N-linked glycosylation of the bone morphogenetic protein receptor type 2 (BMPR2) enhances ligand binding

Abstract

The bone morphogenetic protein (BMP) signaling pathway is essential for normal development and tissue homeostasis. BMP signal transduction occurs when ligands interact with a complex of type 1 and type 2 receptors to activate downstream transcription factors. It is well established that a single BMP receptor may bind multiple BMP ligands with varying affinity, and this has been largely attributed to conformation at the amino acid level. However, all three type 2 BMP receptors (BMPR2, ACVR2A/B) contain consensus N-glycosylation sites in their extracellular domains (ECDs), which could play a role in modulating interaction with ligand. Here, we show a differential pattern of N-glycosylation between BMPR2 and ACVR2A/B. Site-directed mutagenesis reveals that BMPR2 is uniquely glycosylated near its ligand binding domain and at a position that is mutated in patients with heritable pulmonary arterial hypertension. We further demonstrate using a cell-free pulldown assay that N-glycosylation of the BMPR2-ECD enhances its ability to bind BMP2 ligand but has no impact on binding by the closely-related ACVR2B. Our results illuminate a novel aspect of BMP signaling pathway mechanics and demonstrate a functional difference resulting from post-translational modification of type 2 BMP receptors. Additionally, since BMPR2 is required for several aspects of normal development and defects in its function are strongly implicated in human disease, our findings are likely to be relevant in several biological contexts in normal and abnormal human physiology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Holstein TW, Watanabe H, Ozbek S (2011) Signaling pathways and axis formation in the lower metazoa. Curr Top Dev Biol 97:137–177

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Newfeld SJ, Wisotzkey RG, Kumar S (1999) Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-beta family ligands, receptors and Smad signal transducers. Genetics 152(2):783–795

    CAS  PubMed Central  PubMed  Google Scholar 

  3. 3.

    Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35(1):43–56

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Kishigami S, Mishina Y (2005) BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 16(3):265–278

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147(1):35–51

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Lowery JW, Pazin D, Intini G, Kokabu S, Chappuis V, Capelo LP, Rosen V (2011) The role of BMP2 signaling in the skeleton. Crit Rev Eukaryot Gene Expr 21(2):177–185

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Hinck AP (2012) Structural studies of the TGF-betas and their receptors—insights into evolution of the TGF-beta superfamily. FEBS Lett 586(14):1860–1870

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Lowery JW, de Caestecker MP (2010) BMP signaling in vascular development and disease. Cytokine Growth Factor Rev 21(4):287–298

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67(3):737–744

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC, The International PPH Consortium (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26(1):81–84

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kosaki R, Gebbia M, Kosaki K, Lewin M, Bowers P, Towbin JA, Casey B (1999) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 82(1):70–76

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, Velculescu VE, Traverso G, Vogelstein B (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28(2):184–187

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A, Mitros FA, Vaccaro CA, Petersen GM, Giardiello FM, Tinley ST, Aaltonen LA, Lynch HT (2004) The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 41(7):484–491

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Suring K, Majewski F, Tinschert S, Grzeschik KH, Muller D, Knaus P, Nurnberg P, Mundlos S (2003) Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci USA 100(21):12277–12282

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Lehmann K, Seemann P, Boergermann J, Morin G, Reif S, Knaus P, Mundlos S (2006) A novel R486Q mutation in BMPR1B resulting in either a brachydactyly type C/symphalangism-like phenotype or brachydactyly type A2. Eur J Hum Genet 14(12):1248–1254

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Demirhan O, Turkmen S, Schwabe GC, Soyupak S, Akgul E, Tastemir D, Karahan D, Mundlos S, Lehmann K (2005) A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies. J Med Genet 42(4):314–317

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Heinecke K, Seher A, Schmitz W, Mueller TD, Sebald W, Nickel J (2009) Receptor oligomerization and beyond: a case study in bone morphogenetic proteins. BMC Biol 7:59

    PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Weber D, Kotzsch A, Nickel J, Harth S, Seher A, Mueller U, Sebald W, Mueller TD (2007) A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC Struct Biol 7:6

    PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Keller S, Nickel J, Zhang JL, Sebald W, Mueller TD (2004) Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol 11(5):481–488

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Kotzsch A, Nickel J, Seher A, Heinecke K, van Geersdaele L, Herrmann T, Sebald W, Mueller TD (2008) Structure analysis of bone morphogenetic protein-2 type I receptor complexes reveals a mechanism of receptor inactivation in juvenile polyposis syndrome. J Biol Chem 283(9):5876–5887

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci USA 103(20):7643–7648

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Hatta T, Konishi H, Katoh E, Natsume T, Ueno N, Kobayashi Y, Yamazaki T (2000) Identification of the ligand-binding site of the BMP type IA receptor for BMP-4. Biopolymers 55(5):399–406

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Kirsch T, Nickel J, Sebald W (2000) BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J 19(13):3314–3324

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Yin H, Yeh LC, Hinck AP, Lee JC (2008) Characterization of ligand-binding properties of the human BMP type II receptor extracellular domain. J Mol Biol 378(1):191–203

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Yeh LC, Falcon WE, Garces A, Lee JC (2012) A host-guest relationship in bone morphogenetic protein receptor-II defines specificity in ligand-receptor recognition. Biochemistry 51(35):6968–6980

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. 28.

    Saremba S, Nickel J, Seher A, Kotzsch A, Sebald W, Mueller TD (2008) Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand. FEBS J 275(1):172–183

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Mitra N, Sinha S, Ramya TN, Surolia A (2006) N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 31(3):156–163

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kawabata M, Chytil A, Moses HL (1995) Cloning of a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-beta receptor. J Biol Chem 270(10):5625–5630

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Mathews LS, Vale WW (1993) Characterization of type II activin receptors. Binding, processing, and phosphorylation. J Biol Chem 268(25):19013–19018

    CAS  PubMed  Google Scholar 

  33. 33.

    Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W, Choe S (2003) The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 11(3):605–617

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Greenwald J, Le V, Corrigan A, Fischer W, Komives E, Vale W, Choe S (1998) Characterization of the extracellular ligand-binding domain of the type II activin receptor. Biochemistry 37(47):16711–16718

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Donaldson CJ, Vaughan JM, Corrigan AZ, Fischer WH, Vale WW (1999) Activin and inhibin binding to the soluble extracellular domain of activin receptor II. Endocrinology 140(4):1760–1766

    CAS  PubMed  Google Scholar 

  36. 36.

    Daly R, Hearn MT (2006) Expression of the human activin type I and II receptor extracellular domains in Pichia pastoris. Protein Expr Purif 46(2):456–467

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S, Andreucci AJ, Pobre EG, Tomkinson KN, Monnell TE, Ucran JA, Martinez-Hackert E, Pearsall RS, Underwood KW, Seehra J, Kumar R (2010) Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J Biol Chem 285(27):21037–21048

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    Frump AL, Lowery JW, Hamid R, Austin ED, de Caestecker M (2013) Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension. PLoS ONE 8(11):e80319

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Pfarr N, Szamalek-Hoegel J, Fischer C, Hinderhofer K, Nagel C, Ehlken N, Tiede H, Olschewski H, Reichenberger F, Ghofrani AH, Seeger W, Grunig E (2011) Hemodynamic and clinical onset in patients with hereditary pulmonary arterial hypertension and BMPR2 mutations. Respir Res 12:99

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, Newman JH, Phillips JA 3rd, Soubrier F, Trembath RC, Chung WK (2009) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54(Suppl 1):S32–S42

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221(1):249–258

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Beppu H, Malhotra R, Beppu Y, Lepore JJ, Parmacek MS, Bloch KD (2009) BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis. Dev Biol 331(2):167–175

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. 43.

    Delot EC, Bahamonde ME, Zhao M, Lyons KM (2003) BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130(1):209–220

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Rabinovitch M (2012) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Investig 122(12):4306–4313

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. 45.

    Schwappacher R, Weiske J, Heining E, Ezerski V, Marom B, Henis YI, Huber O, Knaus P (2009) Novel crosstalk to BMP signalling: cGMP-dependent kinase I modulates BMP receptor and Smad activity. EMBO J 28(11):1537–1550

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Mace PD, Cutfield JF, Cutfield SM (2006) High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: implications for ligand binding. Biochem Biophys Res Commun 351(4):831–838

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Imperiali B, O’Connor SE (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol 3(6):643–649

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Mace PD, Cutfield JF, Cutfield SM (2007) Bacterial expression and purification of the ovine type II bone morphogenetic protein receptor ectodomain. Protein Expr Purif 52(1):40–49

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, Vale W (2000) Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 404(6776):411–414

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Gamer LW, Tsuji K, Cox K, Capelo LP, Lowery J, Beppu H, Rosen V (2011) BMPR-II is dispensable for formation of the limb skeleton. Genesis 49:719–724

    Google Scholar 

  52. 52.

    Thies RS, Bauduy M, Ashton BA, Kurtzberg L, Wozney JM, Rosen V (1992) Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology 130(3):1318–1324

    CAS  PubMed  Google Scholar 

  53. 53.

    Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36(1):59–74

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  55. 55.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge James West (Vanderbilt) for the hBMPR2 cDNA; Mark de Caestecker (Vanderbilt) for early discussions; Giuseppe Intini (HSDM) for assistance with Bmpr2 knockdown. J.W.L. and J.M.A. are recipients of the Harvard School of Dental Medicine Dean’s Scholar Award and Research Science Institute fellowship, respectively. This work was supported by the NIH/NIAMS grant R01AR055904 awarded to V.R.

Conflict of interests

The authors declare that they have no competing interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vicki Rosen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2013_1541_MOESM1_ESM.pdf

Supplementary Figure S1 Conservation of N-linked glycosylation sites in BMPR2 orthologs. Alignment comparison of BMPR2 orthologs. All available amino acid sequences of full-length BMPR2 were obtained from the GenBank database and aligned using MUSCLE [54] in MEGA5 [55] (PDF 100 kb)

Supplementary Table S1 Outline of hBMPR2 expression plasmids utilized and their construction (PDF 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lowery, J.W., Amich, J.M., Andonian, A. et al. N-linked glycosylation of the bone morphogenetic protein receptor type 2 (BMPR2) enhances ligand binding. Cell. Mol. Life Sci. 71, 3165–3172 (2014). https://doi.org/10.1007/s00018-013-1541-8

Download citation

Keywords

  • Bone morphogenetic protein
  • BMPR2
  • ACVR2A
  • ACVR2B
  • Activin
  • Glycosylation
  • Pulmonary hypertension
  • Heritable pulmonary arterial hypertension