Cellular and Molecular Life Sciences

, Volume 71, Issue 9, pp 1691–1701 | Cite as

Molecular and engineering approaches to regenerate and repair teeth in mammals

  • Wing-Fu Lai
  • Jong-Min Lee
  • Han-Sung JungEmail author


Continuous replacement of teeth throughout the lifespan of an individual is possibly basal for most of the vertebrates including fish and reptiles; however, mammals generally have a limited capacity of tooth renewal. The ability to induce cellular differentiation in adults to replace lost or damaged cells in mammals, or to tissue-engineer organs in vitro, has hence become one of the major goals of regenerative medicine. In this article, we will revisit some of the important signals and tissue interactions that regulate mammalian tooth development, and will offer a synopsis of the latest progress in tooth regeneration and repair via molecular and engineering approaches. It is hoped that this article will not only offer an overview of recent technologies in tooth regeneration and repair but will also stimulate more interdisciplinary research in this field to turn the pursuit of tooth regeneration and repair into practical reality.


Tooth repair Tooth regeneration Tooth replacement Development Morphogenesis Bioengineering Polymeric scaffolds 



The authors would like to thank Liwen Li for her help on an earlier version of this manuscript. This work was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A101578) and by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST) (No. 2011-0027790).


  1. 1.
    Ahn Y, Sanderson BW, Klein OD, Krumlauf R (2010) Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 137(19):3221–3231PubMedCrossRefGoogle Scholar
  2. 2.
    Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92(1):19–29PubMedCrossRefGoogle Scholar
  3. 3.
    Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139(19):3487–3497PubMedCrossRefGoogle Scholar
  4. 4.
    Mojon P, Budtz-Jorgensen E, Rapin CH (1999) Relationship between oral health and nutrition in very old people. Age Ageing 28(5):463–468PubMedCrossRefGoogle Scholar
  5. 5.
    Baker H (2007) Nutrition in the elderly: an overview. Geriatrics 62(7):28–31PubMedGoogle Scholar
  6. 6.
    Henshaw MM, Calabrese JM (2008) Oral health and nutrition in the elderly. Nutr Clin Care 4(1):34–42Google Scholar
  7. 7.
    Caton J, Tucker AS (2009) Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 214(4):502–515PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Osborn JW (1971) The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787). Proc R Soc Lond B 179(56):261–289PubMedCrossRefGoogle Scholar
  9. 9.
    Westergaard B, Ferguson MWJ (1987) Development of the dentition in Alligator mississippiensis. Later development in the lower jaws of embryos, hatchlings and young juveniles. J Zool 212(2):191–222CrossRefGoogle Scholar
  10. 10.
    Handrigan GR, Richman JM (2010) A network of Wnt, hedgehog and BMP signaling pathways regulates tooth replacement in snakes. Dev Biol 348(1):130–141PubMedCrossRefGoogle Scholar
  11. 11.
    Fraser GJ, Graham A, Smith MM (2006) Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. J Exp Zool B 306(3):183–203CrossRefGoogle Scholar
  12. 12.
    Huysseune A, Witten PE (2006) Developmental mechanisms underlying tooth patterning in continuously replacing osteichthyan dentitions. J Exp Zool B 306(3):204–215CrossRefGoogle Scholar
  13. 13.
    Smith MM, Fraser GJ, Chaplin N, Hobbs C, Graham A (2009) Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates. Proc R Soc Lond B 276(1660):1225–1233CrossRefGoogle Scholar
  14. 14.
    Vandervennet E, Huysseune A (2005) Histological description of tooth formation in adult Eretmodus cf. cyanostictus (Teleostei, Cichlidae). Arch Oral Biol 50(7):635–643PubMedCrossRefGoogle Scholar
  15. 15.
