Cellular and Molecular Life Sciences

, Volume 70, Issue 23, pp 4555–4567 | Cite as

Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information

Review

Abstract

Understanding genetic regulation is a problem of fundamental importance. Recent studies have made it increasingly evident that, whereas the cellular genetic regulation system embodies multiple disparate elements engaged in numerous interactions, the central issue is the genuine function of the DNA molecule as information carrier. Compelling evidence suggests that the DNA, in addition to the digital information of the linear genetic code (the semantics), encodes equally important continuous, or analog, information that specifies the structural dynamics and configuration (the syntax) of the polymer. These two DNA information types are intrinsically coupled in the primary sequence organisation, and this coupling is directly relevant to regulation of the genetic function. In this review, we emphasise the critical need of holistic integration of the DNA information as a prerequisite for understanding the organisational complexity of the genetic regulation system.

Keywords

Holistic methodology DNA supercoiling Chromosome structure Gene order Transcriptional regulation Nucleoid-associated proteins 

Abbreviations

Dps

DNA protection during starvation protein

FD

Functional domain

FIS

Factor for inversion stimulation

H-NS

Histone-like nucleoid-structuring protein

HU

Heat-stable protein from the strain U13

IHF

Integration host factor

Lrp

Leucine responsive protein

NAP

Nucleoid-associated protein

OriC

Origin of chromosomal replication

RNAP

RNA polymerase

RpoD

RNAP vegetative sigma factor (σ70)

RpoS

RNAP stationary phase sigma factor (σS)

