Skip to main content

Advertisement

Log in

Lysosomal multienzyme complex: pros and cons of working together

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, protective protein/cathepsin A (PPCA), the sialidase, neuraminidase-1 (NEU1), and the glycosidase β-galactosidase (β-GAL). Next to this ‘core’ complex, the existence of sub-complexes, which may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1, and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASMC:

Aortic smooth muscle cell

BiP:

Binding immunoglobulin protein

β-GAL:

β-Galactosidase

BM:

Bone marrow

CHOP:

CCAAT/enhancer-binding protein homologous protein

CMA:

Chaperone-mediated autophagy

EBP:

Elastin-binding protein

ECM:

Extracellular matrix

EMH:

Extramedullary hematopoiesis

ER:

Endoplasmic reticulum

GALNS:

N-acetylgalactosamine-6-sulfate sulfatase

GEMs:

Glysosphingolipid-enriched microdomains

GM1:

GM1-gangliosidosis

GPCR:

Guanine protein-coupled receptor

GS:

Galactosialidosis

Hsp:

Heat shock protein

IGF-1R:

Insulin-like growth factor 1 receptor

IP3R:

Inositol trisphosphate receptor

JNK:

c-Jun N-terminal kinases

LAMP:

Lysosomal membrane-associated protein

LM:

Lysosomal membrane

LMC:

Lysosomal multienzyme complex

LPS:

Lipopolysaccharide

LSD:

Lysosomal storage disorder

MAMs:

Mitochondria-associated ER membranes

MAPK/ERK:

Mitogen-activated protein kinase

MAP2K/MEK:

Mitogen-activated protein kinase kinase

MPP:

Metalloproteinase

MyD88:

Myeloid differentiation primary response gene (88)

NEU1:

Neuraminidase-1

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PDGF-R:

Platelet-derived growth factor receptor

PI3K:

Phosphoinositide 3-kinase

PLCγ:

Phospholipase C gamma

PM:

Plasma membrane

PPCA:

Protective protein/cathepsin A

Ras:

Rapidly accelerated fibrosarcoma

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

UPR:

Unfolded protein response

VCAM1:

Vascular cell adhesion molecule 1

References

  1. D’Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H (1982) Molecular defect in combined beta-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci USA 79(15):4535–4539

    Article  PubMed Central  PubMed  Google Scholar 

  2. Verheijen F, Brossmer R, Galjaard H (1982) Purification of acid beta-galactosidase and acid neuraminidase from bovine testis: evidence for an enzyme complex. Biochem Biophys Res Commun 108(2):868–875

    Article  CAS  PubMed  Google Scholar 

  3. Galjart NJ, Gillemans N, Harris A, van der Horst GT, Verheijen FW, Galjaard H, d’Azzo A (1988) Expression of cDNA encoding the human “protective protein” associated with lysosomal beta-galactosidase and neuraminidase: homology to yeast proteases. Cell 54(6):755–764

    Article  CAS  PubMed  Google Scholar 

  4. Bonten EJ, Galjart NJ, Willemsen R, Usmany M, Vlak JM, d’Azzo A (1995) Lysosomal protective protein/cathepsin A. Role of the “linker” domain in catalytic activation. J Biol Chem 270(44):26441–26445

    Article  CAS  PubMed  Google Scholar 

  5. Pshezhetsky AV, Potier M (1996) Association of N-acetylgalactosamine-6-sulfate sulfatase with the multienzyme lysosomal complex of beta-galactosidase, cathepsin A, and neuraminidase. Possible implication for intralysosomal catabolism of keratan sulfate. J Biol Chem 271(45):28359–28365

    Article  CAS  PubMed  Google Scholar 

  6. van der Spoel A, Bonten E, d’Azzo A (2000) Processing of lysosomal beta-galactosidase. The C-terminal precursor fragment is an essential domain of the mature enzyme. J Biol Chem 275(14):10035–10040

    Article  PubMed  Google Scholar 

  7. Bonten EJ, d’Azzo A (2000) Lysosomal neuraminidase. Catalytic activation in insect cells is controlled by the protective protein/cathepsin A. J Biol Chem 275(48):37657–37663

    Article  CAS  PubMed  Google Scholar 

  8. van der Spoel A, Bonten E, d’Azzo A (1998) Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 17(6):1588–1597

    Article  PubMed Central  PubMed  Google Scholar 

  9. Galjart NJ, Gillemans N, Harris A, van der Horst GTJ, Verheijen FW, Galjaard H, d’Azzo A (1988) Expression of cDNA encoding the human protective protein associated with lysosomal beta-galactosidase and neuraminidase: homology to yeast proteases. Cell 54:755–764

    Article  CAS  PubMed  Google Scholar 

  10. Jackman HL, Morris PW, Deddish PA, Skidgel RA, Erdos EG (1992) Inactivation of endothelin I by deamidase (lysosomal protective protein). J Biol Chem 267(5):2872–2875

    CAS  PubMed  Google Scholar 

  11. Hanna WL, Turbov JM, Jackman HL, Tan F, Froelich CJ (1994) Dominant chymotrypsin-like esterase activity in human lymphocyte granules is mediated by the serine carboxypeptidase called cathepsin A-like protective protein. J Immunol 153(10):4663–4672

    CAS  PubMed  Google Scholar 

  12. Jackman HL, Massad MG, Sekosan M, Tan F, Brovkovych V, Marcic BM, Erdos EG (2002) Angiotensin 1–9 and 1–7 release in human heart: role of cathepsin A. Hypertension 39(5):976–981

    Article  CAS  PubMed  Google Scholar 

  13. Rudenko G, Bonten E, d’Azzo A, Hol WG (1996) Structure determination of the human protective protein: twofold averaging reveals the three-dimensional structure of a domain which was entirely absent in the initial model. Acta Crystallogr D Biol Crystallogr 52(Pt 5):923–936

    Article  CAS  PubMed  Google Scholar 

  14. Rudenko G, Bonten E, d’Azzo A, Hol WG (1995) Three-dimensional structure of the human ‘protective protein’: structure of the precursor form suggests a complex activation mechanism. Structure 3(11):1249–1259

    Article  CAS  PubMed  Google Scholar 

  15. Bonten EJ, Campos Y, Zaitsev V, Nourse A, Waddell B, Lewis W, Taylor G, d’Azzo A (2009) Heterodimerization of the sialidase NEU1 with the chaperone protective protein/cathepsin A prevents its premature oligomerization. J Biol Chem 284(41):28430–28441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Galjart NJ, Morreau H, Willemsen R, Gillemans N, Bonten EJ, d’Azzo A (1991) Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function. J Biol Chem 266(22):14754–14762

    CAS  PubMed  Google Scholar 

  17. d’Azzo A, Andria G, Strisciuglio P, Galjaard H (2001) Galactosialidosis. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 3, 8th edn. McGraw-Hill Publishing Co., New York, pp 3811–3826

    Google Scholar 

  18. Thomas GH (2001) Disorders of glycoprotein degradation and structure: α-mannosidosis, β-mannosidosis, fucosidosis, and sialidosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol III, 8th edn. McGraw Hill Inc., New York, pp 3507–3534

    Google Scholar 

  19. Suzuki YAO, Namba E (2001) β-Galactosidase deficiency (β-Galactosialidosis): GM1 gangliosidosis and morquio B disease. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill Publishing Co, New York, pp 3775–3810

    Google Scholar 

  20. Caciotti A, Garman SC, Rivera-Colon Y, Procopio E, Catarzi S, Ferri L, Guido C, Martelli P, Parini R, Antuzzi D, Battini R, Sibilio M, Simonati A, Fontana E, Salviati A, Akinci G, Cereda C, Dionisi-Vici C, Deodato F, d’Amico A, d’Azzo A, Bertini E, Filocamo M, Scarpa M, di Rocco M, Tifft CJ, Ciani F, Gasperini S, Pasquini E, Guerrini R, Donati MA, Morrone A (2011) GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings. Biochim Biophys Acta 1812(7):782–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Caciotti A, Catarzi S, Tonin R, Lugli L, Perez CR, Michelakakis H, Mavridou I, Donati MA, Guerrini R, d’Azzo A, Morrone A (2013) Galactosialidosis: review and analysis of CTSA gene mutations. Orphanet J Rare Dis 8:114

    Article  PubMed Central  PubMed  Google Scholar 

  22. d’Azzo A, Bonten E (2010) Molecular mechanisms of pathogenesis in a glycosphingolipid and a glycoprotein storage disease. Biochem Soc Trans 38(6):1453–1457

    Article  PubMed Central  PubMed  Google Scholar 

  23. de Geest N, Bonten E, Mann L, de Sousa-Hitzler J, Hahn C, d’Azzo A (2002) Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosis and galactosialidosis in mice. Hum Mol Genet 11(12):1455–1464

    Article  PubMed  Google Scholar 

  24. Zhou XY, Morreau H, Rottier R, Davis D, Bonten E, Gillemans N, Wenger D, Grosveld FG, Doherty P, Suzuki K, Grosveld GC, d’Azzo A (1995) Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with over-expressing erythroid precursor cells. Genes Dev 9:2623–2634

    Article  CAS  PubMed  Google Scholar 

  25. Rottier RJ, Hahn CN, Mann LW, del Pilar Martin M, Smeyne RJ, Suzuki K, d’Azzo A (1998) Lack of PPCA expression only partially coincides with lysosomal storage in galactosialidosis mice: indirect evidence for spatial requirement of the catalytic rather than the protective function of PPCA. Hum Mol Genet 7(11):1787–1794 (pii: ddb219)

    Article  CAS  PubMed  Google Scholar 

  26. Jackman HL, Tan FL, Tamei H, Beurling-Harbury C, Li XY, Skidgel RA, Erdos EG (1990) A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal “protective protein”. J Biol Chem 265(19):11265–11272

    CAS  PubMed  Google Scholar 

  27. Seyrantepe V, Hinek A, Peng J, Fedjaev M, Ernest S, Kadota Y, Canuel M, Itoh K, Morales CR, Lavoie J, Tremblay J, Pshezhetsky AV (2008) Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is required for proper elastic fiber formation and inactivation of endothelin-1. Circulation 117(15):1973–1981

    Article  CAS  PubMed  Google Scholar 

  28. Monti E, Bassi MT, Bresciani R, Civini S, Croci GL, Papini N, Riboni M, Zanchetti G, Ballabio A, Preti A, Tettamanti G, Venerando B, Borsani G (2004) Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family. Genomics 83(3):445–453

    Article  CAS  PubMed  Google Scholar 

  29. Monti E, Bassi MT, Papini N, Riboni M, Manzoni M, Venerando B, Croci G, Preti A, Ballabio A, Tettamanti G, Borsani G (2000) Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 349(Pt 1):343–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Monti E, Bonten E, D’Azzo A, Bresciani R, Venerando B, Borsani G, Schauer R, Tettamanti G (2010) Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv Carbohydr Chem Biochem 64:403–479

    Article  CAS  PubMed  Google Scholar 

  31. Monti E, Preti A, Rossi E, Ballabio A, Borsani G (1999) Cloning and characterization of NEU2, a human gene homologous to rodent soluble sialidases. Genomics 57(1):137–143

    Article  CAS  PubMed  Google Scholar 

  32. Hahn CN, del Pilar Martin M, Schroder M, Vanier MT, Hara Y, Suzuki K, d’Azzo A (1997) Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum Mol Genet 6(2):205–211

    Article  CAS  PubMed  Google Scholar 

  33. Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, van der Spoel AC, d’Azzo A, Perry VH, Butters TD, Dwek RA, Platt FM (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126(Pt 4):974–987

    Article  CAS  PubMed  Google Scholar 

  34. Wang D, Bonten EJ, Yogalingam G, Mann L, d’Azzo A (2005) Short-term, high dose enzyme replacement therapy in sialidosis mice. Mol Genet Metab 85(3):181–189

    Article  CAS  PubMed  Google Scholar 

  35. Baek RC, Broekman ML, Leroy SG, Tierney LA, Sandberg MA, d’Azzo A, Seyfried TN, Sena-Esteves M (2010) AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS ONE 5(10):e13468

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bonten EJ, Wang D, Toy JN, Mann L, Mignardot A, Yogalingam G, d’Azzo A (2004) Targeting macrophages with baculovirus-produced lysosomal enzymes: implications for enzyme replacement therapy of the glycoprotein storage disorder galactosialidosis. FASEB J 18(9):971–973

    CAS  PubMed  Google Scholar 

  37. Bonten EJ, Yogalingam G, Hu H, Gomero E, van de Vlekkert D, d’Azzo A (2013) Chaperone-mediated gene therapy with recombinant AAV-PPCA in a new mouse model of type I sialidosis. Biochim Biophys Acta 1832(10):1784–1792

    Article  CAS  PubMed  Google Scholar 

  38. Elliot-Smith E, Speak AO, Lloyd-Evans E, Smith DA, van der Spoel AC, Jeyakumar M, Butters TD, Dwek RA, d’Azzo A, Platt FM (2008) Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol Genet Metab 94(2):204–211

    Article  CAS  PubMed  Google Scholar 

  39. Hu H, Gomero E, Bonten E, Gray JT, Allay J, Wu Y, Wu J, Calabrese C, Nienhuis A, d’Azzo A (2012) Preclinical dose-finding study with a liver-tropic, recombinant AAV-2/8 vector in the mouse model of galactosialidosis. Mol Ther 20(2):267–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kasperzyk JL, d’Azzo A, Platt FM, Alroy J, Seyfried TN (2005) Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 46(4):744–751

    Article  CAS  PubMed  Google Scholar 

  41. Kasperzyk JL, El-Abbadi MM, Hauser EC, d’Azzo A, Platt FM, Seyfried TN (2004) N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 89(3):645–653

    Article  CAS  PubMed  Google Scholar 

  42. Leimig T, Mann L, Martin Mdel P, Bonten E, Persons D, Knowles J, Allay JA, Cunningham J, Nienhuis AW, Smeyne R, d’Azzo A (2002) Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood 99(9):3169–3178

    Article  CAS  PubMed  Google Scholar 

  43. Sano R, Tessitore A, Ingrassia A, d’Azzo A (2005) Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology. Blood 106(7):2259–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cuervo AM, Mann L, Bonten EJ, d’Azzo A, Dice JF (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 22(1):47–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lichter-Konecki U, Moter SE, Krawisz BR, Schlotter M, Hipke C, Konecki DS (1999) Expression patterns of murine lysosome-associated membrane protein 2 (Lamp-2) transcripts during morphogenesis. Differentiation 65(1):43–58

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406(6798):902–906

    Article  CAS  PubMed  Google Scholar 

  47. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501–503

    Article  CAS  PubMed  Google Scholar 

  48. Arias E, Cuervo AM (2011) Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 23(2):184–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22(8):407–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Cuervo AM, Dice JF (2000) Regulation of lamp2a levels in the lysosomal membrane. Traffic 1(7):570–583

    Article  CAS  PubMed  Google Scholar 

  51. Bossi G, Griffiths GM (2005) CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin Immunol 17(1):87–94

    Article  CAS  PubMed  Google Scholar 

  52. Andrews NW (2000) Regulated secretion of conventional lysosomes. Trends Cell Biol 10(8):316–321

    Article  CAS  PubMed  Google Scholar 

  53. Bossi G, Booth S, Clark R, Davis EG, Liesner R, Richards K, Starcevic M, Stinchcombe J, Trambas C, Dell’Angelica EC, Griffiths GM (2005) Normal lytic granule secretion by cytotoxic T lymphocytes deficient in BLOC-1, -2 and -3 and myosins Va, VIIa and XV. Traffic 6(3):243–251

    Article  CAS  PubMed  Google Scholar 

  54. Yogalingam G, Bonten EJ, van de Vlekkert D, Hu H, Moshiach S, Connell SA, d’Azzo A (2008) Neuraminidase 1 is a negative regulator of lysosomal exocytosis. Dev Cell 15(1):74–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Stinchcombe J, Bossi G, Griffiths GM (2004) Linking albinism and immunity: the secrets of secretory lysosomes. Science 305(5680):55–59

    Article  CAS  PubMed  Google Scholar 

  56. Kima PE, Burleigh B, Andrews NW (2000) Surface-targeted lysosomal membrane glycoprotein-1 (Lamp-1) enhances lysosome exocytosis and cell invasion by Trypanosoma cruzi. Cell Microbiol 2(6):477–486

    Article  CAS  PubMed  Google Scholar 

  57. Zanoteli E, van de Vlekkert D, Bonten EJ, Hu H, Mann L, Gomero EM, Harris AJ, Ghersi G, d’Azzo A (2010) Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim Biophys Acta 1802(7–8):659–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wu X, Steigelman KA, Bonten E, Hu H, He W, Ren T, Zuo J, d’Azzo A (2010) Vacuolization and alterations of lysosomal membrane proteins in cochlear marginal cells contribute to hearing loss in neuraminidase 1-deficient mice. Biochim Biophys Acta 1802(2):259–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hinek A, Bodnaruk TD, Bunda S, Wang Y, Liu K (2008) Neuraminidase-1, a subunit of the cell surface elastin receptor, desialylates and functionally inactivates adjacent receptors interacting with the mitogenic growth factors PDGF-BB and IGF-2. Am J Pathol 173(4):1042–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hinek A, Rabinovitch M, Keeley F, Okamura-Oho Y, Callahan J (1993) The 67-kD elastin/laminin-binding protein is related to an enzymatically inactive, alternatively spliced form of beta-galactosidase. J Clin Invest 91(3):1198–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Morreau H, Galjart NJ, Gillemans N, Willemsen R, van der Horst GT, d’Azzo A (1989) Alternative splicing of beta-galactosidase mRNA generates the classic lysosomal enzyme and a beta-galactosidase-related protein. J Biol Chem 264(34):20655–20663

    CAS  PubMed  Google Scholar 

  62. Blanchevoye C, Floquet N, Scandolera A, Baud S, Maurice P, Bocquet O, Blaise S, Ghoneim C, Cantarelli B, Delacoux F, Dauchez M, Efremov RG, Martiny L, Duca L, Debelle L (2013) Interaction between the elastin peptide VGVAPG and human elastin binding protein. J Biol Chem 288(2):1317–1328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Hinek A, Pshezhetsky AV, von Itzstein M, Starcher B (2006) Lysosomal sialidase (neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly. J Biol Chem 281(6):3698–3710

    Article  CAS  PubMed  Google Scholar 

  64. Lehman A, Mattman A, Sin D, Pare P, Zong Z, d’Azzo A, Campos Y, Sirrs S, Hinek A (2012) Emphysema in an adult with galactosialidosis linked to a defect in primary elastic fiber assembly. Mol Genet Metab 106(1):99–103

    Article  CAS  PubMed  Google Scholar 

  65. Starcher B, d’Azzo A, Keller PW, Rao GK, Nadarajah D, Hinek A (2008) Neuraminidase-1 is required for the normal assembly of elastic fibers. Am J Physiol Lung Cell Mol Physiol 295(4):L637–L647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, Sawada M (1999) Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274(8):5004–5011

    Article  CAS  PubMed  Google Scholar 

  67. Arabkhari M, Bunda S, Wang Y, Wang A, Pshezhetsky AV, Hinek A (2010) Desialylation of insulin receptors and IGF-1 receptors by neuraminidase-1 controls the net proliferative response of L6 myoblasts to insulin. Glycobiology 20(5):603–616

    Article  CAS  PubMed  Google Scholar 

  68. Dridi L, Seyrantepe V, Fougerat A, Pan X, Bonneil E, Thibault P, Moreau A, Mitchell GA, Heveker N, Cairo CW, Issad T, Hinek A, Pshezhetsky AV (2013) Positive regulation of insulin signaling by neuraminidase 1. Diabetes 62(7):2338–2346

    Article  CAS  PubMed  Google Scholar 

  69. Shi J, Wang A, Sen S, Wang Y, Kim HJ, Mitts TF, Hinek A (2012) Insulin induces production of new elastin in cultures of human aortic smooth muscle cells. Am J pathol 180(2):715–726

    Article  CAS  PubMed  Google Scholar 

  70. Liang F, Seyrantepe V, Landry K, Ahmad R, Ahmad A, Stamatos NM, Pshezhetsky AV (2006) Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J Biol Chem 281(37):27526–27538

    Article  CAS  PubMed  Google Scholar 

  71. Stamatos NM, Carubelli I, van de Vlekkert D, Bonten EJ, Papini N, Feng C, Venerando B, d’Azzo A, Cross AS, Wang LX, Gomatos PJ (2010) LPS-induced cytokine production in human dendritic cells is regulated by sialidase activity. J Leukoc Biol 88(6):1227–1239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Feng C, Stamatos NM, Dragan AI, Medvedev A, Whitford M, Zhang L, Song C, Rallabhandi P, Cole L, Nhu QM, Vogel SN, Geddes CD, Cross AS (2012) Sialyl residues modulate LPS-mediated signaling through the Toll-like receptor 4 complex. PLoS ONE 7(4):e32359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Nan X, Carubelli I, Stamatos NM (2007) Sialidase expression in activated human T lymphocytes influences production of IFN-gamma. J Leukoc Biol 81(1):284–296

    Article  CAS  PubMed  Google Scholar 

  74. Amith SR, Jayanth P, Franchuk S, Siddiqui S, Seyrantepe V, Gee K, Basta S, Beyaert R, Pshezhetsky AV, Szewczuk MR (2009) Dependence of pathogen molecule-induced toll-like receptor activation and cell function on Neu1 sialidase. Glycoconj J 26(9):1197–1212

    Article  CAS  PubMed  Google Scholar 

  75. Amith SR, Jayanth P, Franchuk S, Finlay T, Seyrantepe V, Beyaert R, Pshezhetsky AV, Szewczuk MR (2010) Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling. Cell Signal 22(2):314–324

    Article  CAS  PubMed  Google Scholar 

  76. Abdulkhalek S, Amith SR, Franchuk SL, Jayanth P, Guo M, Finlay T, Gilmour A, Guzzo C, Gee K, Beyaert R, Szewczuk MR (2011) Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for Toll-like receptor activation and cellular signaling. J Biol Chem 286(42):36532–36549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lillehoj EP, Hyun SW, Feng C, Zhang L, Liu A, Guang W, Nguyen C, Luzina IG, Atamas SP, Passaniti A, Twaddell WS, Puche AC, Wang LX, Cross AS, Goldblum SE (2012) NEU1 sialidase expressed in human airway epithelia regulates epidermal growth factor receptor (EGFR) and MUC1 protein signaling. J Biol Chem 287(11):8214–8231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Dall’Olio F, Malagolini N, Trinchera M, Chiricolo M (2012) Mechanisms of cancer-associated glycosylation changes. Front Biosci (Landmark Ed) 17:670–699

    Article  Google Scholar 

  79. Adamczyk B, Tharmalingam T, Rudd PM (2011) Glycans as cancer biomarkers. Biochim Biophys Acta 1820(9):134

    Google Scholar 

  80. Harduin-Lepers A, Krzewinski-Recchi MA, Colomb F, Foulquier F, Groux-Degroote S, Delannoy P (2012) Sialyltransferases functions in cancers. Front Biosci (Elite Ed) 4:499–515

    Article  Google Scholar 

  81. Miyagi T, Wada T, Yamaguchi K, Shiozaki K, Sato I, Kakugawa Y, Yamanami H, Fujiya T (2008) Human sialidase as a cancer marker. Proteomics 8(16):3303–3311

    Article  CAS  PubMed  Google Scholar 

  82. Uemura T, Shiozaki K, Yamaguchi K, Miyazaki S, Satomi S, Kato K, Sakuraba H, Miyagi T (2009) Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4. Oncogene 28(9):1218–1229

    Article  CAS  PubMed  Google Scholar 

  83. Wada T, Hata K, Yamaguchi K, Shiozaki K, Koseki K, Moriya S, Miyagi T (2007) A crucial role of plasma membrane-associated sialidase in the survival of human cancer cells. Oncogene 26(17):2483–2490

    Article  CAS  PubMed  Google Scholar 

  84. Tessitore A, del Pilar Martin M, Sano R, Ma Y, Mann L, Ingrassia A, Laywell ED, Steindler DA, Hendershot LM, d’Azzo A (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15(5):753–766

    Article  CAS  PubMed  Google Scholar 

  85. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13(10):1211–1233

    Article  CAS  PubMed  Google Scholar 

  86. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101(5):451–454

    Article  CAS  PubMed  Google Scholar 

  87. Ma Y, Hendershot LM (2001) The unfolding tale of the unfolded protein response. Cell 107(7):827–830

    Article  CAS  PubMed  Google Scholar 

  88. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    Article  CAS  PubMed  Google Scholar 

  89. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103

    Article  CAS  PubMed  Google Scholar 

  90. Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265(13):7248–7256

    CAS  PubMed  Google Scholar 

  91. Ardail D, Popa I, Bodennec J, Louisot P, Schmitt D, Portoukalian J (2003) The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. Biochem J 371:1013–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382:527–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d’Azzo A (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36(3):500–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    Article  PubMed  Google Scholar 

  95. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610

    Article  CAS  PubMed  Google Scholar 

  97. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  CAS  PubMed  Google Scholar 

  98. Ledeen RW, Wu G (2002) Ganglioside function in calcium homeostasis and signaling. Neurochem Res 27(7–8):637–647

    Article  CAS  PubMed  Google Scholar 

  99. Ledeen RW, Wu G (2006) GM1 ganglioside: another nuclear lipid that modulates nuclear calcium. GM1 potentiates the nuclear sodium-calcium exchanger. Can J Physiol Pharmacol 84:393–402

    Article  CAS  PubMed  Google Scholar 

  100. Annunziata I, Patterson A, Helton D, Hu H, Moshiach S, Gomero E, Nixon R, d’Azzo A (2013) Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nature Commun. doi:10.1038/ncomms3734

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Angela McArthur for editing this manuscript. A.d’A. holds the Jewelers for Children Endowed Chair in Genetics and Gene Therapy. Work from d’Azzo’s laboratory that is included in this review was supported by the National Institutes of Health (NIH) grants GM60905 and DK52025, the Assisi Foundation of Memphis, the American Lebanese Syrian Associated Charities (ALSAC) and the National Tay-Sachs & Allied Disease Association (NTSAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra d’Azzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonten, E.J., Annunziata, I. & d’Azzo, A. Lysosomal multienzyme complex: pros and cons of working together. Cell. Mol. Life Sci. 71, 2017–2032 (2014). https://doi.org/10.1007/s00018-013-1538-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1538-3

Keywords

Navigation