Skip to main content
Log in

Autonomous translocation and intracellular trafficking of the cell-penetrating and immune-suppressive effector protein YopM

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Extracellular Gram-negative pathogenic bacteria target essential cytoplasmic processes of eukaryotic cells by using effector protein delivery systems such as the type III secretion system (T3SS). These secretion systems directly inject effector proteins into the host cell cytoplasm. Among the T3SS-dependent Yop proteins of pathogenic Yersinia, the function of the effector protein YopM remains enigmatic. In a recent study, we demonstrated that recombinant YopM from Yersinia enterocolitica enters host cells autonomously without the presence of bacteria and thus identified YopM as a novel bacterial cell-penetrating protein. Following entry YopM down-regulates expression of pro-inflammatory cytokines such as tumor necrosis factor α. These properties earmark YopM for further development as a novel anti-inflammatory therapeutic. To elucidate the uptake and intracellular targeting mechanisms of this bacterial cell-penetrating protein, we analyzed possible routes of internalization employing ultra-cryo electron microscopy. Our results reveal that under physiological conditions, YopM enters cells predominantly by exploiting endocytic pathways. Interestingly, YopM was detected free in the cytosol and inside the nucleus. We could not observe any colocalization of YopM with secretory membranes, which excludes retrograde transport as the mechanism for cytosolic release. However, our findings indicate that direct membrane penetration and/or an endosomal escape of YopM contribute to the cytosolic and nuclear localization of the protein. Surprisingly, even when endocytosis is blocked, YopM was found to be associated with endosomes. This suggests an intracellular endosome-associated transport of YopM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CCV:

Clathrin-coated vesicles

CF:

Cytosolic fraction

CPP:

Cell-penetrating protein

CYT:

Cytosol

E:

Endosomes

EE:

Early endosome

ER:

Endoplasmic reticulum

GA:

Golgi apparatus

HM:

Heavy membranes

LE:

Late endosome

LYS:

Lysosome

MITO:

Mitochondria

MVB:

Multi-vesicular-bodies

nCCV:

Non-clathrin-coated vesicles

N:

Nucleus

NE:

Nuclear envelope

NF:

Nuclear fraction

PM:

Plasma membrane

PNS:

Post-nuclear supernatant

PTD:

Protein transduction domain

SE:

Sorting endosome

TC:

Transport carrier

TGN:

Trans-Golgi network

YopM:

Yersinia outer protein M

References

  1. Forsberg A, Viitanen AM, Skurnik M, Wolf-Watz H (1991) The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 5:977–986

    Article  PubMed  CAS  Google Scholar 

  2. Straley SC, Bowmer WS (1986) Virulence genes regulated at the transcriptional level by Ca2 + in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51:445–454

    PubMed  CAS  Google Scholar 

  3. Boland A, Havaux S, Cornelis GR (1998) Heterogeneity of the Yersinia YopM protein. Microb Pathog 25:343–348

    Article  PubMed  CAS  Google Scholar 

  4. Skrzypek E, Cowan C, Straley SC (1998) Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol Microbiol 30:1051–1065

    Article  PubMed  CAS  Google Scholar 

  5. Benabdillah R, Mota LJ, Lützelschwab S, Demoinet E, Cornelis GR (2004) Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb Pathog 36:247–261

    Article  PubMed  CAS  Google Scholar 

  6. Kerschen EJ, Cohen DA, Kaplan AM, Straley SC (2004) The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infect Immun 72:4589–4602

    Article  PubMed  CAS  Google Scholar 

  7. Ye Z, Uittenbogaard AM, Cohen DA, Kaplan AM, Ambati J et al (2011) Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis ΔyopM mutant in liver and spleen during systemic plague. Infect Immun 79:674–687

    Article  PubMed  CAS  Google Scholar 

  8. Rüter C, Buss C, Scharnert J, Heusipp G, Schmidt MA (2010) A newly identified bacterial cell-penetrating peptide that reduces the transcription of pro-inflammatory cytokines. J Cell Sci 123:2190–2198

    Article  PubMed  Google Scholar 

  9. Kilk K, Langel U (2005) Cellular delivery of peptide nucleic acid by cell-penetrating peptides. Methods Mol Biol 298:131–141

    PubMed  CAS  Google Scholar 

  10. Holm T, Andaloussi SE, Langel U (2011) Comparison of CPP uptake methods. Methods Mol Biol 683:207–217

    Article  PubMed  CAS  Google Scholar 

  11. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B et al (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306

    Article  PubMed  CAS  Google Scholar 

  12. Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chem BioChem 6:2126–2142

    CAS  Google Scholar 

  13. Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253

    Article  PubMed  CAS  Google Scholar 

  14. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  15. Säälik P, Padari K, Niinep A, Lorents A, Hansen M et al (2009) Protein delivery with transportans is mediated by caveolae rather than flotillin-dependent pathways. Bioconjug Chem 20:877–887

    Article  PubMed  Google Scholar 

  16. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866

    Article  PubMed  CAS  Google Scholar 

  17. Tünnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F et al (2006) Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J 20:1775–1784

    Article  PubMed  Google Scholar 

  18. Heusipp G, Spekker K, Brast S, Fälker S, Schmidt MA (2006) YopM of Yersinia enterocolitica specifically interacts with alpha1-antitrypsin without affecting the anti-protease activity. Microbiology 152:1327–1335

    Article  PubMed  CAS  Google Scholar 

  19. el Bayâ A, Linnermann R, von Olleschik-Elbheim L, Schmidt MA (1997) Pertussis toxin. Entry into cells and enzymatic activity. Adv Exp Med Biol 419:83–86

    Article  PubMed  Google Scholar 

  20. Mari M, Bujny MV, Zeuschner D, Geerts WJ, Griffith J et al (2008) SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9:380–393

    Article  PubMed  CAS  Google Scholar 

  21. Langel Ü (2005) Handbook of cell-penetrating peptides. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  22. Gorvel JP, Chavrier P, Zerial M, Gruenberg J (1991) rab5 controls early endosome fusion in vitro. Cell 64:915–925

    Article  PubMed  CAS  Google Scholar 

  23. Brown E, Verkade P (2010) The use of markers for correlative light electron microscopy. Protoplasma 244:91–97

    Article  PubMed  Google Scholar 

  24. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149

    Article  PubMed  CAS  Google Scholar 

  25. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    Article  PubMed  CAS  Google Scholar 

  26. Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M et al (1993) Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J 12:677–682

    PubMed  CAS  Google Scholar 

  27. Goud B, Zahraoui A, Tavitian A, Saraste J (1990) Small GTP-binding protein associated with Golgi cisternae. Nature 345:553–556

    Article  PubMed  CAS  Google Scholar 

  28. Trabulo S, Resina S, Simões S, Lebleu B, Pedroso de Lima MC (2010) A non-covalent strategy combining cationic lipids and CPPs to enhance the delivery of splice correcting oligonucleotides. J Control Release 145:149–158

    Article  PubMed  CAS  Google Scholar 

  29. Ter-Avetisyan G, Tünnemann G, Nowak D, Nitschke M, Herrmann A et al (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 284:3370–3378

    Article  PubMed  CAS  Google Scholar 

  30. Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G et al (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284:33957–33965

    Article  PubMed  CAS  Google Scholar 

  31. Weigel PH, Oka JA (1981) Temperature dependence of endocytosis mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. Evidence for two potentially rate-limiting steps. J Biol Chem 256:2615–2617

    PubMed  CAS  Google Scholar 

  32. Letoha T, Gaál S, Somlai C, Czajlik A, Perczel A et al (2003) Membrane translocation of penetratin and its derivatives in different cell lines. J Mol Recognit 16:272–279

    Article  PubMed  CAS  Google Scholar 

  33. Padari K, Säälik P, Hansen M, Koppel K, Raid R et al (2005) Cell transduction pathways of transportans. Bioconjug Chem 16:1399–1410

    Article  PubMed  CAS  Google Scholar 

  34. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  35. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  PubMed  CAS  Google Scholar 

  36. Medina-Kauwe LK (2007) Alternative endocytic mechanisms exploited by pathogens: new avenues for therapeutic delivery? Adv Drug Deliv Rev 59:798–809

    Article  PubMed  CAS  Google Scholar 

  37. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G et al (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Article  PubMed  CAS  Google Scholar 

  38. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    Article  PubMed  CAS  Google Scholar 

  39. Lesser CF, Miller SI (2001) Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. EMBO J 20:1840–1849

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Graduate Program “Cell Dynamics and Disease (CEDAD)” of the Westfälische Wilhelms-Universität Münster (9817300 to J. S.) and by the Deutsche Forschungsgemeinschaft (Graduiertenkolleg GRK 1409) (209657 to M. A. S. and M.-L. L.) and by a grant of the Innovative Medizinische Forschung (IMF) (I-RÜ11106 to C. R.). This study is part of the PhD thesis of J. S. and M.-L. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rüter.

Additional information

M. A. Schmidt and C. Rüter contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2013_1413_MOESM1_ESM.tif

Fig. S1 Non-penetrative YopM87-C lacking the PTD of YopM is not taken up at 4°C. Immunoblot of HeLa membrane fractionation after incubation with YopM87-C at 4°C and 37°C. Membranes were separated using a discontinuous sucrose flotation gradient. The purity of the fractions was assessed by using marker proteins for different cellular compartments. At 37°C YopM87-C localized in the endosomal and heavy membrane fraction, whereas at 4°C no YopM87-C was detectable in these fraction. E, endosomes; HM, heavy membranes; PNS, post nuclear supernatant; PDI, protein disulfide isomerase; TfR, transferrin receptor (TIFF 507 kb)

18_2013_1413_MOESM2_ESM.tif

Fig. S2 Removal of cell surface proteins by proteinase K does not abolish membrane translocation of YopM. HeLa cells were treated with 500 μg/ml proteinase K for 15 min prior to YopM (25 μg/ml) incubation. a, b FACS analysis of HeLa cells incubated with YopM-Cy3 for a total of 1 h (a). Successful removal of cell surface proteins (e.g. TfR) was tested by measuring internalization of Alexa 488-labeled transferrin (b). Samples were taken at indicated time points and trypan blue (final concentration 0.2 %) was added directly before measurement to quench extracellular fluorescence. The number of analyzed cells is plotted against the mean fluorescence intensity measured for each cell. Furthermore, overlay of histogram plots from cells incubated for 15 min with YopM-Cy3 or TF-Alexa 488 after removal of surface proteins by proteinase K are depicted. c Immunoblot of subcellular fractionations of HeLa cells incubated with YopM at 37°C for 1 h. In order to assess their purity, fractions were analyzed using antibodies against α-Tubulin and LSD1. YopM partition was assessed using a YopM-specific polyclonal antibody. CF, cytosolic fraction; LSD1, Lysine-specific demethylase 1; NF, nuclear fraction; PK, proteinase K; TfR, transferrin receptor (TIFF 1043 kb)

18_2013_1413_MOESM3_ESM.tif

Fig. S3 Low temperature does not effect plasma membrane integrity of HeLa cells. To analyze membrane integrity of HeLa cells at 4°C cells were incubated with propidium iodide (1 μg/ml) on ice for a total of 1 h with or without YopM-Alexa 488 (25 μg/ml). The number of analyzed cells is plotted against the mean fluorescence intensity of propium iodide measured for each cell (TIFF 7895 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharnert, J., Greune, L., Zeuschner, D. et al. Autonomous translocation and intracellular trafficking of the cell-penetrating and immune-suppressive effector protein YopM. Cell. Mol. Life Sci. 70, 4809–4823 (2013). https://doi.org/10.1007/s00018-013-1413-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1413-2

Keywords