Ter

Chromosomal replication terminus

TF

Transcription factor

TG

Target gene

Transcripton

Transcription unit

TRN

Transcriptional regulatory network

tyrT

Tyrosyl transfer RNA gene

UAS

Upstream activating sequence

References

  1. 1.
    Babu MM (2008) Computational approaches to study transcriptional regulation. Biochem Soc Trans 36:758–765PubMedCrossRefGoogle Scholar
  2. 2.
    Janga SC, Salgado H, Martínez-Antonio A (2009) Transcriptional regulation shapes the organization of genes on bacterial chromosomes. Nucleic Acids Res 37:3680–3688PubMedCrossRefGoogle Scholar
  3. 3.
    Fritsche M, Li S, Heermann DW, Wiggins PA (2012) A model for Escherichia coli chromosome packaging supports transcription factor-induced DNA domain formation. Nucleic Acids Res 40:972–980PubMedCrossRefGoogle Scholar
  4. 4.
    Babu MM, Janga SC, de Santiago I, Pombo A (2008) Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 18:571–582PubMedCrossRefGoogle Scholar
  5. 5.
    Marr C, Geertz M, Hütt M-T, Muskhelishvili G (2008) Dissecting the logical types of network control in gene expression profiles. BMC Syst Biol 2:18PubMedCrossRefGoogle Scholar
  6. 6.
    Sonnenschein N, Geertz M, Muskhelishvili G, Hütt M-T (2011) Analog regulation of metabolic demand. BMC Syst Biol 5:40PubMedCrossRefGoogle Scholar
  7. 7.
    Dame RT, Kalmykowa OJ, Grainger DC (2011) Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in gram negative bacteria. PLoS Genet (6):e1002123Google Scholar
  8. 8.
    Benza VG, Bassetti B, Dorfman KD, Scolari VF, Bromek K, Cicuta P, Lagomarsino MC (2012) Physical descriptions of the bacterial nucleoid at large scales, and their biological implications. Rep Prog Phys 75(7):076602PubMedCrossRefGoogle Scholar
  9. 9.
    Ptacin JL, Shapiro L (2013) Chromosome architecture is a key element of bacterial cellular organisation. Cell Microbiol 15:45–52PubMedCrossRefGoogle Scholar
  10. 10.
    Kaufman LH (1987) Self-reference and recursive forms. J Soc Biol Struct 10:53–72CrossRefGoogle Scholar
  11. 11.
    Muskhelishvili G, Sobetzko P, Geertz M, Berger M (2010) General organisational principles of the transcriptional regulation system: a tree or a circle? Mol BioSyst 6:662–676PubMedCrossRefGoogle Scholar
  12. 12.
    Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400PubMedCrossRefGoogle Scholar
  13. 13.
    Travers A, Muskhelishvili G (2005) DNA supercoiling—a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 3:157–169PubMedCrossRefGoogle Scholar
  14. 14.
    Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195PubMedCrossRefGoogle Scholar
  15. 15.
    Travers AA, Muskhelishvili G, Thompson JMT (2012) DNA Information: from digital code to analogue structure. Philos Trans R Soc Lond A 370:2960–2986CrossRefGoogle Scholar
  16. 16.
    Blot N, Mavathur R, Geertz M, Travers A, Muskhelishvili G (2006) Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep 7:710–715PubMedCrossRefGoogle Scholar
  17. 17.
    Travers AA, Muskhelishvili G (1998) DNA microloops and microdomains—a general mechanism for transcription activation by torsional transmission. J Mol Biol 279:1027–1043PubMedCrossRefGoogle Scholar
  18. 18.
    Levens D, Benham CJ (2011) DNA stress and strain, in silico, in vitro and in vivo. Phys Biol 8:035011PubMedCrossRefGoogle Scholar
  19. 19.
    Lazarus LR, Travers AA (1993) The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. EMBO 12:2483–2494Google Scholar
  20. 20.
    Maurer S, Fritz J, Muskhelishvili G, Travers A (2006) RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex. EMBO J 25:3784–3790PubMedCrossRefGoogle Scholar
  21. 21.
    Bowater RP, Chen D, Lilley DM (1994) Modulation of tyrT promoter activity by template supercoiling in vivo. EMBO J 13:5647–5655PubMedGoogle Scholar
  22. 22.
    Free A, Dorman CJ (1994) Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Mol Microbiol 14:151–161PubMedCrossRefGoogle Scholar
  23. 23.
    Pemberton I, Muskhelishvili G, Travers A, Buckle M (2002) FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the E. coli tyrT promoter. J Mol Biol 318:651–663PubMedCrossRefGoogle Scholar
  24. 24.
    Rochman M, Aviv M, Glaser G, Muskhelishvili G (2002) Promoter protection by a transcription factor acting as a local topological homeostat. EMBO Rep 3:355–360PubMedCrossRefGoogle Scholar
  25. 25.
    Kravatskaya GI, Kravatsky YV, Chechetkin VR, Tumanyan VG (2011) Coexistence of different base periodicities in prokaryotic genomes as related to DNA curvature, supercoiling, and transcription. Genomics 98:223–231PubMedCrossRefGoogle Scholar
  26. 26.
    Kravatskaya GI, Chechetkin VR, Kravatsky YV, Tumanyan VG (2013) Coexistence of different base periodicities in prokaryotic genomes as related to DNA curvature, supercoiling, and transcription. Genomics 101:1–11PubMedCrossRefGoogle Scholar
  27. 27.
    Holmquist PC, Holmquist GP, Summers ML (2011) Comparing binding site information to binding affinity reveals that Crp/DNA complexes have several distinct binding conformers. Nucleic Acids Res 39:6813–6824PubMedCrossRefGoogle Scholar
  28. 28.
    Travers A, Muskhelishvili G (2013) DNA thermodynamics shape chromosome organisation and topology. Biochem Soc Trans 41:548–553PubMedCrossRefGoogle Scholar
  29. 29.
    Sobetzko P, Travers A, Muskhelishvili G (2012) Gene order and chromosome dynamics coordinate gene expression during the bacterial growth cycle. Proc Natl Acad Sci USA 109:E42–E50PubMedCrossRefGoogle Scholar
  30. 30.
    Sobetzko P, Glinkowska M, Travers A, Muskhelishvili G (2013) DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. Mol Biosyst. doi:10.1039/C3MB25515H
  31. 31.
    Travers AA, Vaillant C, Arneodo A, Muskhelishvili G (2012) DNA structure, nucleosome placement and chromatin remodeling—a perspective. Biochem Soc Trans 40:335–340PubMedCrossRefGoogle Scholar
  32. 32.
    Berger M, Zhelyaskova P, Brix K, Travers A, Muskhelishvili G (2010) Coordination of genomic structure and function by the main bacterial nucleoid-associated protein HU. EMBO Rep 11:59–64PubMedCrossRefGoogle Scholar
  33. 33.
    Cagliero C, Jin DJ (2013) Dissociation and re-association of RNA polymerase with DNA during osmotic response in Escherichia coli. Nucleic Acids Res 41:315–326PubMedCrossRefGoogle Scholar
  34. 34.
    McClellan JA, Boublíková P, Palecek E, Lilley DM (1990) Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc Natl Acad Sci USA 87:8373–8377PubMedCrossRefGoogle Scholar
  35. 35.
    Hsieh LS, Burger RM, Drlica K (1991) Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. J Mol Biol 219:443–450PubMedCrossRefGoogle Scholar
  36. 36.
    Hsieh LS, Rouviere-Yaniv J, Drlica K (1991) Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock. J Bacteriol 173:3914–3917PubMedGoogle Scholar
  37. 37.
    van Workum M, van Dooren SJ, Oldenburg N, Molenaar D, Jensen PR, Snoep JL, Westerhoff HV (1996) DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol 20:351–360PubMedCrossRefGoogle Scholar
  38. 38.
    Geertz M, Travers A, Mehandziska S, Janga SC, Shimamoto N, Muskhelishvili G (2011) Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit? mBio 2(4). doi:10.1128/mBio.00034-11
  39. 39.
    Bordes P, Conter A, Morales V, Bouvier J, Kolb A, Gutierrez C (2003) DNA supercoiling contributes to disconnect sigmaS accumulation from sigmaS-dependent transcription in Escherichia coli. Mol Microbiol 48:561–571PubMedCrossRefGoogle Scholar
  40. 40.
    Ladurner A (2009) Chromatin places metabolism center stage. Cell 138:18–20PubMedCrossRefGoogle Scholar
  41. 41.
    Bellet M, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism—the epigenetic link. J Cell Sci 123:3837–3848PubMedCrossRefGoogle Scholar
  42. 42.
    Knight J, Milner J (2012) SIRT1, metabolism and cancer. Curr Opin Oncol 24:68–75PubMedCrossRefGoogle Scholar
  43. 43.
    Machne R, Murray D (2012) The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin. PLoS ONE 7:e37906PubMedCrossRefGoogle Scholar
  44. 44.
    Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101:1200–1205PubMedCrossRefGoogle Scholar
  45. 45.
    Lesne A (2013) Multiscale analysis of biological systems. Acta Biotheor. doi:10.1007/s10441-013-9170-z. [Epub ahead of print]
  46. 46.
    Valens M, Penaud S, Rossignol M, Cornet F, Boccard F (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23:4330–4341PubMedCrossRefGoogle Scholar
  47. 47.
    Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779PubMedCrossRefGoogle Scholar
  48. 48.
    Deng S, Stein RA, Higgins NP (2005) Organization of supercoil domains and their reorganization by transcription. Mol Microbiol 57:1511–1521PubMedCrossRefGoogle Scholar
  49. 49.
    Umbarger MA, Toro E, Wright MA, Porreca GJ, Bau D, Hong SH, Fero MJ, Zhu LJ, Marti-Renom MA, McAdams HH, Shapiro L, Dekker J, Church GM (2011) The three-dimensional architecture of the bacterial genome and its alteration by genetic perturbation. Mol Cell 44:252–264PubMedCrossRefGoogle Scholar
  50. 50.
    Wiggins PA, Cheveralls KC, Martin JS, Lintner R, Kondev J (2010) Strong intranucleoid organize the Escherichia coli chromosome into a nucleoid filament. Proc Natl Acad Sci USA 107:4991–4995PubMedCrossRefGoogle Scholar
  51. 51.
    Junier I, Herrison J, Képès F (2012) Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies. J Mol Biol 419:369–386PubMedCrossRefGoogle Scholar
  52. 52.
    Hong SH, Toro E, Mortensen KI, de la Rosa MA, Doniach S, Shapiro L, Spakowitz AJ, McAdams HH (2013) Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement. Proc Natl Acad Sci USA 110:1674–1679PubMedCrossRefGoogle Scholar
  53. 53.
    Azam TA, Ishihama A (1999) Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 274:33105–33113PubMedCrossRefGoogle Scholar
  54. 54.
    Ali Azam TA, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370PubMedGoogle Scholar
  55. 55.
    Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56:858–870PubMedCrossRefGoogle Scholar
  56. 56.
    Murphy LD, Zimmerman SB (1997) Isolation and characterization of spermidine nucleoids from Escherichia coli. J Struct Biol 119:321–335PubMedCrossRefGoogle Scholar
  57. 57.
    Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13:773–780PubMedCrossRefGoogle Scholar
  58. 58.
    Martínez-Antonio A, Medina-Rivera A, Collado-Vides J (2009) Structural and functional map of a bacterial nucleoid. Genome Biol 10(12):247PubMedCrossRefGoogle Scholar
  59. 59.
    Rimsky S, Travers A (2011) Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 14:136–141PubMedCrossRefGoogle Scholar
  60. 60.
    Schneider R, Travers A, Kutateladze T, Muskhelishvili G (1999) A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 34:953–964PubMedCrossRefGoogle Scholar
  61. 61.
    Weinstein-Fischer D, Altuvia S (2007) Differential regulation of Escherichia coli topoisomerase I by Fis. Mol Microbiol 63:1131–1144PubMedCrossRefGoogle Scholar
  62. 62.
    Stuger R, Woldringh CL, van der Weijden CC, Vischer NO, Bakker BM, van Spanning RJ, Snoep JL, Westerhoff HV (2002) DNA supercoiling by gyrase is linked to nucleoid compaction. Mol Biol Rep 29:79–82PubMedCrossRefGoogle Scholar
  63. 63.
    Spurio R, Dürrenberger M, Falconi M, La Teana A, Pon CL, Gualerzi CO (1992) Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 231:201–211PubMedGoogle Scholar
  64. 64.
    Frenkiel-Krispin D, Ben-Avraham I, Englander J, Shimoni E, Wolf SG, Minsky A (2004) Nucleoid restructuring in stationary-state bacteria. Mol Microbiol 51:395–405PubMedCrossRefGoogle Scholar
  65. 65.
    Jeong KS, Ahn J, Khodursky AB (2004) Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome Biol 5:R86PubMedCrossRefGoogle Scholar
  66. 66.
    Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR (2004) Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5:R87PubMedCrossRefGoogle Scholar
  67. 67.
    Hardy CD, Cozzarelli NR (2005) A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol Microbiol 57:1636–1652PubMedCrossRefGoogle Scholar
  68. 68.
    Ohniwa RL, Morikawa K, Kim J, Ohta T, Ishihama A, Wada C, Takeyasu K (2006) Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J 25:5591–5602PubMedCrossRefGoogle Scholar
  69. 69.
    Ferrándiz MJ, Martín-Galiano AJ, Schvartzman JB, de la Campa AG (2010) The genome of Streptoccus pneumoniae is organized in topology-reacting gene clusters. Nucleic Acids Res 38:3570–3581PubMedCrossRefGoogle Scholar
  70. 70.
    Cheung KJ, Badarinarayana V, Selinger DW, Janse D, Church GM (2003) A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res 13:206–215PubMedCrossRefGoogle Scholar
  71. 71.
    Kar S, Edgar R, Adhya S (2005) Nuceloid remodeling by an altered HU protein: reorganization of a transcription program. Proc Natl Acad Sci USA 102:16397–16402PubMedCrossRefGoogle Scholar
  72. 72.
    Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S (2007) H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14:441–448PubMedCrossRefGoogle Scholar
  73. 73.
    Maurer S, Fritz J, Muskhelishvili G (2009) A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid associated proteins revealing novel types of DNA organization. J Mol Biol 387:1261–1276PubMedCrossRefGoogle Scholar
  74. 74.
    Prieto AI, Kahramanoglou C, Ali RM, Fraser GM, Seshasayee AS, Luscombe NM (2011) Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res 40:3524–3537PubMedCrossRefGoogle Scholar
  75. 75.
    Travers A, Muskhelishvili G (2005) Bacterial chromatin. Curr Opin Genet Dev 15:507–514PubMedCrossRefGoogle Scholar
  76. 76.
    Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon C, Rimsky S, Stella S, Madan Babu M, Travers A (2007) High affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucl Acids Res 35:6330–6337PubMedCrossRefGoogle Scholar
  77. 77.
    Biggar SR, Crabtree GR (2001) Cell signaling can direct either binary or graded transcriptional responses. EMBO J 120:3167–3176CrossRefGoogle Scholar
  78. 78.
    Hazzalin CA, Mahadevan LC (2002) MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 3:30–40PubMedCrossRefGoogle Scholar
  79. 79.
    Giorgetti L, Siggers T, Tiana G, Caprara G, Notarbartolo S, Corona T, Pasparakis M, Milani P, Bulyk ML, Natoli G (2010) Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol Cell 37:418–428PubMedCrossRefGoogle Scholar
  80. 80.
    Brinza L, Calevro F, Charles H (2013) Genomic analysis of the regulatory elements and links with intrinsic DNA structural properties in the shrunken genome of Buchnera. BMC Genomics 14:73. doi:10.1186/1471-2164-14-73 PubMedCrossRefGoogle Scholar
  81. 81.
    Rocha EP, Danchin A (2003) Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 31:6570–6577PubMedCrossRefGoogle Scholar
  82. 82.
    Montero Llopis P, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466:77–82PubMedCrossRefGoogle Scholar
  83. 83.
    Kuhlman TE, Cox EC (2012) Gene location and DNA density determine transcription factor distributions in Escherichia coli. