Skip to main content

Advertisement

Log in

Epigenetic choreography of stem cells: the DNA demethylation episode of development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Reversible DNA methylation is a fundamental epigenetic manipulator of the genomic information in eukaryotes. DNA demethylation plays a very significant role during embryonic development and stands out for its contribution in molecular reconfiguration during cellular differentiation for determining stem cell fate. DNA demethylation arbitrated extensive make-over of the genome via reprogramming in the early embryo results in stem cell plasticity followed by commitment to the principal cell lineages. This article attempts to highlight the sequential phases and hierarchical mode of DNA demethylation events during enactment of the molecular strategy for developmental transition. A comprehensive knowledge regarding the pattern of DNA demethylation during embryogenesis and organogenesis and study of the related lacunae will offer exciting avenues for future biomedical research and stem cell-based regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5meC:

5 Methylcytosine

ABL1:

c-abl oncogene 1

AID:

Activation-induced deaminase

AML:

Acute myelogenous leukemia

APOBEC:

Apolipoprotein B mRNA editing enzyme catalytic polypeptide

ARL4C:

ADP-ribosylation factor-like 4C

ASCL1:

Achaete-scute complex homologue 1

AZA:

5-Aza-2′-deoxycytidine

BDNF:

Brain-derived neurotrophic factor

BER:

Base excision repair glycosylases

BGLAP:

Bone gamma-carboxyglutamate (Gla) protein

BMP2:

Bone morphogenetic protein 2

BMP4:

Bone morphogenetic protein 4

CALC-α:

Calcitonin-related polypeptide alpha

CDKN2B:

Cyclin-dependent kinase inhibitor 2B

CEBP-α:

CCAAT/enhancer-binding protein alpha

CHAD:

Chondroadherin

CHK2:

Checkpoint kinase 2

CHM1:

Chondromodulin-I

CLPs:

Common lymphoid progenitors

CML:

Chronic myelomonocytic leukemia

CMPs:

Common myeloid progenitors

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

Col10a1:

α1(X) collagen

Col2a1:

α1 (II) collagen

CT1:

Cardiotrophin-1

CTLA4:

Cytotoxic T-lymphocyte-associated protein

CTNNA1:

Catenin (cadherin-associated protein), Alpha 1

CXCR2:

Chemokine (C-X-C Motif) receptor 2

DACH1:

Dachshund homolog 1

DAZL:

Deleted in azoospermia-like

DC-SIGN:

Dendritic cell-specific ICAM-3 grabbing non-integrin

DMD:

Duchenne muscular dystrophy

DNMT1:

DNA methyltransferase 1

E-CAD:

E-cadherin

EGCs:

Embryonic germ cells

ELF5:

E-74-like factor 5

ELP3:

Elongator complex protein 3

ESCs:

Embryonic stem cells

FABP4:

Fatty acid-binding protein 4

FGF2:

Fibroblast growth factors

FGFR3:

Fibroblast growth factor receptor-3

GADD45A:

Growth arrest and DNA damage-inducible protein 45α

GCNT2:

Glucosaminyl (N-acetyl) transferase 2; I-branching enzyme (I Blood Group)

GFAP:

Glial fibrillary acidic protein

GLUT4:

Glucose transporter type 4

GMPs:

Granulocyte/macrophage progenitors

GP6/GP VI:

Platelet glycoprotein 6/VI

HSCs:

Hematopoietic stem cells

ICM:

Inner cell mass

IFN-γ:

Interferon-gamma

IL-13:

Interleukin 13

IL-17:

Interleukin 17A

IL-1β:

Interleukin-1β

IL-2:

Interleukin 2

IL-4:

Interleukin 4

IL-6:

Interleukin-6

iPSCs:

Induced pluripotent stem cells

iTreg :

Induced regulatory T

JAK–STAT:

Janus Kinase-signal transducer and activator of transcription

JDP2:

Jun dimerization protein 2

JMML:

Juvenile myelomonocytic leukemia

LAG3:

Lymphocyte-activation gene 3

LEP:

Leptin

LIF:

Leukemia inhibitory factor

LPL:

Lipoprotein lipase

MATH3:

Mammalian atonal homologue 3

MBD2b:

Methyl-binding domain protein 2b

MBD4:

Methyl-binding domain protein 4

MDS:

Myelodysplastic syndromes

MEPs:

Megakaryocyte/erythroid progenitors

MGMT:

O6-methylguanine-DNA methyltransferase

MHC II:

Major histocompatibility complex, class II

MPO:

Myeloperoxidase

MRFs:

Myogenic regulatory factors

MSCs:

Mesenchymal stem cells

MYF-5:

Myogenic factor 5

MYOD:

Myogenic differentiation

MYOG:

Myogenin

NEUROG2:

Neurogenin 2

NK:

Natural killer

NKG2A:

NK cell receptor A, also known as KLRC1 (C-type lectin-like inhibitory receptor)

NR4A2:

Nuclear receptor subfamily 4, group A, member 2

NRG:

Neuregulins

NSCs:

Neural stem cells

OC:

Osteocalcin

OCT4:

Octamer-binding transcription factor 4

OPCs:

Oligodendrocyte progenitor cells

OPN:

Osteopontin

OSX:

Osterix

PAX3:

Paired box 3

PAX5:

Paired box protein 5

PCD1:

Programmed cell death 1

PDGF:

Platelet-derived growth factors

PGCs:

Primordial germ cells

PI-PLC beta1:

Phosphoinositide-phospholipase C beta1

PPARγ and PPARγ2:

Peroxisome proliferator-activated receptor-gamma

PRF1:

Perforin 1

PU1:

Purine box factor 1

RAR-β:

Retinoic acid receptor beta

ROR-γt:

Retinoic-acid-receptor-related orphan receptor-γt, or RORC

RUNX1:

Runt-related transcription factor 1

RUNX2:

Runt-related transcription factor 2

SOX2:

SRY box-containing factor 2

SOX9:

SRY (sex determining region Y) box 9

SYCP3:

Synaptonemal complex protein 3

TBX21:

Transcription factor T-Box 21, or T-bet

TDG:

Thymine DNA glycosylase

TE:

Trophectoderm

TET:

Ten-eleven translocation proteins

TH :

T helper

TIM3:

T-cell immunoglobulin mucin 3

TNK:

T cell and natural killer cell

VASN:

Vasorin

WT1:

Wilms tumor 1

References

  1. Vincent A, Van Seuningen I (2009) Epigenetics, stem cells and epithelial cell fate. Differentiation 78(2–3):99–107

    Article  CAS  PubMed  Google Scholar 

  2. De Carvalho DD, You JS, Jones PA (2010) DNA methylation and cellular reprogramming. Trends Cell Biol 20(10):609–617

    Article  PubMed Central  PubMed  Google Scholar 

  3. Collas P (2009) Epigenetic states in stem cells. Biochem Biophys Acta 1790(9):900–905

    Article  CAS  PubMed  Google Scholar 

  4. Zhao X, Ruan Y, Wei CL (2008) Tackling the epigenome in the pluripotent stem cells. J Genet Genomics 35(7):403–412

    Article  CAS  PubMed  Google Scholar 

  5. Berdasco M, Esteller M (2011) DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther 2(5):42–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Szutorisz H, Dillon N (2005) The epigenetic basis for embryonic stem cell pluripotency. BioEssays 27(12):1286–1293

    Article  CAS  PubMed  Google Scholar 

  7. Altun G, Loring JF, Laurent LC (2010) DNA methylation in embryonic stem cells. J Cell Biochem 109(1):1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Liu GH, Belmonte JC (2012) Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 13(8):524–535

    Article  CAS  PubMed  Google Scholar 

  10. Kar S, Deb M, Sengupta D, Shilpi A, Parbin S, Torrisani J, Pradhan S, Patra SK (2012) An insight into the various regulatory mechanisms modulating Human DNA Methyltransferase 1 stability and function. Epigenetics 7(9):994–1007

    Article  CAS  PubMed  Google Scholar 

  11. Mathews LA, Crea F, Farrar WL (2009) Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation 78(1):1–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Meissner A (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28(10):1079–1088

    Article  CAS  PubMed  Google Scholar 

  13. Wu H, Sun YE (2006) Epigenetic regulation of stem cell differentiation. Pediatr Res 59(4 Pt. 2):21–25

    Article  Google Scholar 

  14. Atkinson S, Armstrong L (2008) Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell Tissue Res 331(1):23–29

    Article  PubMed  Google Scholar 

  15. Lunyak VV, Rosenfeld MG (2008) Epigenetic regulation of stem cell fate. Hum Mol Genet 17(R1):R28–R36

    Article  CAS  PubMed  Google Scholar 

  16. Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117

    Article  CAS  PubMed  Google Scholar 

  17. Huang K, Fan G (2010) DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regen Med 5(4):531–544

    Article  CAS  PubMed  Google Scholar 

  18. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Patra SK, Patra A, Rizzi F, Ghosh TC, Bettuzzi S (2008) Demethylation of (cytosine-5-Cmethyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metast Rev 27(2):315–334

