Skip to main content

Advertisement

Log in

Natural history of mesenchymal stem cells, from vessel walls to culture vessels

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mesenchymal stem/stromal cells (MSCs) can regenerate tissues by direct differentiation or indirectly by stimulating angiogenesis, limiting inflammation, and recruiting tissue-specific progenitor cells. MSCs emerge and multiply in long-term cultures of total cells from the bone marrow or multiple other organs. Such a derivation in vitro is simple and convenient, hence popular, but has long precluded understanding of the native identity, tissue distribution, frequency, and natural role of MSCs, which have been defined and validated exclusively in terms of surface marker expression and developmental potential in culture into bone, cartilage, and fat. Such simple, widely accepted criteria uniformly typify MSCs, even though some differences in potential exist, depending on tissue sources. Combined immunohistochemistry, flow cytometry, and cell culture have allowed tracking the artifactual cultured mesenchymal stem/stromal cells back to perivascular anatomical regions. Presently, both pericytes enveloping microvessels and adventitial cells surrounding larger arteries and veins have been described as possible MSC forerunners. While such a vascular association would explain why MSCs have been isolated from virtually all tissues tested, the origin of the MSCs grown from umbilical cord blood remains unknown. In fact, most aspects of the biology of perivascular MSCs are still obscure, from the emergence of these cells in the embryo to the molecular control of their activity in adult tissues. Such dark areas have not compromised intents to use these cells in clinical settings though, in which purified perivascular cells already exhibit decisive advantages over conventional MSCs, including purity, thorough characterization and, principally, total independence from in vitro culture. A growing body of experimental data is currently paving the way to the medical usage of autologous sorted perivascular cells for indications in which MSCs have been previously contemplated or actually used, such as bone regeneration and cardiovascular tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AGM:

Aorta-gonad-mesonephros

BGP:

β-glycerophosphate

BM:

Bone marrow

BMP:

Bone morphogenetic protein

CB:

Cord blood

CD:

Cluster of differentiation

CFU:

Colony-forming unit

CPD:

Cumulative population doubling

CSC:

Cardiac stem cell

DLK-1:

Delta-like 1

ECM:

Extracellular matrix

EPC:

Endothelial progenitor cell

FACS:

Fluorescence-activated cell sorting

FDA:

Food and Drug Administration

HGF:

Hepatocyte growth factor

HLADR:

Human leukocyte antigen-DR

HSC:

Hematopoietic stem cell

IBMX:

3-isobutyl-1-methylxanthine

IGF:

Insulin-like growth factor

ISCT:

International Society for Cellular Therapy

Lep-R:

Leptin receptor

mAbs:

Monoclonal antibodies

MAPC:

Multipotent adult progenitor cell

MASC:

Multipotent adult stem cell

MCAM:

Melanoma cell adhesion molecule

MI:

Myocardial infarction

MIAMI:

Marrow-isolated adult multilineage inducible cell

MLPC:

Multilineage progenitor cell

MSC:

Mesenchymal stem cell

NELL1:

Nel-like molecule 1

OVX:

Ovariectomized

PDGFRβ:

Platelet-derived growth factor receptor β

PSC:

Perivascular stem cell

SCF:

Stem cell factor

SVF:

Stromal vascular fraction

SVP:

Saphenous vein pericyte

USSC:

Unrestricted somatic stem cell

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial growth factor

VESL:

Very small embryonic-like stem cell

vWF:

von Willebrand factor

References

  1. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Chailakhyan RK, Latsinik NV et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340

    CAS  PubMed  Google Scholar 

  4. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  5. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    CAS  PubMed  Google Scholar 

  6. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    CAS  PubMed  Google Scholar 

  8. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9(1):204

    PubMed Central  PubMed  Google Scholar 

  9. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    CAS  PubMed  Google Scholar 

  10. Diaz-Flores L, Gutierrez R, Gonzalez P et al (1991) Inducible perivascular cells contribute to the neochondrogenesis in grafted perichondrium. Anat Rec 229(1):1–8

    CAS  PubMed  Google Scholar 

  11. Diaz-Flores L, Gutierrez R, Lopez-Alonso A et al (1992) Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 275:280–286

    PubMed  Google Scholar 

  12. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    CAS  PubMed  Google Scholar 

  13. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Xu Y, Malladi P, Wagner DR et al (2005) Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther 7(4):300–305

    PubMed  Google Scholar 

  15. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18(4):696–704

    PubMed  Google Scholar 

  16. Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155

    CAS  PubMed  Google Scholar 

  17. Salingcarnboriboon R, Yoshitake H, Tsuji K et al (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287(2):289–300

    CAS  PubMed  Google Scholar 

  18. Bi Y, Ehirchiou D, Kilts TM et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13(10):1219–1227

    CAS  PubMed  Google Scholar 

  19. Rogers I, Casper RF (2004) Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol 18(6):893–908

    PubMed  Google Scholar 

  20. Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784

    CAS  PubMed  Google Scholar 

  21. Igura K, Zhang X, Takahashi K et al (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6(6):543–553

    CAS  PubMed  Google Scholar 

  22. Tsai MS, Lee JL, Chang YJ et al (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19(6):1450–1456

    PubMed  Google Scholar 

  23. De Bari C, Dell’Accio F, Tylzanowski P et al (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942

    PubMed  Google Scholar 

  24. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68(4–5):245–253

    CAS  PubMed  Google Scholar 

  25. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(11):2204–2213

    Google Scholar 

  26. Covas DT, Panepucci RA, Fontes AM et al (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36(5):642–654

    CAS  PubMed  Google Scholar 

  27. Crisan M (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    CAS  PubMed  Google Scholar 

  28. Chen CW, Montelatici E, Crisan M et al (2009) Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 20(5–6):429–434

    CAS  PubMed  Google Scholar 

  29. Tsutsumi S, Shimazu A, Miyazaki K et al (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288(2):413–419

    CAS  PubMed  Google Scholar 

  30. Kulterer B, Friedl G, Jandrositz A et al (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8:70

    PubMed Central  PubMed  Google Scholar 

  31. Pochampally RR, Smith JR, Ylostalo J et al (2004) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103(5):1647–1652

