y, Fujiwara M, Fujii Y, Mukai H, Yonese J, Kawakami S, Yamamoto S, Migita T, Ishikawa Y, Kurata M, Nakamura T, Fukui I (2009) Adult Xp11 translocation renal cell carcinoma diagnosed by cytogenetics and immunohistochemistry. Clin Cancer Res 15(4):1170–1176. doi:10.1158/1078-0432.CCR-08-1183
Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786(2):139–152. doi:10.1016/j.bbcan.2008.07.005
Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA, Motyckova G, Valencia P, Perez-Atayde AR, Argani P, Ladanyi M, Fletcher JA, Fisher DE (2003) Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA 100(10):6051–6056. doi:10.1073/pnas.0931430100
Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E, Bridge J, Schuuring E, Schoenmakers EF, van Kessel AG (2003) Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum Mol Genet 12(14):1661–1669
Guru SC, Olufemi SE, Manickam P, Cummings C, Gieser LM, Pike BL, Bittner ML, Jiang Y, Chinault AC, Nowak NJ, Brzozowska A, Crabtree JS, Wang Y, Roe BA, Weisemann JM, Boguski MS, Agarwal SK, Burns AL, Spiegel AM, Marx SJ, Flejter WL, de Jong PJ, Collins FS, Chandrasekharappa SC (1997) A 2.8-Mb clone contig of the multiple endocrine neoplasia type 1 (MEN1) region at 11q13. Genomics 42(3):436–445. doi:10.1006/geno.1997.4783
van Asseldonk M, Schepens M, de Bruijn D, Janssen B, Merkx G, Geurts van Kessel A (2000) Construction of a 350-kb sequence-ready 11q13 cosmid contig encompassing the markers D11S4933 and D11S546: mapping of 11 genes and 3 tumor-associated translocation breakpoints. Genomics 66(1):35–42. doi:10.1006/geno.2000.6194
Pecciarini L, Cangi MG, Lo Cunsolo C, Macri E, Dal Cin E, Martignoni G, Doglioni C (2007) Characterization of t(6;11)(p21;q12) in a renal-cell carcinoma of an adult patient. Genes Chromosomes Cancer 46(5):419–426. doi:10.1002/gcc.20422
Argani P, Lui MY, Couturier J, Bouvier R, Fournet JC, Ladanyi M (2003) A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 22(34):5374–5378. doi:10.1038/sj.onc.1206686
Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS (1997) Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15(18):2233–2239. doi:10.1038/sj.onc.1201394
Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, Healey JH, Ueda T, Yoshikawa H, Meloni-Ehrig A, Sorensen PH, Mertens F, Mandahl N, van den Berghe H, Sciot R, Dal Cin P, Bridge J (2001) The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20(1):48–57. doi:10.1038/sj.onc.1204074
Gao CF, Vande Woude GF (2005) HGF/SF-Met signaling in tumor progression. Cell Res 15(1):49–51. doi:10.1038/sj.cr.7290264
Tsuda M, Davis IJ, Argani P, Shukla N, McGill GG, Nagai M, Saito T, Lae M, Fisher DE, Ladanyi M (2007) TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 67(3):919–929. doi:10.1158/0008-5472.CAN-06-2855
Reis H, Hager T, Wohlschlaeger J, Bauer S, Katenkamp K, Katenkamp D, Baba HA (2013) Mammalian target of rapamycin pathway activity in alveolar soft part sarcoma. Hum Pathol. doi:10.1016/j.humpath.2013.04.018
Weterman MA, van Groningen JJ, Tertoolen L, van Kessel AG (2001) Impairment of MAD2B-PRCC interaction in mitotic checkpoint defective t(X;1)-positive renal cell carcinomas. Proc Natl Acad Sci USA 98(24):13808–13813. doi:10.1073/pnas.241304198
Medendorp K, van Groningen JJ, Vreede L, Hetterschijt L, Brugmans L, van den Hurk WH, van Kessel AG (2009) The renal cell carcinoma-associated oncogenic fusion protein PRCCTFE3 provokes p21 WAF1/CIP1-mediated cell cycle delay. Exp Cell Res 315(14):2399–2409. doi:10.1016/j.yexcr.2009.04.022
Muller-Hocker J, Babaryka G, Schmid I, Jung A (2008) Overexpression of cyclin D1, D3, and p21 in an infantile renal carcinoma with Xp11.2 TFE3-gene fusion. Pathol Res Pract 204(8):589–597. doi:10.1016/j.prp.2008.01.010
Flaherty KT, Hodi FS, Fisher DE (2012) From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer 12(5):349–361. doi:10.1038/nrc3218
Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V, Hofman P, Bahadoran P, Bertolotto C, Ballotti R (2011) Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30(20):2307–2318. doi:10.1038/onc.2010.598
Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P, Bahadoran P, Lacour JP, Tartare-Deckert S, Bertolotto C, Ballotti R (2012) Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 31(19):2461–2470. doi:10.1038/onc.2011.425
Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L, Hemmi S, Dummer R (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68(3):650–656. doi:10.1158/0008-5472.CAN-07-2491
Wellbrock C, Marais R (2005) Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol 170(5):703–708. doi:10.1083/jcb.200505059
Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122. doi:10.1038/nature03664
Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, Larue L, Goding CR (2005) Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433(7027):764–769. doi:10.1038/nature03269
Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE (2004) Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6(6):565–576. doi:10.1016/j.ccr.2004.10.014
