Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking

Abstract

MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein–protein and protein–lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Butler GS, Overall CM (2009) Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry 48:10830–10845

    CAS  PubMed  Google Scholar 

  2. 2.

    Morrison CJ, Butler GS, Rodriguez D, Overall CM (2009) Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 21:645–653

    CAS  PubMed  Google Scholar 

  3. 3.

    Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803:39–54

    CAS  PubMed  Google Scholar 

  4. 4.

    Gururajan R, Grenet J, Lahti JM, Kidd VJ (1998) Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36.3. Genomics 52:101–106

    CAS  PubMed  Google Scholar 

  5. 5.

    Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    CAS  PubMed Central  PubMed  Google Scholar 

  6. 6.

    Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    CAS  PubMed Central  PubMed  Google Scholar 

  7. 7.

    Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  PubMed  Google Scholar 

  8. 8.

    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 8:221–233

    CAS  PubMed Central  PubMed  Google Scholar 

  9. 9.

    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    CAS  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    CAS  PubMed  Google Scholar 

  11. 11.

    Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO (2011) Regulation of matrix metalloproteinase activity in health and disease. FEBS J 278:28–45

    CAS  PubMed  Google Scholar 

  12. 12.

    Sbardella D, Fasciglione GF, Gioia M, Ciaccio C, Tundo GR, Marini S, Coletta M (2012) Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 33:119–208

    CAS  PubMed  Google Scholar 

  13. 13.

    Piperi C, Papavassiliou AG (2012) Molecular mechanisms regulating matrix metalloproteinases. Curr Top Med Chem 12:1095–1112

    CAS  PubMed  Google Scholar 

  14. 14.

    Mannello F, Medda V (2012) Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem 47:27–58

    PubMed  Google Scholar 

  15. 15.

    Murphy G, Nagase H (2011) Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J 278:2–15

    CAS  PubMed Central  PubMed  Google Scholar 

  16. 16.

    Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20:161–168

    CAS  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71

    CAS  PubMed Central  PubMed  Google Scholar 

  18. 18.

    Fu X, Parks WC, Heinecke JW (2008) Activation and silencing of matrix metalloproteinases. Semin Cell Dev Biol 19:2–13

    CAS  PubMed  Google Scholar 

  19. 19.

    Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12:233

    CAS  PubMed Central  PubMed  Google Scholar 

  20. 20.

    Gustafsson T (2011) Vascular remodeling in human skeletal muscle. Biochem Soc Trans 39:1628–1632

    CAS  PubMed  Google Scholar 

  21. 21.

    Kraiem Z, Korem S (2000) Matrix metalloproteinases and the thyroid. Thyroid 10:1061–1069

    CAS  PubMed  Google Scholar 

  22. 22.

    Ortega N, Behonick D, Stickens D, Werb Z (2003) How proteases regulate bone morphogenesis. Ann NY Acad Sci 995:109–116

    CAS  PubMed  Google Scholar 

  23. 23.

    Parks WC, Shapiro SD (2001) Matrix metalloproteinases in lung biology. Respir Res 2:10–19

    CAS  PubMed Central  PubMed  Google Scholar 

  24. 24.

    Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A (2009) Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets 10:1245–1254

    CAS  PubMed  Google Scholar 

  25. 25.

    Decock J, Thirkettle S, Wagstaff L, Edwards DR (2011) Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med 15:1254–1265

    CAS  PubMed  Google Scholar 

  26. 26.

    Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    CAS  PubMed  Google Scholar 

  27. 27.

    Hua H, Li M, Luo T, Yin Y, Jiang Y (2011) Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 68:3853–3868

    CAS  PubMed  Google Scholar 

  28. 28.

    Korpos E, Wu C, Sorokin L (2009) Multiple roles of the extracellular matrix in inflammation. Curr Pharm Des 15:1349–1357

    CAS  PubMed  Google Scholar 

  29. 29.

    Rucci N, Sanita P, Angelucci A (2011) Roles of metalloproteases in metastatic niche. Curr Mol Med 11:609–622

    CAS  PubMed  Google Scholar 

  30. 30.

    Siasos G, Tousoulis D, Kioufis S, Oikonomou E, Siasou Z, Limperi M, Papavassiliou AG, Stefanadis C (2012) Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr Top Med Chem 12:1132–1148

    CAS  PubMed  Google Scholar 

  31. 31.

    Stellas D, Patsavoudi E (2012) Inhibiting matrix metalloproteinases, an old story with new potentials for cancer treatment. Anticancer Agents Med Chem 12:707–717

    CAS  PubMed  Google Scholar 

  32. 32.

    Aldonyte R, Brantly M, Block E, Patel J, Zhang J (2009) Nuclear localization of active matrix metalloproteinase-2 in cigarette smoke-exposed apoptotic endothelial cells. Exp Lung Res 35:59–75

    PubMed  Google Scholar 

  33. 33.

    Eguchi T, Kubota S, Kawata K, Mukudai Y, Uehara J, Ohgawara T, Ibaragi S, Sasaki A, Kuboki T, Takigawa M (2008) Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol Cell Biol 28:2391–2413

    CAS  PubMed Central  PubMed  Google Scholar 

  34. 34.

    Ip YC, Cheung ST, Fan ST (2007) Atypical localization of membrane type 1-matrix metalloproteinase in the nucleus is associated with aggressive features of hepatocellular carcinoma. Mol Carcinog 46:225–230

    CAS  PubMed  Google Scholar 

  35. 35.

    Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G, Schulz R (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18:690–692

    CAS  PubMed  Google Scholar 

  36. 36.

    Limb GA, Matter K, Murphy G, Cambrey AD, Bishop PN, Morris GE, Khaw PT (2005) Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol 166:1555–1563

    CAS  PubMed Central  PubMed  Google Scholar 

  37. 37.

    Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford HC, Strongin AY (2004) Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells. Int J Biochem Cell Biol 36:942–956

    CAS  PubMed  Google Scholar 

  38. 38.

    Nguyen HM, Galea CA, Schmunk G, Smith BJ, Edwards RA, Norton RS, Chandy KG (2013) Intracellular trafficking of the Kv1.3 potassium channel is regulated by the prodomain of a matrix metalloprotease. J Biol Chem 288:6451–6464

    CAS  PubMed Central  PubMed  Google Scholar 

  39. 39.

    Rangaraju S, Khoo KK, Feng ZP, Crossley G, Nugent D, Khaytin I, Chi V, Pham C, Calabresi P, Pennington MW, Norton RS, Chandy KG (2010) Potassium channel modulation by a toxin domain in matrix metalloprotease 23. J Biol Chem 285:9124–9136

    CAS  PubMed Central  PubMed  Google Scholar 

  40. 40.

    Si-Tayeb K, Monvoisin A, Mazzocco C, Lepreux S, Decossas M, Cubel G, Taras D, Blanc JF, Robinson DR, Rosenbaum J (2006) Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am J Pathol 169:1390–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41.

    Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    CAS  PubMed  Google Scholar 

  42. 42.

    Yang Y, Candelario-Jalil E, Thompson JF, Cuadrado E, Estrada EY, Rosell A, Montaner J, Rosenberg GA (2010) Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J Neurochem 112:134–149

    CAS  PubMed  Google Scholar 

  43. 43.

    Zhao YG, Xiao AZ, Newcomer RG, Park HI, Kang T, Chung LW, Swanson MG, Zhau HE, Kurhanewicz J, Sang QX (2003) Activation of pro-gelatinase B by endometase/matrilysin-2 promotes invasion of human prostate cancer cells. J Biol Chem 278:15056–15064

    CAS  PubMed  Google Scholar 

  44. 44.

    Bode W, Maskos K (2011) Matrix metalloproteinases. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley, New York. doi:10.1002/9781119951438.eibc0495

  45. 45.

    Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41:271–290

    CAS  PubMed Central  PubMed  Google Scholar 

  46. 46.

    Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R (2010) Matrix metalloproteinases. Curr Med Chem 17:3751–3768

    CAS  PubMed  Google Scholar 

  47. 47.

    Huxley-Jones J, Clarke TK, Beck C, Toubaris G, Robertson DL, Boot-Handford RP (2007) The evolution of the vertebrate metzincins; insights from Ciona intestinalis and Danio rerio. BMC Evol Biol 7:63

    PubMed Central  PubMed  Google Scholar 

  48. 48.

    Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803:3–19

    CAS  PubMed  Google Scholar 

  49. 49.

    Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582

    PubMed Central  PubMed  Google Scholar 

  50. 50.

    Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596

    CAS  PubMed Central  PubMed  Google Scholar 

  51. 51.

    Ohnishi J, Ohnishi E, Jin M, Hirano W, Nakane D, Matsui H, Kimura A, Sawa H, Nakayama K, Shibuya H, Nagashima K, Takahashi T (2001) Cloning and characterization of a rat ortholog of MMP-23 (matrix metalloproteinase-23), a unique type of membrane-anchored matrix metalloproteinase and conditioned switching of its expression during the ovarian follicular development. Mol Endocrinol 15:747–764

    CAS  PubMed  Google Scholar 

  52. 52.

    Pei D (1999) CA-MMP: a matrix metalloproteinase with a novel cysteine array, but without the classic cysteine switch. FEBS Lett 457:262–270

    CAS  PubMed  Google Scholar 

  53. 53.

    Pei D, Kang T, Qi H (2000) Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem 275:33988–33997

    CAS  PubMed  Google Scholar 

  54. 54.

    Velasco G, Pendas AM, Fueyo A, Knauper V, Murphy G, Lopez-Otin C (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274:4570–4576

    CAS  PubMed  Google Scholar 

  55. 55.

    Sounni NE, Noel A (2005) Membrane type-matrix metalloproteinases and tumor progression. Biochimie 87:329–342

    CAS  PubMed  Google Scholar 

  56. 56.

    Zucker S, Pei D, Cao J, Lopez-Otin C (2003) Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol 54:1–74

    CAS  PubMed  Google Scholar 

  57. 57.

    Koziol A, Martin-Alonso M, Clemente C, Gonzalo P, Arroyo AG (2012) Site-specific cellular functions of MT1-MMP. Eur J Cell Biol 91:889–895

    CAS  PubMed  Google Scholar 

  58. 58.

    Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R (2004) Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 279:52132–52140

    CAS  PubMed  Google Scholar 

  59. 59.

    Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 66:3034–3043

    CAS  PubMed  Google Scholar 

  60. 60.

    Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    CAS  PubMed  Google Scholar 

  61. 61.

    Gingras D, Michaud M, Di Tomasso G, Beliveau E, Nyalendo C, Beliveau R (2008) Sphingosine-1-phosphate induces the association of membrane-type 1 matrix metalloproteinase with p130Cas in endothelial cells. FEBS Lett 582:399–404

    CAS  PubMed  Google Scholar 

  62. 62.

    Gonzalo P, Guadamillas MC, Hernandez-Riquer MV, Pollan A, Grande-Garcia A, Bartolome RA, Vasanji A, Ambrogio C, Chiarle R, Teixido J, Risteli J, Apte SS, del Pozo MA, Arroyo AG (2010) MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. Dev Cell 18:77–89

    CAS  PubMed Central  PubMed  Google Scholar 

  63. 63.

    Roghi C, Jones L, Gratian M, English WR, Murphy G (2010) Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen. FEBS J 277:3158–3175

    CAS  PubMed  Google Scholar 

  64. 64.

    Sakamoto T, Seiki M (2010) A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism. J Biol Chem 285:29951–29964

    CAS  PubMed Central  PubMed  Google Scholar 

  65. 65.

    Smith-Pearson PS, Greuber EK, Yogalingam G, Pendergast AM (2010) Abl kinases are required for invadopodia formation and chemokine-induced invasion. J Biol Chem 285:40201–40211

    CAS  PubMed Central  PubMed  Google Scholar 

  66. 66.

    Tapia T, Ottman R, Chakrabarti R (2011) LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells. Mol Cancer 10:6

    CAS  PubMed Central  PubMed  Google Scholar 

  67. 67.

    Knauper V, Kramer S, Reinke H, Tschesche H (1990) Characterization and activation of procollagenase from human polymorphonuclear leucocytes. N-terminal sequence determination of the proenzyme and various proteolytically activated forms. Eur J Biochem 189:295–300

    CAS  PubMed  Google Scholar 

  68. 68.

    Nagase H, Suzuki K, Enghild JJ, Salvesen G (1991) Stepwise activation mechanisms of the precursors of matrix metalloproteinases 1 (tissue collagenase) and 3 (stromelysin). Biomed Biochim Acta 50:749–754

    CAS  PubMed  Google Scholar 

  69. 69.

    Nagase H, Suzuki K, Morodomi T, Enghild JJ, Salvesen G (1992) Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3. Matrix Suppl 1:237–244

    CAS  PubMed  Google Scholar 

  70. 70.

    Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA 87:364–368

    CAS  PubMed Central  PubMed  Google Scholar 

  71. 71.

    Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    CAS  PubMed Central  PubMed  Google Scholar 

  72. 72.

    Saksela K, Permi P (2012) SH3 domain ligand binding: what’s the consensus and where’s the specificity? FEBS Lett 586:2609–2614

    CAS  PubMed  Google Scholar 

  73. 73.

    Gomis-Ruth FX, Trillo-Muyo S, Stocker W (2012) Functional and structural insights into astacin metallopeptidases. Biol Chem 393:1027–1041

    CAS  PubMed  Google Scholar 

  74. 74.

    Mohrlen F, Hutter H, Zwilling R (2003) The astacin protein family in Caenorhabditis elegans. Eur J Biochem 270:4909–4920

    PubMed  Google Scholar 

  75. 75.

    Rachamim T, Sher D (2012) What Hydra can teach us about chemical ecology—how a simple, soft organism survives in a hostile aqueous environment. Int J Dev Biol 56:605–611

    CAS  PubMed  Google Scholar 

  76. 76.

    Guevara T, Yiallouros I, Kappelhoff R, Bissdorf S, Stocker W, Gomis-Ruth FX (2010) Proenzyme structure and activation of astacin metallopeptidase. J Biol Chem 285:13958–13965

    CAS  PubMed Central  PubMed  Google Scholar 

  77. 77.

    Maskos K (2005) Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 87:249–263

    CAS  PubMed  Google Scholar 

  78. 78.

    Tallant C, Marrero A, Gomis-Ruth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803:20–28

    CAS  PubMed  Google Scholar 

  79. 79.

    Andreini C, Banci L, Bertini I, Luchinat C, Rosato A (2004) Bioinformatic comparison of structures and homology-models of matrix metalloproteinases. J Proteome Res 3:21–31

    CAS  PubMed  Google Scholar 

  80. 80.

    Bode W, Gomis-Rüth F-X, Stöckler W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331:134–140

    CAS  PubMed  Google Scholar 

  81. 81.

    Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, Bode W (1995) The metzincins–topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823–840

    CAS  PubMed Central  PubMed  Google Scholar 

  82. 82.

    Steffensen B, Wallon UM, Overall CM (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J Biol Chem 270:11555–11566

    CAS  PubMed  Google Scholar 

  83. 83.

    Lambert E, Dasse E, Haye B, Petitfrere E (2004) TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49:187–198

    PubMed  Google Scholar 

  84. 84.

    Marrero A, Duquerroy S, Trapani S, Goulas T, Guevara T, Andersen GR, Navaza J, Sottrup-Jensen L, Gomis-Ruth FX (2012) The crystal structure of human α2-macroglobulin reveals a unique molecular cage. Angew Chem Int Ed Engl 51:3340–3344

    CAS  PubMed  Google Scholar 

  85. 85.

    Sottrup-Jensen L (1989) α-macroglobulins: structure, shape, and mechanism of proteinase complex formation. J Biol Chem 264:11539–11542

    CAS  PubMed  Google Scholar 

  86. 86.

    Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS (1990) Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 265:17401–17404

    CAS  PubMed  Google Scholar 

  87. 87.

    Willenbrock F, Thomas DA, Amour A (2010) Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases. Methods Mol Biol 622:435–450

    CAS  PubMed  Google Scholar 

  88. 88.

    Murphy G, Knauper V (1997) Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol 15:511–518

    CAS  PubMed  Google Scholar 

  89. 89.

    Bode W (1995) A helping hand for collagenases: the haemopexin-like domain. Structure 3:527–530

    CAS  PubMed  Google Scholar 

  90. 90.

    Clark IM, Cawston TE (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem J 263:201–206

    CAS  PubMed Central  PubMed  Google Scholar 

  91. 91.

    Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22:51–86

    CAS  PubMed  Google Scholar 

  92. 92.

    Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H (2004) Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J 23:3020–3030

    CAS  PubMed Central  PubMed  Google Scholar 

  93. 93.

    Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    CAS  PubMed  Google Scholar 

  94. 94.

    Hohenester E (2008) Structural insight into Slit-Robo signalling. Biochem Soc Trans 36:251–256

    CAS  PubMed  Google Scholar 

  95. 95.

    Morlot C, Thielens NM, Ravelli RB, Hemrika W, Romijn RA, Gros P, Cusack S, McCarthy AA (2007) Structural insights into the Slit-Robo complex. Proc Natl Acad Sci USA 104:14923–14928

    CAS  PubMed Central  PubMed  Google Scholar 

  96. 96.

    Rasmussen KK, Kulahin N, Kristensen O, Poulsen JC, Sigurskjold BW, Kastrup JS, Berezin V, Bock E, Walmod PS, Gajhede M (2008) Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping. J Mol Biol 382:1113–1120

    CAS  PubMed  Google Scholar 

  97. 97.

    Sanchez-Arrones L, Cardozo M, Nieto-Lopez F, Bovolenta P (2012) Cdon and Boc: two transmembrane proteins implicated in cell-cell communication. Int J Biochem Cell Biol 44:698–702

    CAS  PubMed  Google Scholar 

  98. 98.

    Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451

    CAS  PubMed  Google Scholar 

  99. 99.

    Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA (2012) Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 33:406–412

    CAS  PubMed  Google Scholar 

  100. 100.

    Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA (2010) Perforin: structure, function, and role in human immunopathology. Immunol Rev 235:35–54

    CAS  PubMed  Google Scholar 

  101. 101.

    Faraco J, Bashir M, Rosenbloom J, Francke U (1995) Characterization of the human gene for microfibril-associated glycoprotein (MFAP2), assignment to chromosome 1p36.1-p35, and linkage to D1S170. Genomics 25:630–637

    CAS  PubMed  Google Scholar 

  102. 102.

    Tsang SW, Nguyen CQ, Hall DH, Chow KL (2007) mab-7 encodes a novel transmembrane protein that orchestrates sensory ray morphogenesis in C. elegans. Dev Biol 312:353–366

    CAS  PubMed  Google Scholar 

  103. 103.

    Pan T, Groger H, Schmid V, Spring J (1998) A toxin homology domain in an astacin-like metalloproteinase of the jellyfish Podocoryne carnea with a dual role in digestion and development. Dev Genes Evol 208:259–266

    CAS  PubMed  Google Scholar 

  104. 104.

    Yan L, Fei K, Zhang J, Dexter S, Sarras MP Jr (2000) Identification and characterization of Hydra metalloproteinase 2 (HMP2): a meprin-like astacin metalloproteinase that functions in foot morphogenesis. Development 127:129–141

    CAS  PubMed  Google Scholar 

  105. 105.

    Cotton J, Crest M, Bouet F, Alessandri N, Gola M, Forest E, Karlsson E, Castaneda O, Harvey AL, Vita C, Menez A (1997) A potassium-channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kv1 channels. Revision of the amino acid sequence, disulfide-bridge assignment, chemical synthesis, and biological activity. Eur J Biochem 244:192–202

    CAS  PubMed  Google Scholar 

  106. 106.

    Norton RS (2009) Structures of sea anemone toxins. Toxicon 54:1075–1088

    CAS  PubMed  Google Scholar 

  107. 107.

    Tudor JE, Pallaghy PK, Pennington MW, Norton RS (1996) Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat Struct Biol 3:317–320

    CAS  PubMed  Google Scholar 

  108. 108.

    Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG (1998) ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 273:32697–32707

    CAS  PubMed  Google Scholar 

  109. 109.

    Tudor JE, Pennington MW, Norton RS (1998) Ionisation behaviour and solution properties of the potassium-channel blocker ShK toxin. Eur J Biochem 251:133–141

    CAS  PubMed  Google Scholar 

  110. 110.

    Lanigan MD, Kalman K, Lefievre Y, Pennington MW, Chandy KG, Norton RS (2002) Mutating a critical lysine in ShK toxin alters its binding configuration in the pore-vestibule region of the voltage-gated potassium channel, Kv1.3. Biochemistry 41:11963–11971

    CAS  PubMed  Google Scholar 

  111. 111.

    Pennington MW, Harunur Rashid M, Tajhya RB, Beeton C, Kuyucak S, Norton RS (2012) A C-terminally amidated analogue of ShK is a potent and selective blocker of the voltage-gated potassium channel Kv1.3. FEBS Lett 586:3996–4001

    CAS  PubMed Central  PubMed  Google Scholar 

  112. 112.

    Alessandri-Haber N, Lecoq A, Gasparini S, Grangier-Macmath G, Jacquet G, Harvey AL, de Medeiros C, Rowan EG, Gola M, Menez A, Crest M (1999) Mapping the functional anatomy of BgK on Kv1.1, Kv1.2, and Kv1.3. Clues to design analogs with enhanced selectivity. J Biol Chem 274:35653–35661

    CAS  PubMed  Google Scholar 

  113. 113.

    Rauer H, Pennington M, Cahalan M, Chandy KG (1999) Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 274:21885–21892

    CAS  PubMed  Google Scholar 

  114. 114.

    Dauplais M, Lecoq A, Song J, Cotton J, Jamin N, Gilquin B, Roumestand C, Vita C, de Medeiros CL, Rowan EG, Harvey AL, Menez A (1997) On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem 272:4302–4309

    CAS  PubMed  Google Scholar 

  115. 115.

    Manganas LN, Wang Q, Scannevin RH, Antonucci DE, Rhodes KJ, Trimmer JS (2001) Identification of a trafficking determinant localized to the Kv1 potassium channel pore. Proc Natl Acad Sci USA 98:14055–14059

    CAS  PubMed Central  PubMed  Google Scholar 

  116. 116.

    Vacher H, Mohapatra DP, Misonou H, Trimmer JS (2007) Regulation of Kv1 channel trafficking by the mamba snake neurotoxin dendrotoxin K. FASEB J 21:906–914

    CAS  PubMed Central  PubMed  Google Scholar 

  117. 117.

    Zhu J, Watanabe I, Gomez B, Thornhill WB (2001) Determinants involved in Kv1 potassium channel folding in the endoplasmic reticulum, glycosylation in the Golgi, and cell surface expression. J Biol Chem 276:39419–39427

    CAS  PubMed  Google Scholar 

  118. 118.

    Li D, Takimoto K, Levitan ES (2000) Surface expression of Kv1 channels is governed by a C-terminal motif. J Biol Chem 275:11597–11602

    CAS  PubMed  Google Scholar 

  119. 119.

    Manganas LN, Akhtar S, Antonucci DE, Campomanes CR, Dolly JO, Trimmer JS (2001) Episodic ataxia type-1 mutations in the Kv1.1 potassium channel display distinct folding and intracellular trafficking properties. J Biol Chem 276:49427–49434

    CAS  PubMed  Google Scholar 

  120. 120.

    Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378:85–88

    CAS  PubMed  Google Scholar 

  121. 121.

    Magidovich E, Orr I, Fass D, Abdu U, Yifrach O (2007) Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K+ channel modulates its interaction with scaffold proteins. Proc Natl Acad Sci USA 104:13022–13027

    CAS  PubMed Central  PubMed  Google Scholar 

  122. 122.

    Ogawa Y, Horresh I, Trimmer JS, Bredt DS, Peles E, Rasband MN (2008) Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2. J Neurosci 28:5731–5739

    CAS  PubMed Central  PubMed  Google Scholar 

  123. 123.

    McKeown L, Burnham MP, Hodson C, Jones OT (2008) Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels. J Biol Chem 283:30421–30432

    CAS  PubMed Central  PubMed  Google Scholar 

  124. 124.

    Klammt C, Maslennikov I, Bayrhuber M, Eichmann C, Vajpai N, Chiu EJ, Blain KY, Esquivies L, Kwon JH, Balana B, Pieper U, Sali A, Slesinger PA, Kwiatkowski W, Riek R, Choe S (2012) Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods 9:834–839

    CAS  PubMed Central  PubMed  Google Scholar 

  125. 125.

    Van Horn WD, Vanoye CG, Sanders CR (2011) Working model for the structural basis for KCNE1 modulation of the KCNQ1 potassium channel. Curr Opin Struct Biol 21:283–291

    PubMed Central  PubMed  Google Scholar 

  126. 126.

    Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171

    CAS  PubMed Central  PubMed  Google Scholar 

  127. 127.

    Kanda VA, Abbott GW (2012) KCNE regulation of K+ channel trafficking—a sisyphean task? Front Physiol 3:231

    CAS  PubMed Central  PubMed  Google Scholar 

  128. 128.

    Kanda VA, Lewis A, Xu X, Abbott GW (2011) KCNE1 and KCNE2 provide a checkpoint governing voltage-gated potassium channel alpha-subunit composition. Biophys J 101:1364–1375

    CAS  PubMed Central  PubMed  Google Scholar 

  129. 129.

    Sole L, Roura-Ferrer M, Perez-Verdaguer M, Oliveras A, Calvo M, Fernandez-Fernandez JM, Felipe A (2009) KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating. J Cell Sci 122:3738–3748

    CAS  PubMed  Google Scholar 

  130. 130.

    McCrossan ZA, Abbott GW (2004) The MinK-related peptides. Neuropharmacology 47:787–821

    CAS  PubMed  Google Scholar 

  131. 131.

    Tapper AR, George AL Jr (2000) MinK subdomains that mediate modulation of and association with KvLQT1. J Gen Physiol 116:379–390

    CAS  PubMed Central  PubMed  Google Scholar 

  132. 132.

    Haerteis S, Krappitz M, Bertog M, Krappitz A, Baraznenok V, Henderson I, Lindstrom E, Murphy JE, Bunnett NW, Korbmacher C (2012) Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Arch 464:353–365

    CAS  PubMed Central  PubMed  Google Scholar 

  133. 133.

    Kitamura K, Tomita K (2012) Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension. Clin Exp Nephrol 16:44–48

    CAS  PubMed  Google Scholar 

  134. 134.

    Liedtke W (2008) Molecular mechanisms of TRPV4-mediated neural signaling. Ann NY Acad Sci 1144:42–52

    CAS  PubMed  Google Scholar 

  135. 135.

    Poole DP, Amadesi S, Veldhuis NA, Abogadie FC, Lieu T, Darby W, Liedtke W, Lew MJ, McIntyre P, Bunnett NW (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288:5790–5802

    CAS  PubMed Central  PubMed  Google Scholar 

  136. 136.

    Hanlon MR, Wallace BA (2002) Structure and function of voltage-dependent ion channel regulatory beta subunits. Biochemistry 41:2886–2894

    CAS  PubMed  Google Scholar 

  137. 137.

    Patino GA, Isom LL (2010) Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci Lett 486:53–59

    CAS  PubMed Central  PubMed  Google Scholar 

  138. 138.

    Nguyen HM, Miyazaki H, Hoshi N, Smith BJ, Nukina N, Goldin AL, Chandy KG (2012) Modulation of voltage-gated K+ channels by the sodium channel beta1 subunit. Proc Natl Acad Sci USA 109:18577–18582

    CAS  PubMed Central  PubMed  Google Scholar 

  139. 139.

    Clancy BM, Johnson JD, Lambert AJ, Rezvankhah S, Wong A, Resmini C, Feldman JL, Leppanen S, Pittman DD (2003) A gene expression profile for endochondral bone formation: oligonucleotide microarrays establish novel connections between known genes and BMP-2-induced bone formation in mouse quadriceps. Bone 33:46–63

    CAS  PubMed  Google Scholar 

  140. 140.

    Davidson RK, Waters JG, Kevorkian L, Darrah C, Cooper A, Donell ST, Clark IM (2006) Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthr Res Ther 8:R124

    Google Scholar 

  141. 141.

    Fortunato SJ, Menon R (2002) Screening of novel matrix metalloproteinases (MMPs) in human fetal membranes. J Assist Reprod Genet 19:483–486

    PubMed Central  PubMed  Google Scholar 

  142. 142.

    Hegedus L, Cho H, Xie X, Eliceiri GL (2008) Additional MDA-MB-231 breast cancer cell matrix metalloproteinases promote invasiveness. J Cell Physiol 216:480–485

    CAS  PubMed  Google Scholar 

  143. 143.

    Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM, Hazleman BL, Riley GP (2006) Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthr Rheum 54:832–842

    CAS  Google Scholar 

  144. 144.

    Okada A, Okada Y (2009) Progress of research in osteoarthritis. Metalloproteinases in osteoarthritis. Clin Calcium 19:1593–1601

    CAS  PubMed  Google Scholar 

  145. 145.

    Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland NJ, Ball RY, Edwards DR (2005) Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer 92:2171–2180

    CAS  PubMed Central  PubMed  Google Scholar 

  146. 146.

    Scrideli CA, Carlotti CG Jr, Okamoto OK, Andrade VS, Cortez MA, Motta FJ, Lucio-Eterovic AK, Neder L, Rosemberg S, Oba-Shinjo SM, Marie SK, Tone LG (2008) Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol 88:281–291

    CAS  PubMed  Google Scholar 

  147. 147.

    Riley G (2008) Tendinopathy—from basic science to treatment. Nat Clin Pract Rheumatol 4:82–89

    PubMed  Google Scholar 

  148. 148.

    Gajecka M, Yu W, Ballif BC, Glotzbach CD, Bailey KA, Shaw CA, Kashork CD, Heilstedt HA, Ansel DA, Theisen A, Rice R, Rice DP, Shaffer LG (2005) Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure. Eur J Hum Genet 13:139–149

    CAS  PubMed  Google Scholar 

  149. 149.

    Zhao S, Zhao Y, Niu P, Wang N, Tang Z, Zan L, Li K (2011) Molecular characterization of porcine MMP19 and MMP23B genes and its association with immune traits. Int J Biol Sci 7:1101–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  150. 150.

    Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, Ayala GE, Peterson LE, Ittmann M, Spencer DM (2007) Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12:559–571

    CAS  PubMed  Google Scholar 

  151. 151.

    Carrasco DR, Sukhdeo K, Protopopova M, Sinha R, Enos M, Carrasco DE, Zheng M, Mani M, Henderson J, Pinkus GS, Munshi N, Horner J, Ivanova EV, Protopopov A, Anderson KC, Tonon G, DePinho RA (2007) The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11:349–360

    CAS  PubMed Central  PubMed  Google Scholar 

  152. 152.

    Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR (2007) A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11:375–388

    CAS  PubMed  Google Scholar 

  153. 153.

    Lam SH, Gong Z (2006) Modeling liver cancer using zebrafish: a comparative oncogenomics approach. Cell Cycle 5:573–577

    CAS  PubMed  Google Scholar 

  154. 154.

    Qi F, Song J, Yang H, Gao W, Liu NA, Zhang B, Lin S (2010) MMP23b promotes liver development and hepatocyte proliferation through the tumor necrosis factor pathway in zebrafish. Hepatology 52:2158–2166

    CAS  PubMed Central  PubMed  Google Scholar 

  155. 155.

    Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    CAS  PubMed  Google Scholar 

  156. 156.

    Schwabe RF, Brenner DA (2006) Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290:G583–G589

    CAS  PubMed  Google Scholar 

  157. 157.

    Wullaert A, van Loo G, Heyninck K, Beyaert R (2007) Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocr Rev 28:365–386

    CAS  PubMed  Google Scholar 

  158. 158.

    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumor-necrosis factor-alpha from cells. Nature 385:729–733

    CAS  PubMed  Google Scholar 

  159. 159.

    Krogsgaard M, Ma W, Friedman EB, Vega-Saenz de Miera E, Darvishian F, Perez-Garcia RS, Berman RS, Sharpio RL, Christos PJ, Osman I, Pavlick AC (2011) An analysis of altered melanoma matrix metalloprotease-23 (MMP-23) expression and response to immune biologic therapy. J Clin Oncol 29(Suppl):8541

    Google Scholar 

  160. 160.

    Bielanska J, Hernandez-Losa J, Moline T, Somoza R, Cajal SR, Condom E, Ferreres JC, Felipe A (2012) Increased voltage-dependent K(+) channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncol Lett 4:227–230

    PubMed Central  PubMed  Google Scholar 

  161. 161.

    Bielanska J, Hernandez-Losa J, Moline T, Somoza R, Ramon Y, Cajal S, Condom E, Ferreres JC, Felipe A (2012) Differential expression of Kv1.3 and Kv1.5 voltage-dependent K+ channels in human skeletal muscle sarcomas. Cancer Invest 30:203–208

    CAS  PubMed  Google Scholar 

  162. 162.

    Bielanska J, Hernandez-Losa J, Perez-Verdaguer M, Moline T, Somoza R, Ramon YCS, Condom E, Ferreres JC, Felipe A (2009) Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Curr Cancer Drug Targets 9:904–914

    CAS  PubMed  Google Scholar 

  163. 163.

    Felipe A, Bielanska J, Comes N, Vallejo A, Roig S, Ramon YCS, Condom E, Hernandez-Losa J, Ferreres JC (2012) Targeting the voltage-dependent K+ channels Kv1.3 and Kv1.5 as tumor biomarkers for cancer detection and prevention. Curr Med Chem 19:661–674

    CAS  PubMed  Google Scholar 

  164. 164.

    Stuhmer W, Pardo LA (2010) K+ channels as therapeutic targets in oncology. Future Med Chem 2:745–755

    CAS  PubMed  Google Scholar 

  165. 165.

    Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, Andrews BS, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103:17414–17419

    CAS  PubMed Central  PubMed  Google Scholar 

  166. 166.

    Leanza L, Henry B, Sassi N, Zoratti M, Chandy KG, Gulbins E, Szabo I (2012) Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol Med 4:577–593

    CAS  PubMed Central  PubMed  Google Scholar 

  167. 167.

    Chi V, Pennington MW, Norton RS, Tarcha EJ, Londono LM, Sims-Fahey B, Upadhyay SK, Lakey JT, Iadonato S, Wulff H, Beeton C, Chandy KG (2012) Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon 59:529–546

    CAS  PubMed Central  PubMed  Google Scholar 

  168. 168.

    Vacher H, Trimmer JS (2012) Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 53(Suppl 9):21–31

    CAS  PubMed Central  PubMed  Google Scholar 

  169. 169.

    Patterson NL, Iyer RP, Bras LD, Li Y, Andrews TG, Aune GJ, Lange RA, Lindsey ML (2013) Using proteomics to uncover extracellular matrix interactions during cardiac remodeling. Proteomics Clin Appl. doi:10.1002/prca.201200100

    PubMed  Google Scholar 

  170. 170.

    Stegemann C, Didangelos A, Barallobre-Barreiro J, Langley SR, Mandal K, Jahangiri M, Mayr M (2013) Proteomic identification of matrix metalloproteinase substrates in the human vasculature. Circ Cardiovasc Genet 6:106–117

    CAS  PubMed  Google Scholar 

  171. 171.

    Austin KM, Covic L, Kuliopulos A (2013) Matrix metalloproteases and PAR1 activation. Blood 121:431–439

    CAS  PubMed Central  PubMed  Google Scholar 

  172. 172.

    Haerteis S, Krappitz M, Diakov A, Krappitz A, Rauh R, Korbmacher C (2012) Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the gamma subunit of the human epithelial sodium channel. J Gen Physiol 140:375–389

    CAS  PubMed Central  PubMed  Google Scholar 

  173. 173.

    Schrodinger LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1

  174. 174.

    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed Central  PubMed  Google Scholar 

  175. 175.

    Brodskii LI, Ivanov VV, Ia Kalaidzidis Ia L, Leontovich AM, Nikolaev VK, Feranchuk SI, Drachev VA (1995) GeneBee-NET: an Internet based server for biopolymer structure analysis. Biokhimiia 60:1221–1230

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ work described herein was supported in part by grants from the National Institutes of Health (NIH) NS48252 (K.G.C.), and the Australian Research Council (DP1093909 to R.S.N., B.J.S., and K.G.C.). R.S.N. acknowledges fellowship support from the Australian National Health and Medical Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles A. Galea.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galea, C.A., Nguyen, H.M., George Chandy, K. et al. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking. Cell. Mol. Life Sci. 71, 1191–1210 (2014). https://doi.org/10.1007/s00018-013-1431-0

Download citation

Keywords

  • Matrix metalloprotease
  • MMP23 Pro-domain
  • Potassium channel
  • Kv1.3
  • Trans-membrane domain
  • Toxin domain