    CAS  PubMed  Google Scholar 

  32. Hishikawa K, Miura S, Marumo T et al (2004) Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer. Biochem Biophys Res Commun 317(4):1103–1107

    CAS  PubMed  Google Scholar 

  33. Kratchmarova I, Blagoev B, Haack-Sorensen M et al (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308(5727):1472–1477

    CAS  PubMed  Google Scholar 

  34. Song L, Webb NE, Song Y et al (2006) Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells 24(7):1707–1718

    PubMed  Google Scholar 

  35. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  PubMed  Google Scholar 

  36. Peister A, Mellad JA, Larson BL et al (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103(5):1662–1668

    CAS  PubMed  Google Scholar 

  37. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344

    CAS  PubMed  Google Scholar 

  38. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    CAS  PubMed  Google Scholar 

  39. Dennis JE, Carbillet JP, Caplan AI et al (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82

    PubMed  Google Scholar 

  40. Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29(2):244–255

    CAS  PubMed  Google Scholar 

  41. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549

    PubMed  Google Scholar 

  42. Bensidhoum M, Chapel A, Francois S et al (2004) Homing of in vitro expanded Stro-1− or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103(9):3313–3319

    CAS  PubMed  Google Scholar 

  43. Farrington-Rock C, Crofts NJ, Doherty MJ et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232

    CAS  PubMed  Google Scholar 

  44. Feng J, Mantesso A, De Bari C et al (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci USA 108(16):6503–6508

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Sims DE (1986) The pericyte: a review. Tissue Cell 18(2):153–174

    CAS  PubMed  Google Scholar 

  46. Diaz-Flores L, Martin Herrera AI, Garcia Montelongo R et al (1990) Role of pericytes and endothelial cells in tissue repair and related pathological processes. J Cutan Pathol 17(3):191–192

    CAS  PubMed  Google Scholar 

  47. Savvatis K, van Linthout S, Miteva K et al (2012) Mesenchymal stromal cells but not cardiac fibroblasts exert beneficial systemic immunomodulatory effects in experimental myocarditis. Plos One 7(7):e41047

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Jia Z, Jiao C, Zhao S et al (2012) Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res 102:44–49

    CAS  PubMed  Google Scholar 

  49. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506

    CAS  PubMed  Google Scholar 

  50. Krampera M, Cosmi L, Angeli R et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398

    CAS  PubMed  Google Scholar 

  51. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    CAS  PubMed  Google Scholar 

  53. Jui HY, Lin CH, Hsu WT et al (2012) Autologous mesenchymal stem cells prevent transplant arteriosclerosis by enhancing local expression of interleukin-10, interferon-gamma, and indoleamine 2,3-dioxygenase. Cell Transplant 21(5):971–984

    PubMed  Google Scholar 

  54. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    CAS  PubMed  Google Scholar 

  55. Kuo YR, Chen CC, Shih HS et al (2011) Prolongation of composite tissue allotransplant survival by treatment with bone marrow mesenchymal stem cells is correlated with T-cell regulation in a swine hind-limb model. Plast Reconstr Surg 127(2):569–579

    CAS  PubMed  Google Scholar 

  56. Ikeguchi R, Sacks JM, Unadkat JV et al (2008) Long-term survival of limb allografts induced by pharmacologically conditioned, donor alloantigen-pulsed dendritic cells without maintenance immunosuppression. Transplantation 85(2):237–246

    CAS  PubMed  Google Scholar 

  57. Sarugaser R, Ennis J, Stanford WL et al (2009) Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods Mol Biol 482:269–279

    CAS  PubMed  Google Scholar 

  58. Dai W, Hale SL, Martin BJ et al (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112(2):214–223

    PubMed  Google Scholar 

  59. Noiseux N, Gnecchi M, Lopez-Ilasaca M et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14(6):840–850

    CAS  PubMed  Google Scholar 

  60. Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549

    CAS  PubMed  Google Scholar 

  61. Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368

    CAS  PubMed  Google Scholar 

  62. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8(3):301–316

    CAS  PubMed  Google Scholar 

  63. Schafer R, Dominici M, Muller I et al (2007) Progress in characterization, preparation and clinical applications of non-hematopoietic stem cells, 29–30 September 2006, Tubingen, Germany. Cytotherapy 9(4):397–405

    CAS  PubMed  Google Scholar 

  64. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M et al (2008) Hunt for pluripotent stem cell—regenerative medicine search for almighty cell. J Autoimmun 30(3):151–162

    PubMed Central  PubMed  Google Scholar 

  65. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    CAS  PubMed  Google Scholar 

  66. D’Ippolito G, Diabira S, Howard GA et al (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(Pt 14):2971–2981

    PubMed  Google Scholar 

  67. Beltrami AP, Cesselli D, Bergamin N et al (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110(9):3438–3446

    CAS  PubMed  Google Scholar 

  68. Bosch J, Houben AP, Radke TF et al (2012) Distinct differentiation potential of “MSC” derived from cord blood and umbilical cord: are cord-derived cells true mesenchymal stromal cells? Stem Cells Dev 21(11):1977–1988

    CAS  PubMed  Google Scholar 

  69. Kluth SM, Buchheiser A, Houben AP et al (2010) DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood. Stem Cells Dev 19(10):1471–1483

    CAS  PubMed  Google Scholar 

  70. Kucia M, Halasa M, Wysoczynski M et al (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21(2):297–303

    CAS  PubMed  Google Scholar 

  71. Ratajczak MZ, Zuba-Surma EK, Machalinski B et al (2007) Bone-marrow-derived stem cells—our key to longevity? J Appl Genet 48(4):307–319