    Juuri E, Jussila M, Seidel K, Holmes S, Wu P, Richman J, Heikinheimo K, Chuong CM, Arnold K, Hochedlinger K, Klein O, Michon F, Thesleff I (2013) Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development 140(7):1424–1432PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Juuri E, Saito K, Ahtiainen L, Seidel K, Tummers M, Hochedlinger K, Klein OD, Thesleff I, Michon F (2012) Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell 23(2):317–328PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wu P, Wu X, Jiang TX, Elsey RM, Temple BL, Divers SJ, Glenn TC, Yuan K, Chen MH, Widelitz RB, Chuong CM (2013) Specialized stem cell niche enables repetitive renewal of alligator teeth. Proc Natl Acad Sci USA 110(22):E2009–E2018PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Whitlock JA, Richman JM (2013) Biology of tooth replacement in amniotes. Int J Oral Sci 5(2):66–70PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Handrigan GR, Leung KJ, Richman JM (2010) Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement. Development 137(21):3545–3549PubMedCrossRefGoogle Scholar
  20. 20.
    Jarvinen E, Tummers M, Thesleff I (2009) The role of the dental lamina in mammalian tooth replacement. J Exp Zool B 312B(4):281–291CrossRefGoogle Scholar
  21. 21.
    Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 103(49):18627–18632PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Rodrigues HG, Marangoni P, Sumbera R, Tafforeau P, Wendelen W, Viriot L (2011) Continuous dental replacement in a hyper-chisel tooth digging rodent. Proc Natl Acad Sci USA 108(42):17355–17359PubMedCrossRefGoogle Scholar
  23. 23.
    Lagronova-Churava S, Spoutil F, Vojtechova S, Lesot H, Peterka M, Klein OD, Peterkova R (2013) The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes. J Exp Zool B 320(5):307–320CrossRefGoogle Scholar
  24. 24.
    Chae YM, Jin YJ, Kim HS, Gwon GJ, Sohn WJ, Kim SH, Kim MO, Lee S, Suh JY, Kim JY (2012) Proteome analysis of developing mice diastema region. BMB Rep 45(6):337–341PubMedCrossRefGoogle Scholar
  25. 25.
    Yamamoto H, Cho SW, Song SJ, Hwang HJ, Lee MJ, Kim JY, Jung HS (2005) Characteristic tissue interaction of the diastema region in mice. Arch Oral Biol 50(2):189–198PubMedCrossRefGoogle Scholar
  26. 26.
    Thesleff I, Jarvinen E, Suomalainen M (2007) Affecting tooth morphology and renewal by fine-tuning the signals mediating cell and tissue interactions. Novartis Found Symp 284:142–153 (discussion 53-63)PubMedCrossRefGoogle Scholar
  27. 27.
    Cai J, Cho SW, Kim JY, Lee MJ, Cha YG, Jung HS (2007) Patterning the size and number of tooth and its cusps. Dev Biol 304(2):499–507PubMedCrossRefGoogle Scholar
  28. 28.
    Ishida K, Murofushi M, Nakao K, Morita R, Ogawa M, Tsuji T (2011) The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions. Biochem Biophys Res Commun 405(3):455–461PubMedCrossRefGoogle Scholar
  29. 29.
    Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116(Pt 9):1647–1648PubMedCrossRefGoogle Scholar
  30. 30.
    Vainio S, Karavanova I, Jowett A, Thesleff I (1993) Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75(1):45–58PubMedCrossRefGoogle Scholar
  31. 31.
    Chen Y, Bei M, Woo I, Satokata I, Maas R (1996) Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122(10):3035–3044PubMedGoogle Scholar
  32. 32.
    Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125(2):161–169PubMedGoogle Scholar
  33. 33.
    Charles C, Pantalacci S, Tafforeau P, Headon D, Laudet V, Viriot L (2009) Distinct impacts of Eda and Edar loss of function on the mouse dentition. PLoS ONE 4(4):e4985PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18PubMedCrossRefGoogle Scholar
  35. 35.
    Lazzari V, Charles C, Tafforeau P, Vianey-Liaud M, Aguilar JP, Jaeger JJ, Michaux J, Viriot L (2008) Mosaic convergence of rodent dentitions. PLoS ONE 3(10):e3607PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Jernvall J, Keranen SV, Thesleff I (2000) Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc Natl Acad Sci USA 97(26):14444–14448PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Jernvall J, Jung HS (2000) Genotype, phenotype, and developmental biology of molar tooth characters. Am J Phys Anthropol Suppl 31:171–190CrossRefGoogle Scholar
  38. 38.
    Plikus MV, Zeichner-David M, Mayer JA, Reyna J, Bringas P, Thewissen JG, Snead ML, Chai Y, Chuong CM (2005) Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev 7(5):440–457PubMedCrossRefGoogle Scholar
  39. 39.
    Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Wankell M, Werner S, Thesleff I (2004) Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. Dev Dyn 231(1):98–108PubMedCrossRefGoogle Scholar
  40. 40.
    Ohazama A, Tucker A, Sharpe PT (2005) Organized tooth-specific cellular differentiation stimulated by BMP4. J Dent Res 84(7):603–606PubMedCrossRefGoogle Scholar
  41. 41.
    Mina M, Kollar EJ (1987) The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 32(2):123–127PubMedCrossRefGoogle Scholar
  42. 42.
    Tucker AS, Matthews KL, Sharpe PT (1998) Transformation of tooth type induced by inhibition of BMP signaling. Science 282(5391):1136–1138PubMedCrossRefGoogle Scholar
  43. 43.
    Lumsden AG (1988) Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103(Suppl):155–169PubMedGoogle Scholar
  44. 44.
    Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15(5):301–316PubMedCrossRefGoogle Scholar
  45. 45.
    Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132(4):544–548PubMedCrossRefGoogle Scholar
  46. 46.
    Vanden Berg-Foels WS (2013) In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng Part B Rev [Epub ahead of print]Google Scholar
  47. 47.
    Ohara T, Itaya T, Usami K, Ando Y, Sakurai H, Honda MJ, Ueda M, Kagami H (2010) Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A 94(3):800–805PubMedGoogle Scholar
  48. 48.
    Song JS, Kim SO, Kim SH, Choi HJ, Son HK, Jung HS, Kim CS, Lee JH (2012) In vitro and in vivo characteristics of stem cells derived from the periodontal ligament of human deciduous and permanent teeth. Tissue Eng Part A 18(19–20):2040–2051PubMedCrossRefGoogle Scholar
  49. 49.
    Yang KC, Wang CH, Chang HH, Chan WP, Chi CH, Kuo TF (2012) Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med 6(10):777–785PubMedCrossRefGoogle Scholar
  50. 50.
    Mahapoka E, Arirachakaran P, Watthanaphanit A, Rujiravanit R, Poolthong S (2012) Chitosan whiskers from shrimp shells incorporated into dimethacrylate-based dental resin sealant. Dent Mater J 31(2):273–279PubMedCrossRefGoogle Scholar
  51. 51.
    d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83PubMedGoogle Scholar
  52. 52.
    Matsunaga T, Yanagiguchi K, Yamada S, Ohara N, Ikeda T, Hayashi Y (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76(4):711–720PubMedGoogle Scholar
  53. 53.
    Kim SE, Suh DH, Yun YP, Lee JY, Park K, Chung JY, Lee DW (2012) Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. J Mater Sci Mater Med 23(11):2739–2749PubMedCrossRefGoogle Scholar
  54. 54.
    Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, Matsuo K, Chen KK, Terashita M (2010) Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B 92(1):120–128CrossRefGoogle Scholar
  55. 55.
    Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, Schricker SR, Shi S (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med 23(12):3041–3051PubMedCrossRefGoogle Scholar
  56. 56.
    Dobie K, Smith G, Sloan AJ, Smith AJ (2002) Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 43(2–3):387–390PubMedCrossRefGoogle Scholar
  57. 57.
    Khojasteh A, Behnia H, Hosseini FS, Dehghan MM, Abbasnia P, Abbas FM (2013) The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report. J Biomed Mater Res B 101(5):848–854CrossRefGoogle Scholar
  58. 58.
    Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26(20):4273–4279PubMedCrossRefGoogle Scholar
  59. 59.
    Galler KM, Cavender AC, Koeklue U, Suggs LJ, Schmalz G, D’Souza RN (2011) Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen Med 6(2):191–200PubMedCrossRefGoogle Scholar
  60. 60.
    Kim NR, Lee DH, Chung PH, Yang HC (2009) Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(5):e94–e100PubMedCrossRefGoogle Scholar
  61. 61.
    Nadeem D, Kiamehr M, Yang X, Su B (2013) Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C 33(5):2669–2678CrossRefGoogle Scholar
  62. 62.
    Cornelini R, Artese L, Rubini C, Fioroni M, Ferrero G, Santinelli A, Piattelli A (2001) Vascular endothelial growth factor and microvessel density around healthy and failing dental implants. Int J Oral Maxillofac Implants 16(3):389–393PubMedGoogle Scholar
  63. 63.
    Yukio O, Chiaki K, Takahiko M, Masamichi T (2003) Localizations of vascular endothelial growth factor(VEGF) and VEGF receptor 2(VEGFR 2/Flk-1) during mouse tooth development. Jpn J Conserv Dent 46(1):37–45Google Scholar
  64. 64.
    Megan L, Jessica J, Warren H, Joel B (2013) Effects of VEGF-loaded chitosan coatings on osteoblast mineralization. J Biomed Mater Res A [Epub ahead of print]Google Scholar
  65. 65.
    Lin S, Roguin A, Metzger Z, Levin L (2008) Vascular endothelial growth factor (VEGF) response to dental trauma: a preliminary study in rats. Dent Traumatol 24(4):435–438PubMedCrossRefGoogle Scholar
  66. 66.
    Anthonsen M, Smidsrod O (1995) Hydrogen ion titration of chitosans with varying degrees of N-acetylation by monitoring induced 1H-NMR chemical shifts. Carbohydr Polym 26(4):303–305CrossRefGoogle Scholar
  67. 67.
    Berth G, Dautzenberg H, Peter MG (1998) Physico-chemical characterization of chitosans varying in degree of acetylation. Carbohydr Polym 36(2–3):205–216CrossRefGoogle Scholar
  68. 68.
    Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89(2):151–165PubMedCrossRefGoogle Scholar
  69. 69.
    Fang N, Chan V, Mao HQ, Leong KW (2001) Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2(4):1161–1168PubMedCrossRefGoogle Scholar
  70. 70.
    Thanou M, Verhoef JC, Junginger HE (2001) Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev 50(Suppl 1):S91–S101PubMedCrossRefGoogle Scholar
  71. 71.
    Subramani K, Birch MA (2006) Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Biomed Mater 1(3):144–154PubMedCrossRefGoogle Scholar
  72. 72.
    Schaffert D, Wagner E (2008) Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther 15(16):1131–1138PubMedCrossRefGoogle Scholar
  73. 73.
    Lai WF, Lin MC (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Release 134(3):158–168PubMedCrossRefGoogle Scholar
  74. 74.
    Lai WF (2014) Cyclodextrins in non-viral gene delivery. Biomaterials 35(1):401–411PubMedCrossRefGoogle Scholar
  75. 75.
    Lai WF (2013) Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 12(1):310–315PubMedCrossRefGoogle Scholar
  76. 76.
    Lai WF (2011) In vivo nucleic acid delivery with PEI and its derivatives: current status and perspectives. Expert Rev Med Devices 8(2):173–185PubMedCrossRefGoogle Scholar
  77. 77.
    Lai WF (2011) Delivery of therapeutics: current status and its relevance to regenerative innovations. Recent Patents Nanomed 1(1):7–18CrossRefGoogle Scholar
  78. 78.
    Paul W, Garside CP (2000) Chitosan, a drug carrier for the 21st century: a review. STP Pharma Sci 10(1):5–22Google Scholar
  79. 79.
    Kichler A, Chillon M, Leborgne C, Danos O, Frisch B (2002) Intranasal gene delivery with a polyethylenimine-PEG conjugate. J Control Release 81(3):379–388PubMedCrossRefGoogle Scholar
  80. 80.
    Sung SJ, Min SH, Cho KY, Lee S, Min YJ, Yeom YI, Park JK (2003) Effect of polyethylene glycol on gene delivery of polyethylenimine. Biol Pharm Bull 26(4):492–500PubMedCrossRefGoogle Scholar
  81. 81.
    Vonarbourg A, Passirani C, Saulnier P, Benoit JP (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–4373PubMedCrossRefGoogle Scholar
  82. 82.
    Wong JY, Kuhl TL, Israelachvili JN, Mullah N, Zalipsky S (1997) Direct measurement of a tethered ligand-receptor interaction potential. Science 275(5301):820–822PubMedCrossRefGoogle Scholar
  83. 83.
    Dispinar T, Van Camp W, De Cock LJ, De Geest BG, Du Prez FE (2012) Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Macromol Biosci 12(3):383–394PubMedCrossRefGoogle Scholar
  84. 84.
    Engebretson B, Sikavitsas VI (2012) Long-term in vivo effect of PEG bone tissue engineering scaffolds. J Long Term Eff Med Implants 22(3):211–218PubMedCrossRefGoogle Scholar
  85. 85.
    Raftery R, O’Brien FJ, Cryan SA (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18(5):5611–5647PubMedCrossRefGoogle Scholar
  86. 86.
    Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49(36):6288–6308PubMedCrossRefGoogle Scholar
  87. 87.
    Bonora GM, Drioli S (2008) Recent advances on patents in poly(ethylene glycol)-based drug delivery. Recent Pat Drug Deliv Formul 2(2):189–195PubMedCrossRefGoogle Scholar
  88. 88.
    Muller C, Ma BN, Gust R, Bernkop-Schnurch A (2013) Thiopyrazole preactivated chitosan: combining mucoadhesion and drug delivery. Acta Biomater 9(5):6585–6593PubMedCrossRefGoogle Scholar
  89. 89.
    Qu D, Lin H, Zhang N, Xue J, Zhang C (2013) In vitro evaluation on novel modified chitosan for targeted antitumor drug delivery. Carbohydr Polym 92(1):545–554PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of BiotechnologyYonsei UniversitySeoulKorea
  2. 2.Oral Biosciences, Faculty of DentistryThe University of Hong KongHong Kong SARChina

Personalised recommendations