Loercher AE, Tank EM, Delston RB, Harbour JW (2005) MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168(1):35–40. doi:10.1083/jcb.200410115
McGill GG, Haq R, Nishimura EK, Fisher DE (2006) c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem 281(15):10365–10373. doi:10.1074/jbc.M513094200
McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE (2002) Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109(6):707–718
Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, Goding CR (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20(24):3426–3439. doi:10.1101/gad.406406
Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, Dessen P, d’Hayer B, Mohamdi H, Remenieras A, Maubec E, de la Fouchardiere A, Molinie V, Vabres P, Dalle S, Poulalhon N, Martin-Denavit T, Thomas L, Andry-Benzaquen P, Dupin N, Boitier F, Rossi A, Perrot JL, Labeille B, Robert C, Escudier B, Caron O, Brugieres L, Saule S, Gardie B, Gad S, Richard S, Couturier J, Teh BT, Ghiorzo P, Pastorino L, Puig S, Badenas C, Olsson H, Ingvar C, Rouleau E, Lidereau R, Bahadoran P, Vielh P, Corda E, Blanche H, Zelenika D, Galan P, French Familial Melanoma Study Group, Aubin F, Bachollet B, Becuwe C, Berthet P, Bignon YJ, Bonadona V, Bonafe JL, Bonnet-Dupeyron MN, Cambazard F, Chevrant-Breton J, Coupier I, Dalac S, Demange L, d’Incan M, Dugast C, Faivre L, Vincent-Fetita L, Gauthier-Villars M, Gilbert B, Grange F, Grob JJ, Humbert P, Janin N, Joly P, Kerob D, Lasset C, Leroux D, Levang J, Limacher JM, Livideanu C, Longy M, Lortholary A, Stoppa-Lyonnet D, Mansard S, Mansuy L, Marrou K, Mateus C, Maugard C, Meyer N, Nogues C, Souteyrand P, Venat-Bouvet L, Zattara H, Chaudru V, Lenoir GM, Lathrop M, Davidson I, Avril MF, Demenais F, Ballotti R, Bressac-de Paillerets B (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98. doi:10.1038/nature10539
Davis IJ, Kim JJ, Ozsolak F, Widlund HR, Rozenblatt-Rosen O, Granter SR, Du J, Fletcher JA, Denny CT, Lessnick SL, Linehan WM, Kung AL, Fisher DE (2006) Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell 9(6):473–484. doi:10.1016/j.ccr.2006.04.021
Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544. doi:10.1523/JNEUROSCI.1920-10.2010
Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci USA 110(19):E1817–E1826. doi:10.1073/pnas.1305623110
Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4(142):142ra197. doi:10.1126/scitranslmed.3003799
Pastore N, Blomenkamp K, Annunziata F, Piccolo P, Mithbaokar P, Maria Sepe R, Vetrini F, Palmer D, Ng P, Polishchuk E, Iacobacci S, Polishchuk R, Teckman J, Ballabio A, Brunetti-Pierri N (2013) Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol Med 5(3):397–412. doi:10.1002/emmm.201202046
Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5(7):554–565. doi:10.1038/nrm1423
Platt FM, Walkley SU (2004) Lysosomal disorders of brain: recent advances in molecular and cellular pathogenesis and treatment. Oxford University Press, Oxford
Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21(3):421–430. doi:10.1016/j.devcel.2011.07.016
Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N (2013) Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 5(5):691–706. doi:10.1002/emmm.201202176
Abe K, Puertollano R (2011) Role of TRP channels in the regulation of the endosomal pathway. Physiology 26(1):14–22. doi:10.1152/physiol.00048.2010
Vergarajauregui S, Puertollano R (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7(3):337–353. doi:10.1111/j.1600-0854.2006.00387.x
Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L (2013) TFEB regulates lysosomal proteostasis. Hum Mol Genet 22(10):1994–2009. doi:10.1093/hmg/ddt052
McClive P, Pall G, Newton K, Lee M, Mullins J, Forrester L (1998) Gene trap integrations expressed in the developing heart: insertion site affects splicing of the PT1-ATG vector. Dev Dyn 212(2):267–276. doi:10.1002/(SICI)1097-0177(199806)212:2<267:AID-AJA11>3.0.CO;2-1
Grove CA, De Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyk ML, Walhout AJ (2009) A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138(2):314–327. doi:10.1016/j.cell.2009.04.058
O’Rourke EJ, Ruvkun G (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15(6):668–676. doi:10.1038/ncb2741
Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 4:2267. doi:10.1038/ncomms3267
Lister JA, Lane BM, Nguyen A, Lunney K (2011) Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec. Dev Dyn 240(11):2529–2538. doi:10.1002/dvdy.22743
Acknowledgment
This work was supported by the Intramural Research Program of the National Institutes of Health, National Heart, Lung, and Blood Institute (NHLBI).
Author information
Authors and Affiliations
Corresponding author
Additional information
J. A. Martina and H. I. Diab contributed equally to this work.
Rights and permissions
About this article
Cite this article
Martina, J.A., Diab, H.I., Li, H. et al. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell. Mol. Life Sci. 71, 2483–2497 (2014). https://doi.org/10.1007/s00018-014-1565-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-014-1565-8