    PubMed  Google Scholar 

  72. Rojewski MT, Weber BM, Schrezenmeier H (2008) Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 35(3):168–184

    PubMed Central  PubMed  Google Scholar 

  73. Lindner U, Kramer J, Behrends J et al (2010) Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. Cytotherapy 12(8):992–1005

    CAS  PubMed  Google Scholar 

  74. Gronthos S, Zannettino AC, Hay SJ et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835

    CAS  PubMed  Google Scholar 

  75. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    CAS  PubMed  Google Scholar 

  76. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    CAS  PubMed  Google Scholar 

  77. Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells. Harvard Stem Cell Institute, Cambridge

    Google Scholar 

  78. Jones EA, Kinsey SE, English A et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46(12):3349–3360

    PubMed  Google Scholar 

  79. Levi B, Wan DC, Glotzbach JP et al (2011) CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling. J Biol Chem 286(45):39497–39509

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Quirici N, Soligo D, Bossolasco P et al (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30(7):783–791

    CAS  PubMed  Google Scholar 

  81. Meyerrose TE, De Ugarte DA, Hofling AA et al (2007) In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells 25(1):220–227

    CAS  PubMed  Google Scholar 

  82. Daquinag AC, Zhang Y, Amaya-Manzanares F et al (2011) An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9(1):74–86

    CAS  PubMed  Google Scholar 

  83. Katz AJ, Tholpady A, Tholpady SS et al (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23(3):412–423

    CAS  PubMed  Google Scholar 

  84. Mitchell JB, McIntosh K, Zvonic S et al (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24(2):376–385

    PubMed  Google Scholar 

  85. Kilroy GE, Foster SJ, Wu X et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212(3):702–709

    CAS  PubMed  Google Scholar 

  86. Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113(Pt 7):1161–1166

    CAS  PubMed  Google Scholar 

  87. Russell KC, Phinney DG, Lacey MR et al (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28(4):788–798

    CAS  PubMed  Google Scholar 

  88. De Ugarte DA, Alfonso Z, Zuk PA et al (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89(2–3):267–270

    PubMed  Google Scholar 

  89. Vogel W, Grunebach F, Messam CA et al (2003) Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica 88(2):126–133

    PubMed  Google Scholar 

  90. Mihu CM, Mihu D, Costin N et al (2008) Isolation and characterization of stem cells from the placenta and the umbilical cord. Rom J Morphol Embryol 49(4):441–446

    PubMed  Google Scholar 

  91. Bottai D, Cigognini D, Nicora E et al (2012) Third-trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neurol Neurosci 30(1):55–68

    PubMed  Google Scholar 

  92. Kuci S, Kuci Z, Kreyenberg H et al (2010) CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 95(4):651–659

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Battula VL, Treml S, Bareiss PM et al (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94(2):173–184

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Nichols JE, Niles JA, Dewitt D et al (2013) Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+ CXCR4+ mesenchymal stem cells: development of autologous cell based therapeutics for traumatic brain injury. Stem Cell Res Ther 4(1):3

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    CAS  PubMed  Google Scholar 

  96. Kunisaki Y, Frenette PS (2012) The secrets of the bone marrow niche: enigmatic niche brings challenge for HSC expansion. Nat Med 18(6):864–865

    CAS  PubMed  Google Scholar 

  97. Braun KM, Niemann C, Jensen UB et al (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130(21):5241–5255

    CAS  PubMed  Google Scholar 

  98. Gould E, Reeves AJ, Graziano MS et al (1999) Neurogenesis in the neocortex of adult primates. Science 286(5439):548–552

    CAS  PubMed  Google Scholar 

  99. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299

    Google Scholar 

  100. Rochefort GY, Delorme B, Lopez A et al (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24(10):2202–2208

    CAS  PubMed  Google Scholar 

  101. Alm JJ, Koivu HM, Heino TJ et al (2010) Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients. J Orthop Res 28(12):1634–1642

    Google Scholar 

  102. Lazarus HM, Haynesworth SE, Gerson SL et al (1997) Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 6(5):447–455

    CAS  PubMed  Google Scholar 

  103. Wexler SA, Donaldson C, Denning-Kendall P et al (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374

    PubMed  Google Scholar 

  104. James AW, Zara JN, Corselli M et al (2012) Use of human perivascular stem cells for bone regeneration. J Vis Exp: JoVE 63:e2952

    PubMed  Google Scholar 

  105. James AW, Zara JN, Corselli M et al (2012) An abundant perivascular source of stem cells for bone tissue engineering. Stem Cells Transl Med 1(9):673–684

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Zimmerlin L, Donnenberg VS, Rubin JP et al (2013) Mesenchymal markers on human adipose stem/progenitor cells. Cytometry Part A: J Int Soc Anal Cytol 83:134–140

    Google Scholar 

  107. Crisan M, Chen CW, Corselli M et al (2009) Perivascular multipotent progenitor cells in human organs. Ann NY Acad Sci 1176:118–123

    CAS  PubMed  Google Scholar 

  108. Park TS, Gavina M, Chen CW et al (2011) Placental perivascular cells for human muscle regeneration. Stem Cells Dev 20(3):451–463

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Tu Z, Li Y, Smith DS et al (2011) Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci 52(12):9005–9010

    PubMed Central  PubMed  Google Scholar 

  110. Maier CL, Pober JS (2011) Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses. Arterioscler Thromb Vasc Biol 31(1):183–189

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Tottey S, Corselli M, Jeffries EM et al (2011) Extracellular matrix degradation products and low-oxygen conditions enhance the regenerative potential of perivascular stem cells. Tissue Eng Part A 17(1–2):37–44

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Beck B, Driessens G, Goossens S et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478(7369):399–403

    CAS  PubMed  Google Scholar 

  113. Paul G, Ozen I, Christophersen NS et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. Plos One 7(4):e35577

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Gerlach JC, Over P, Turner ME et al (2012) Perivascular mesenchymal progenitors in human fetal and adult liver. Stem Cells Dev 21(18):3258–3269

    CAS  PubMed  Google Scholar 

  115. Dellavalle A, Sampaolesi M, Tonlorenzi R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    CAS  PubMed  Google Scholar 

  116. Davidoff MS, Middendorff R, Enikolopov G et al (2004) Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 167(5):935–944

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Tang W, Zeve D, Suh JM et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Dellavalle A, Maroli G, Covarello D et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499

    CAS  PubMed  Google Scholar 

  119. Krautler NJ, Kana V, Kranich J et al (2012) Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150(1):194–206

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bouacida A, Rosset P, Trichet V et al (2012) Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. Plos One 7(11):e48648

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Olson LE, Soriano P (2011) PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev Cell 20(6):815–826

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    CAS  PubMed  Google Scholar 

  123. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Ding L, Saunders TL, Enikolopov G et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Corselli M, Chin CJ, Parekh C et al (2013) Perivascular support of human hematopoietic cells. Blood 21:2891–2901

    Google Scholar 

  126. Tintut Y, Alfonso Z, Saini T et al (2003) Multilineage potential of cells from the artery wall. Circulation 108(20):2505–2510

    PubMed  Google Scholar 

  127. Hoshino A, Chiba H, Nagai K et al (2008) Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun 368(2):305–310

    CAS  PubMed  Google Scholar 

  128. Sartore S, Chiavegato A, Faggin E et al (2001) Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res 89(12):1111–1121

    CAS  PubMed  Google Scholar 

  129. Siow RC, Mallawaarachchi CM, Weissberg PL (2003) Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res 59(1):212–221

    CAS  PubMed  Google Scholar 

  130. Hu Y, Zhang Z, Torsney E et al (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113(9):1258–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Haurani MJ, Pagano PJ (2007) Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res 75(4):679–689

    CAS  PubMed  Google Scholar 

  132. Herrmann J, Samee S, Chade A et al (2005) Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling. Arterioscler Thromb Vasc Biol 25(2):447–453

    CAS  PubMed  Google Scholar 

  133. Stenmark KR, Davie N, Frid M et al (2006) Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 21:134–145

    CAS  Google Scholar 

  134. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230

    CAS  PubMed  Google Scholar 

  135. Corselli M, Chen CW, Sun B et al (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Rao M, Ahrlund-Richter L, Kaufman DS (2012) Concise review: cord blood banking, transplantation and induced pluripotent stem cell: success and opportunities. Stem Cells 30(1):55–60

    CAS  PubMed  Google Scholar 

  137. Broxmeyer HE (2008) Cord blood hematopoietic stem cell transplantation. In: StemBook [Internet]. Harvard Stem Cell Institute, Cambridge. Available from: http://www.ncbi.nlm.nih.gov/books/NBK44751/

  138. Morigi M, Rota C, Montemurro T et al (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28(3):513–522

    CAS  PubMed  Google Scholar 

  139. Zanier ER, Montinaro M, Vigano M et al (2011) Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 39(11):2501–2510

    PubMed  Google Scholar 

  140. Pierro M, Ionescu L, Montemurro T et al (2013) Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax 68(5):475–484

    PubMed  Google Scholar 

  141. Zhang X, Hirai M, Cantero S et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: re-evaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112(4):1206–1218

    CAS  PubMed  Google Scholar 

  142. Avanzini MA, Bernardo ME, Cometa AM et al (2009) Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors. Haematologica 94(12):1649–1660

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Zeddou M, Briquet A, Relic B et al (2010) The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 34(7):693–701

    PubMed  Google Scholar 

  144. Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135

    PubMed Central  PubMed  Google Scholar 

  145. van de Ven C, Collins D, Bradley MB et al (2007) The potential of umbilical cord blood multipotent stem cells for non-hematopoietic tissue and cell regeneration. Exp Hematol 35(12):1753–1765

    PubMed  Google Scholar 

  146. McGuckin C, Jurga M, Ali H et al (2008) Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc 3(6):1046–1055

    CAS  PubMed  Google Scholar 

  147. Bieback K, Kern S, Kluter H et al (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634

    PubMed  Google Scholar 

  148. Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    CAS  PubMed  Google Scholar 

  149. Montesinos JJ, Flores-Figueroa E, Castillo-Medina S et al (2009) Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 11(2):163–176

    CAS  PubMed  Google Scholar 

  150. Takashima Y, Era T, Nakao K et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129(7):1377–1388

    CAS  PubMed  Google Scholar 

  151. LaBonne C, Bronner-Fraser M (1999) Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15:81–112

    CAS  PubMed  Google Scholar 

  152. Le Douarin NM, Creuzet S, Couly G et al (2004) Neural crest cell plasticity and its limits. Development 131(19):4637–4650

    PubMed  Google Scholar 

  153. Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20(3):205–214

    CAS  PubMed  Google Scholar 

  154. Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36(1):2–27

    CAS  PubMed  Google Scholar 

  155. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial–mesenchymal transformation of the epicardium. Anat Embryol (Berl) 199(4):367–378

    CAS  Google Scholar 

  156. Minasi MG, Riminucci M, De Angelis L et al (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783

    CAS  PubMed  Google Scholar 

  157. Mendes SC, Robin C, Dzierzak E (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 132(5):1127–1136

    CAS  PubMed  Google Scholar 

  158. Morikawa S, Mabuchi Y, Niibe K et al (2009) Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 379(4):1114–1119

    CAS  PubMed  Google Scholar 

  159. Trentin A, Glavieux-Pardanaud C, Le Douarin NM et al (2004) Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proc Natl Acad Sci USA 101(13):4495–4500

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442(1):78–88

    PubMed  Google Scholar 

  161. Etchevers HC, Vincent C, Le Douarin NM et al (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128(7):1059–1068

    CAS  PubMed  Google Scholar 

  162. Dupin E, Coelho-Aguiar JM (2013) Isolation and differentiation properties of neural crest stem cells. Cytometry A 83(1):38–47

    PubMed  Google Scholar 

  163. Shi H, Zhang T, Qiang L et al (2013) Mesenspheres of neural crest-derived cells enriched from bone marrow stromal cell subpopulation. Neurosci Lett 532:70–75

    CAS  PubMed  Google Scholar 

  164. Kruger GM, Mosher JT, Bixby S et al (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35(4):657–669

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Morikawa S, Mabuchi Y, Kubota Y et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206(11):2483–2496

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Morrison SJ, White PM, Zock C et al (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96(5):737–749

    CAS  PubMed  Google Scholar 

  167. Wislet-Gendebien S, Laudet E, Neirinckx V et al (2012) Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences. Cell Mol Life Sci 69(15):2593–2608

    CAS  PubMed  Google Scholar 

  168. Lee G, Kim H, Elkabetz Y et al (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475

    CAS  PubMed  Google Scholar 

  169. Nagoshi N, Shibata S, Nakamura M et al (2009) Neural crest-derived stem cells display a wide variety of characteristics. J Cell Biochem 107(6):1046–1052

    CAS  PubMed  Google Scholar 

  170. Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    CAS  PubMed  Google Scholar 

  171. Brachvogel B, Moch H, Pausch F et al (2005) Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 132(11):2657–2668

    CAS  PubMed  Google Scholar 

  172. Nelander S, Mostad P, Lindahl P (2003) Prediction of cell type-specific gene modules: identification and initial characterization of a core set of smooth muscle-specific genes. Genome Res 13(8):1838–1854

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Paredes B, Santana A, Arribas MI et al (2010) Phenotypic differences during the osteogenic differentiation of single cell-derived clones isolated from human lipoaspirates. J Tissue Eng Regen Med 5:589–599

    PubMed  Google Scholar 

  174. Muller AM, Mehrkens A, Schafer DJ et al (2010) Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Eur Cell Mater 19:127–135

    CAS  PubMed  Google Scholar 

  175. Cheung WK, Working DM, Galuppo LD et al (2010) Osteogenic comparison of expanded and uncultured adipose stromal cells. Cytotherapy 12(4):554–562

    CAS  PubMed  Google Scholar 

  176. Rajashekhar G, Traktuev DO, Roell WC et al (2008) IFATS collection: adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells 26(10):2674–2681

    PubMed  Google Scholar 

  177. Meury T, Verrier S, Alini M (2006) Human endothelial cells inhibit BMSC differentiation into mature osteoblasts in vitro by interfering with osterix expression. J Cell Biochem 98(4):992–1006

    CAS  PubMed  Google Scholar 

  178. Dahl JA, Duggal S, Coulston N et al (2008) Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol 52(8):1033–1042

    CAS  PubMed  Google Scholar 

  179. Rosland GV, Svendsen A, Torsvik A et al (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69(13):5331–5339

    CAS  PubMed  Google Scholar 

  180. Ren Z, Wang J, Zhu W et al (2011) Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro. Exp Cell Res 317(20):2950–2957

    CAS  PubMed  Google Scholar 

  181. Torsvik A, Rosland GV, Svendsen A et al (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track—letter. Cancer Res 70(15):6393–6396

    CAS  PubMed  Google Scholar 

  182. Meliga E, Strem BM, Duckers HJ et al (2007) Adipose-derived cells. Cell Transplant 16(9):963–970

    PubMed  Google Scholar 

  183. Tarnok A, Ulrich H, Bocsi J (2010) Phenotypes of stem cells from diverse origin. Cytometry A 77(1):6–10

    PubMed  Google Scholar 

  184. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827

    PubMed  Google Scholar 

  185. James AW, Zara JN, Zhang X et al (2012) Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 1(6):510–519

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Bruder SP, Jaiswal N, Ricalton NS et al (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355 Suppl:S247–S256

    PubMed  Google Scholar 

  187. Kang SW, Bae JH, Park SA et al (2012) Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model. Biotechnol Lett 34(7):1375–1384

    CAS  PubMed  Google Scholar 

  188. Zhu S, Zhang B, Man C et al (2011) NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle. Osteoarthritis Cartilage 19(6):743–750

    CAS  PubMed  Google Scholar 

  189. Monteiro BS, Del Carlo RJ, Argolo-Neto NM et al (2012) Association of mesenchymal stem cells with platelet rich plasma on the repair of critical calvarial defects in mice. Acta Cir Bras 27(3):201–209

    PubMed  Google Scholar 

  190. Monteiro BS, Argolo-Neto NM, Nardi NB et al (2012) Treatment of critical defects produced in calvaria of mice with mesenchymal stem cells. An Acad Bras Cienc 84(3):841–851

    CAS  PubMed  Google Scholar 

  191. Koob S, Torio-Padron N, Stark GB et al (2011) Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng Part A 17(3–4):311–321

    PubMed  Google Scholar 

  192. Agacayak S, Gulsun B, Ucan MC et al (2012) Effects of mesenchymal stem cells in critical size bone defect. Eur Rev Med Pharmacol Sci 16(5):679–686

    CAS  PubMed  Google Scholar 

  193. Osugi M, Katagiri W, Yoshimi R et al (2012) Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 18(13–14):1479–1489

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Stephan SJ, Tholpady SS, Gross B et al (2010) Injectable tissue-engineered bone repair of a rat calvarial defect. Laryngoscope 120(5):895–901

    PubMed Central  PubMed  Google Scholar 

  195. Yang Q, Peng J, Lu SB et al (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J (Engl) 124(23):3930–3938

    CAS  Google Scholar 

  196. Mokbel A, El-Tookhy O, Shamaa AA et al (2011) Homing and efficacy of intra-articular injection of autologous mesenchymal stem cells in experimental chondral defects in dogs. Clin Exp Rheumatol 29(2):275–284

    CAS  PubMed  Google Scholar 

  197. Field JR, McGee M, Stanley R et al (2011) The efficacy of allogeneic mesenchymal precursor cells for the repair of an ovine tibial segmental defect. Vet Comp Orthop Traumatol 24(2):113–121

    CAS  PubMed  Google Scholar 

  198. Reichert JC, Cipitria A, Epari DR et al (2012) A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med 4(141):141ra93

    PubMed  Google Scholar 

  199. Marquass B, Schulz R, Hepp P et al (2011) Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am J Sports Med 39(7):1401–1412

    PubMed  Google Scholar 

  200. Khojasteh A, Behnia H, Dashti SG et al (2012) Current trends in mesenchymal stem cell application in bone augmentation: a review of the literature. J Oral Maxillofac Surg 70(4):972–982

    PubMed  Google Scholar 

  201. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56(3):283–294

    CAS  PubMed  Google Scholar 

  202. Cao L, Liu G, Gan Y et al (2012) The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 33(20):5076–5084

    CAS  PubMed  Google Scholar 

  203. Wang Z, Goh J, De Das S et al (2006) Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng 12(7):1753–1761

    CAS  PubMed  Google Scholar 

  204. Nde Ocarino M, Boeloni JN, Jorgetti V et al (2010) Intra-bone marrow injection of mesenchymal stem cells improves the femur bone mass of osteoporotic female rats. Connect Tissue Res 51(6):426–433

    CAS  Google Scholar 

  205. Turgeman G, Zilberman Y, Zhou S et al (2002) Systemically administered rhBMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem 86(3):461–474

    CAS  PubMed  Google Scholar 

  206. Bragdon B, Moseychuk O, Saldanha S et al (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620

    CAS  PubMed  Google Scholar 

  207. Voumvourakis KI, Antonelou R, Kitsos DK et al (2011) TGF-beta/BMPs: crucial crossroad in neural autoimmune disorders. Neurochem Int 59(5):542–550

    CAS  PubMed  Google Scholar 

  208. Tang YC, Tang W, Tian WD et al (2006) A study on repairing mandibular defect by means of tissue-engineering and human bone morphogenetic protein-2 gene transfection in osteoporotic rats. Zhonghua Kou Qiang Yi Xue Za Zhi 41(7):430–431

    PubMed  Google Scholar 

  209. Turgeman G, Pittman DD, Muller R et al (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 3(3):240–251

    CAS  PubMed  Google Scholar 

  210. Egermann M, Baltzer AW, Adamaszek S et al (2006) Direct adenoviral transfer of bone morphogenetic protein-2 cDNA enhances fracture healing in osteoporotic sheep. Hum Gene Ther 17(5):507–517

    CAS  PubMed  Google Scholar 

  211. Zhang XS, Linkhart TA, Chen ST et al (2004) Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med 6(1):4–15

    CAS  PubMed  Google Scholar 

  212. Hu J, Qi MC, Zou SJ et al (2007) Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res 25(2):241–251

    CAS  PubMed  Google Scholar 

  213. Askarinam A, James AW, Zara JN et al (2013) Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nell-1 protein. Tissue Eng Part A 19:1386–1397

    CAS  PubMed  Google Scholar 

  214. Zhao Y, Li T, Wei X et al (2012) Mesenchymal stem cell transplantation improves regional cardiac remodeling following ovine infarction. Stem Cells Transl Med 1(9):685–695

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Roura S, Bago JR, Soler-Botija C et al (2012) Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo. Plos One 7(11):e49447

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Zheng SX, Weng YL, Zhou CQ et al (2012) Comparison of cardiac stem cells and mesenchymal stem cells transplantation on the cardiac electrophysiology in rats with myocardial infarction. Stem Cell Rev 9:339–349

    Google Scholar 

  217. Boomsma RA, Geenen DL (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS ONE 7(4):e35685

    CAS  PubMed Central  PubMed  Google Scholar 

  218. van den Akker F, Deddens JC, Doevendans PA et al (2012) Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochim Biophys Acta 830:2449–2458

    Google Scholar 

  219. Hu X, Yu SP, Fraser JL et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135(4):799–808

    CAS  PubMed  Google Scholar 

  220. Shabbir A, Zisa D, Suzuki G et al (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296(6):H1888–H1897

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Zhu K, Lai H, Guo C et al (2012) Novel vascular endothelial growth factor gene delivery system-manipulated mesenchymal stem cells repair infarcted myocardium. Exp Biol Med (Maywood) 237(6):678–687

    CAS  Google Scholar 

  222. Huang XP, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122(23):2419–2429

    CAS  PubMed  Google Scholar 

  223. Gao XR, Tan YZ, Wang HJ (2011) Overexpression of Csx/Nkx2.5 and GATA-4 enhances the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Circ J 75(11):2683–2691

    CAS  PubMed  Google Scholar 

  224. Li XH, Fu YH, Lin QX et al (2012) Induced bone marrow mesenchymal stem cells improve cardiac performance of infarcted rat hearts. Mol Biol Rep 39(2):1333–1342

    CAS  PubMed  Google Scholar 

  225. Tang JM, Wang JN, Zhang L et al (2011) VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res 91(3):402–411

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Katare R, Riu F, Mitchell K et al (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109(8):894–906

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Chen CW, Okada M, Proto JD et al (2013) Human pericytes for ischemic heart repair. Stem Cells 31(2):305–316

    CAS  PubMed Central  PubMed  Google Scholar 

  228. De Ugarte DA et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109

    PubMed  Google Scholar 

  229. Rodriguez AM et al (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87(1):125–128

    CAS  PubMed  Google Scholar 

  230. Lindroos B et al (2009) Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11(7):958–972

    CAS  PubMed  Google Scholar 

  231. Schreml S et al (2009) Harvesting human adipose tissue-derived adult stem cells: resection versus liposuction. Cytotherapy 11(7):947–957

    CAS  PubMed  Google Scholar 

  232. Sensebe L, Bourin P (2009) Mesenchymal stem cells for therapeutic purposes. Transplantation 87(9 Suppl):S49–S53

    PubMed  Google Scholar 

  233. Franco Lambert AP et al (2009) Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77(3):221–228

    PubMed  Google Scholar 

  234. Campagnoli C et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402

    CAS  PubMed  Google Scholar 

  235. Villaron EM et al (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89(12):1421–1427

    PubMed  Google Scholar 

  236. Alsalameh S et al (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50(5):1522–1532

    PubMed  Google Scholar 

  237. Hiraoka K et al (2006) Mesenchymal progenitor cells in adult human articular cartilage. Biorheology 43(3–4):447–454

    PubMed  Google Scholar 

  238. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242

    CAS  PubMed  Google Scholar 

  239. Secco M et al (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev 5(4):387–401

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Jager M et al (2009) Cord blood—an alternative source for bone regeneration. Stem Cell Rev 5(3):266–277

    PubMed  Google Scholar 

  241. Bieback K, Kluter H (2007) Mesenchymal stromal cells from umbilical cord blood. Curr Stem Cell Res Ther 2(4):310–323

    CAS  PubMed  Google Scholar 

  242. Gronthos S et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25):13625–13630

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Nakamura S et al (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35(11):1536–1542

    PubMed  Google Scholar 

  244. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Valtieri M, Sorrentino A (2008) The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol 217(2):296–300

    CAS  PubMed  Google Scholar 

  246. Shi S et al (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8(3):191–199

    CAS  PubMed  Google Scholar 

  247. Schuring AN et al (2011) Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil Steril 95(1):423–426

    PubMed  Google Scholar 

  248. Spitzer TL et al (2012) Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod 86(2):58

    PubMed Central  PubMed  Google Scholar 

  249. Lanzoni G et al (2009) Isolation of stem cell populations with trophic and immunoregulatory functions from human intestinal tissues: potential for cell therapy in inflammatory bowel disease. Cytotherapy 11(8):1020–1031

    CAS  PubMed  Google Scholar 

  250. Arai F et al (2002) Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med 195(12):1549–1563

    CAS  PubMed Central  PubMed  Google Scholar 

  251. O’Driscoll SW, Fitzsimmons JS (2001) The role of periosteum in cartilage repair. Clin Orthop Relat Res 391:S190–S207

    PubMed  Google Scholar 

  252. In ‘t Anker PS (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345

    PubMed  Google Scholar 

  253. Rotter N et al (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17(3):509–518

    CAS  PubMed  Google Scholar 

  254. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110

    PubMed  Google Scholar 

  255. Campagnolo P et al (2010) Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121(15):1735–1745

    PubMed Central  PubMed  Google Scholar 

  256. Mariotti E, Mirabelli P, Abate G, Schiattarella M, Martinelli P, Fortunato G et al (2008) Comparative characteristics of mesenchymal stem cells from human bone marrow and placenta: CD10, CD49d, and CD56 make a difference. Stem Cells Dev 17(6):1039–1041

    CAS  PubMed  Google Scholar 

  257. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63

    CAS  PubMed  Google Scholar 

  258. Niehage C, Steenblock C, Pursche T, Bornhäuser M, Corbeil D, Hoflack B (2011) The cell surface proteome of human mesenchymal stromal cells. Plos One 6(5):e20399

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260

    CAS  PubMed  Google Scholar 

  260. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99

    PubMed  Google Scholar 

  261. Brooke G, Tong H, Levesque J-P, Atkinson K (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17(5):929–940

    CAS  PubMed  Google Scholar 

  262. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33(11):1402–1416

    CAS  PubMed  Google Scholar 

  263. Tallone T, Realini C, Böhmler A, Kornfeld C, Vassalli G, Moccetti T et al (2011) Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res 4(2):200–210

    PubMed  Google Scholar 

  264. Psaltis PJ, Harbuzariu A, Delacroix S, Holroyd EW, Simari RD (2011) Resident vascular progenitor cells—diverse origins, phenotype, and function. J Cardiovasc Transl Res 4(2):161–176

    PubMed Central  PubMed  Google Scholar 

  265. Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Péault B, Rubin JP et al (2009) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77(1):22–30

    Google Scholar 

  266. Campioni DD, Moretti SS, Ferrari LL, Punturieri MM, Castoldi GLG, Lanza FF (2006) Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica 91(3):364–368

    PubMed  Google Scholar 

  267. Bűhring H-J, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106:262–271

    PubMed  Google Scholar 

  268. Masuda H, Anwar SS, Bűhring H-J, Rao JR, Gargett CE (2012) A novel marker of human endometrial mesenchymal stem-like cells. Cell Transpl 21(10):2201–2214

    Google Scholar 

  269. Flores-Torales E, Orozco-Barocio A, Gonzalez-Ramella OR, Carrasco-Yalan A, Gazarian K, Cuneo-Pareto S (2010) The CD271 expression could be alone for establisher phenotypic marker in bone marrow-derived mesenchymal stem cells. Folia Histochem Cytobiol 48(4):682–686

    PubMed  Google Scholar 

  270. Zimmerlin L et al (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77(1):22–30

    PubMed  Google Scholar 

  271. Djouad F, Fritz V, Apparailly F et al (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 52(5):1595–1603

    CAS  PubMed  Google Scholar 

  272. Guillot PV, De Bari C, Dell’Accio F et al (2008) Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation 76(9):946–957

    CAS  PubMed  Google Scholar 

  273. Murphy JM, Fink DJ, Hunziker EB et al (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48(12):3464–3474

    PubMed  Google Scholar 

  274. Hillel AT, Taube JM, Cornish TC et al (2010) Characterization of human mesenchymal stem cell-engineered cartilage: analysis of its ultrastructure, cell density and chondrocyte phenotype compared to native adult and fetal cartilage. Cells Tissues Organs 191(1):12–20

    PubMed  Google Scholar 

  275. Erickson IE, Huang AH, Chung C et al (2009) Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng Part A 15(5):1041–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Noth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4(7):371–380

    PubMed  Google Scholar 

  277. Wang N, Ren GD, Zhou Z et al (2012) Cooperation of myocardin and Smad2 in inducing differentiation of mesenchymal stem cells into smooth muscle cells. IUBMB Life 64(4):331–339

    CAS  PubMed  Google Scholar 

  278. Uysal AC, Mizuno H (2010) Tendon regeneration and repair with adipose derived stem cells. Curr Stem Cell Res Ther 5(2):161–167

    CAS  PubMed  Google Scholar 

  279. Leroux L, Descamps B, Tojais NF et al (2010) Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther 18(8):1545–1552

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Chen J, Li Y, Katakowski M et al (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73(6):778–786

    CAS  PubMed  Google Scholar 

  281. Rosova I, Dao M, Capoccia B et al (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26(8):2173–2182

    CAS  PubMed Central  PubMed  Google Scholar 

  282. Gupta PK, Chullikana A, Parakh R et al (2013) A double-blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med 11:143

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Serbeniuk TsV, Sychev VS, Lelekova TV (1976) Bilevel organization of the spinal center of the frog lymph heart. Nauchnye Doki Vyss Shkoly Biol Nauki 7:82–86

    PubMed  Google Scholar 

  284. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    CAS  PubMed  Google Scholar 

  285. Burst V, Putsch F, Kubacki T et al (2013) Survival and distribution of injected haematopoietic stem cells in acute kidney injury. Nephrol Dial Transpl 28:1131–1139

    Google Scholar 

  286. Wise AF, Ricardo SD (2012) Mesenchymal stem cells in kidney inflammation and repair. Nephrology (Carlton) 17(1):1–10

    CAS  Google Scholar 

  287. Domínguez-Bendala J, Lanzoni G et al (2012) Concise review: mesenchymal stem cells for diabetes. Stem Cells Transl Med 1(1):59–63

    Google Scholar 

  288. Dai LJ, Li HY, Guan LX et al (2009) The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis. Stem Cell Res 2(1):16–25

    PubMed  Google Scholar 

  289. Ishikawa T, Banas A, Hagiwara K et al (2010) Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells. Curr Stem Cell Res Ther 5(2):182–189

    CAS  PubMed  Google Scholar 

  290. Aquino JB, Bolontrade MF, Garcia MG et al (2010) Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther 17(6):692–708

    CAS  PubMed  Google Scholar 

  291. Kim N, Im KI, Lim JY et al (2013) Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: experiments and practice. Ann Hematol 92(10):1295–1308

    Google Scholar 

  292. Silla L, Valim V, Amorin B et al (2013) A safety and feasibility study with platelet lysate expanded bone marrow mesenchymal stromal cells for the treatment of acute GVHD in Brazil. Leuk Lymphoma. doi:10.3109/10428194.2013.823495

  293. Xia Z, Zhang C, Zeng Y et al (2012) Transplantation of BMSCs expressing hVEGF(165)/hBD3 promotes wound healing in rats with combined radiation-wound injury. Int Wound J. doi:10.1111/j.1742-481x.2012.01090.x

  294. Kim SO, Na HS, Kwon D et al (2011) Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int 86(1):110–116

    PubMed  Google Scholar 

  295. Zannettino ACW, Paton S, Arthur A, Khor F, Itescu S, Gimble JM et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421

    CAS  PubMed  Google Scholar 

  296. Zhang R, Liu Y, Yan K et al (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10(1):106

    Google Scholar 

  297. Kumagai G, Tsoulfas P, Toh S et al (2013) Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol 248:369–380

    Google Scholar 

  298. Jadasz JJ, Kremer D, Göttle P et al (2013) Mesenchymal stem cell conditioning promotes rat oligodendroglial cell maturation. PLoS One 8(8):e71814

    Google Scholar 

  299. Danielyan L, Schäfer R, von Ameln-Mayerhofer A et al (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14(1):3–16

    Google Scholar 

  300. Stemberger S, Jamnig A, Stefanova N et al (2011) Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS One 6(5):e19808

    Google Scholar 

  301. Hall SR, Tsoyi K, Ith B, Padera RF Jr et al (2013) Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells 31(2):397–407

    Google Scholar 

  302. Curley GF, Ansari B, Hayes M et al (2013) Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury. Anesthesiology 118(4):924-932

    Google Scholar 

  303. Cheng K, Rai P, Plagov A et al (2013) Transplantation of bone marrow-derived MSCs improves cisplatinum-induced renal injury through paracrine mechanisms. Exp Mol Pathol 94(3):466–473

    Google Scholar 

Download references

Disclosure

B.P., and C.S. are inventors of perivascular stem cell-related patents filed from UCLA. Dr C.S. is a founder of Scarless Laboratories Inc. which sublicenses perivascular stem cell-related patents from the UC Regents, and who also hold equity in the company. Dr C.S. is also an officer of Scarless Laboratories, Inc. This work was supported by the CIRM Early Translational II Research Award TR2-01821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Péault.

Additional information

C. C. West, W. R. Hardy, A. W. James, and T. S. Park contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, I.R., West, C.C., Hardy, W.R. et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell. Mol. Life Sci. 71, 1353–1374 (2014). https://doi.org/10.1007/s00018-013-1462-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1462-6

Keywords

Navigation