    Article  CAS  Google Scholar 

  20. Patra SK, Bettuzzi S (2009) Epigenetic DNA-(Cytosine-5-carbon) Modifications: 5-Aza-2′-deoxyctyidine and DNA modification. Biochemistry (Moscow) 74(6):613–619

    Article  CAS  Google Scholar 

  21. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 368(1609):20110330

    Article  PubMed  Google Scholar 

  22. Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10(8):526–537

    Article  CAS  PubMed  Google Scholar 

  23. Arney KL, Erhardt S, Drewell RA, Surani MA (2001) Epigenetic reprogramming of the genome—from the germ line to the embryo and back again. Int J Dev Biol 45(3):533–540

    CAS  PubMed  Google Scholar 

  24. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403(6769):501–502

    Article  CAS  PubMed  Google Scholar 

  25. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10(8):475–478

    Article  CAS  PubMed  Google Scholar 

  26. Hajkova P (2011) Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci 366(1575):2266–2273

    Article  CAS  PubMed  Google Scholar 

  27. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182

    Article  CAS  PubMed  Google Scholar 

  28. Donnison M, Beaton A, Davey HW, Broadhurst R, L’huillier P, Pfeffer PL (2005) Loss of the extra-embryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 132(10):2299–2308

    Article  CAS  PubMed  Google Scholar 

  29. Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, Hemberger M (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10(11):1280–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kwon GS, Viotti M, Hadjantonakis AK (2008) The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extra-embryonic lineages. Dev Cell 15(4):509–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ng JH, Heng JC, Loh YH, Ng HH (2008) Transcriptional and epigenetic regulations of embryonic stem cells. Mutat Res 647(1–2):52–58

    Article  CAS  PubMed  Google Scholar 

  32. Hackett JA, Zylicz JJ, Surani MA (2012) Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet 28(4):164–174

    Article  CAS  PubMed  Google Scholar 

  33. Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279(50):52353–52360

    Article  CAS  PubMed  Google Scholar 

  34. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278(2):440–458

    Article  CAS  PubMed  Google Scholar 

  35. Bao S, Tang F, Li X, Hayashi K, Gillich A, Lao K, Surani MA (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461(7268):1292–1295

    Article  CAS  PubMed  Google Scholar 

  36. Maatouk DM, Kellam LD, Mann MR, Lei H, Li E, Bartolomei MS, Resnick JL (2006) DNA methylation is a primary mechanism for silencing post migratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 133(17):3411–3418

    Article  CAS  PubMed  Google Scholar 

  37. Lees-Murdock DJ, De Felici M, Walsh CP (2003) Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 82(2):230–237

    Article  CAS  PubMed  Google Scholar 

  38. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(1–2):15–23

    Article  CAS  PubMed  Google Scholar 

  39. Szabo PE, Hubner K, Scholer H, Mann JR (2002) Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev 115(1–2):157–160

    Article  CAS  PubMed  Google Scholar 

  40. Lees-Murdock DJ, Walsh CP (2008) DNA methylation reprogramming in the germ line. Epigenetics 3(1):5–13

    Article  PubMed  Google Scholar 

  41. Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42(12):1093–1100

    Article  CAS  PubMed  Google Scholar 

  42. Hackett JA, Reddington JP, Nestor CE, Dunican DS, Branco MR, Reichmann J, Reik W, Surani MA, Adams IR, Meehan RR (2012) Promoter DNA methylation couples genome-defense mechanisms to epigenetic reprogramming in the mouse germline. Development 139(19):3623–3632

    Article  CAS  PubMed  Google Scholar 

  43. Eilertsen KJ, Floyd Z, Gimble JM (2008) The epigenetics of adult (somatic) stem cells. Crit Rev Eukaryot Gene Expr 18(3):189–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136(4):509–523

    Article  CAS  PubMed  Google Scholar 

  45. Rice KL, Hormaeche I, Licht JD (2007) Epigenetic regulation of normal and malignant haematopoiesis. Oncogene 26(47):6697–6714

    Article  CAS  PubMed  Google Scholar 

  46. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F (2011) Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117(19):e182–e189

    Article  CAS  PubMed  Google Scholar 

  47. Suarez-Alvarez B, Rodriguez RM, Fraga MF, Lopez-Larrea C (2012) DNA methylation: a promising landscape for immune system-related diseases. Trends Genet 28(10):506–514

    Article  CAS  PubMed  Google Scholar 

  48. Iwasaki H, Mizuno S, Arinobu Y, Ozawa H, Mori Y, Shigematsu H, Takatsu K, Tenen DG, Akashi K (2006) The order of expression of transcription factors direct hierarchical specification of hematopoietic lineages. Genes Dev 20(21):3010–3021

    Article  CAS  PubMed  Google Scholar 

  49. Calvanese V, Fernandez AF, Urdinguio RG, Suarez-Alvarez B, Mangas C, Perez-Garcia V, Bueno C, Montes R, Ramos-Mejia V, Martinez-Camblor P, Ferrero C, Assenov Y, Bock C, Menendez P, Carrera AC, Lopez-Larrea C, Fraga MF (2012) A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res 40(1):116–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lubbert M, Miller CW, Koeffler HP (1991) Changes of DNA methylation and chromatin structure in the human myeloperoxidase gene during myeloid differentiation. Blood 78(2):345–356

    CAS  PubMed  Google Scholar 

  51. Zhu J, Emerson SG (2002) Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21(21):3295–3313

    Article  CAS  PubMed  Google Scholar 

  52. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313):338–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cedar H, Bergman Y (2011) Epigenetics of haematopoietic cell development. Nat Rev Immunol 11(7):478–488

    Article  CAS  PubMed  Google Scholar 

  54. Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41(11):1207–1215

    Article  PubMed  Google Scholar 

  55. Orkin SH, Zon LI (2008) Haematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hupkes M, Jonsson MK, Scheenen WJ, van Rotterdam W, Sotoca AM, van Someren EP, van der Heyden MA, van Veen TA, van Ravestein-van Os RI, Bauerschmidt S, Piek E, Ypey DL, van Zoelen EJ, Dechering KJ (2011) Epigenetics: DNA demethylation promotes skeletal myotube maturation. FASEB J 25(11):3861–3872

    Article  CAS  PubMed  Google Scholar 

  57. Berdasco M, Melguizo C, Prados J, Gomez A, Alaminos M, Pujana MA, Lopez M, Setien F, Ortiz R, Zafra I, Aranega A, Esteller M (2012) DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. Am J Pathol 181(6):2079–2093

    Article  CAS  PubMed  Google Scholar 

  58. Faralli H, Dilworth FJ (2012) Turning on myogenin in muscle: a paradigm for understanding mechanisms of tissue-specific gene expression. Comp Funct Genomics. doi:10.1155/2012/836374

    PubMed Central  PubMed  Google Scholar 

  59. Saccone V, Puri PL (2010) Epigenetic regulation of skeletal myogenesis. Organogenesis 6(1):48–53

    Article  PubMed Central  PubMed  Google Scholar 

  60. Goudenege S, Pisani DF, Wdziekonski B, Di Santo JP, Bagnis C, Dani C, Dechesne CA (2009) Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 17(6):1064–1072

    Article  CAS  PubMed  Google Scholar 

  61. Lucarelli M, Fuso A, Strom R, Scarpa S (2001) The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J Biol Chem 276(10):7500–7506

    Article  CAS  PubMed  Google Scholar 

  62. Hupkes M, van Someren EP, Middelkamp SH, Piek E, van Zoelen EJ, Dechering KJ (2011) DNA methylation restricts spontaneous multi-lineage differentiation of mesenchymal progenitor cells, but is stable during growth factor-induced terminal differentiation. Biochim Biophys Acta 5:839–849

    Article  Google Scholar 

  63. Furumatsu T, Ozaki T (2010) Epigenetic regulation in chondrogenesis. Acta Med Okayama 64(3):155–161

    CAS  PubMed  Google Scholar 

  64. Ezura Y, Sekiya I, Koga H, Muneta T, Noda M (2009) Methylation status of CpG islands in the promoter regions of signature genes during chondrogenesis of human synovium-derived mesenchymal stem cells. Arthritis Rheum 60(5):1416–1426

    Article  PubMed  Google Scholar 

  65. Zimmermann P, Boeuf S, Dickhut A, Boehmer S, Olek S, Richter W (2008) Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum 58(9):2743–2753

    Article  PubMed  Google Scholar 

  66. Zhou GS, Zhang XL, Wu JP, Zhang RP, Xiang LX, Dai LC, Shao JZ (2009) 5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation. Cytotechnology 60:1–3

    Article  Google Scholar 

  67. Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao JL, Liu H, Natale RB, Luther G, Luo Q, Wang L, Rames R, Bi Y, Luo J, Luu HH, Haydon RC, Reid RR, He TC (2011) Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. doi:10.4061/2011/201371

    PubMed Central  PubMed  Google Scholar 

  68. Olynik BM, Rastegar M (2012) The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet 3:81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Golebiewska A, Atkinson SP, Lako M, Armstrong L (2009) Epigenetic landscaping during hESC differentiation to neural cells. Stem Cells 27(6):1298–1308

    Article  CAS  PubMed  Google Scholar 

  70. Massirer KB, Carromeu C, Griesi-Oliveira K, Muotri AR (2011) Maintenance and differentiation of neural stem cells. Wiley Interdiscip Rev Syst Biol Med 3(1):107–114

    Article  CAS  PubMed  Google Scholar 

  71. Schneider L, d’Adda di Fagagna F (2012) Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Res 40(12):5332–5342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264

    Article  CAS  PubMed  Google Scholar 

  73. Boeuf S, Richter W (2010) Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res Ther 1(4):31–40

    Article  PubMed Central  PubMed  Google Scholar 

  74. Seo S, Na K (2011) Mesenchymal stem cell-based tissue engineering for chondrogenesis. J Biomed Biotechnol. doi:10.1155/2011/806891

    Google Scholar 

  75. Collas P (2010) Programming differentiation potential in mesenchymal stem cells. Epigenetics 5(6):476–482

    Article  CAS  PubMed  Google Scholar 

  76. Patra SK (2008) Ras regulation of DNA methylation and cancer. Exp Cell Res 314(6):1193–1201

    Article  CAS  PubMed  Google Scholar 

  77. Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279(50):52353–52360

    Article  CAS  PubMed  Google Scholar 

  78. Jiricny J, Menigatti M (2008) DNA Cytosine demethylation: are we getting close? Cell 135(7):1167–1169

    Article  CAS  PubMed  Google Scholar 

  79. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES cell self-renewal, and ICM specification. Nature 466(7310):1129–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Barretto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445(7128):671–675

    Article  Google Scholar 

  82. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in Zebrafish involves the coupling of a deaminase, a glycosylase, and GADD45. Cell 135(7):1201–1212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Niehrs C, Schafer A (2012) Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 22(4):220–227

    Article  CAS  PubMed  Google Scholar 

  84. Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G (2008) Transient cyclical methylation of promoter DNA. Nature 452(7183):112–115

    Article  CAS  PubMed  Google Scholar 

  85. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50

    Article  CAS  PubMed  Google Scholar 

  86. Ooi SKT, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133(7):1145–1148

    Article  CAS  PubMed  Google Scholar 

  87. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Chen CC, Wang KY, Shen CK (2012) The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem 287(40):33116–33121

    Article  CAS  PubMed  Google Scholar 

  89. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463(7280):554–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Szyf M (2003) Targeting DNA methylation in cancer. Ageing Res Rev 2(3):299–328

    Article  CAS  PubMed  Google Scholar 

  91. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397(6720):579–583

    Article  CAS  PubMed  Google Scholar 

  92. Patra SK, Patra A, Zhao H, Dahiya R (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33(3):163–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. Kar, A. Shilpi, D. Sengupta, M. Deb, and S. K. Rath are thankful to NIT-Rourkela for granting them fellowships under the Institute Research Scheme. S. Parbin is thankful to DST, government of India for an INSPIRE fellowship. M. Rakshit is thankful to NIT-Rourkela for granting her a postdoctoral research associate position with institute fellowship. We thankfully acknowledge the suggestions and critics of the anonymous reviewer on the original manuscript.

Conflict of interest

The authors declare that they do not have any conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Patra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S., Parbin, S., Deb, M. et al. Epigenetic choreography of stem cells: the DNA demethylation episode of development. Cell. Mol. Life Sci. 71, 1017–1032 (2014). https://doi.org/10.1007/s00018-013-1482-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1482-2

Keywords

Navigation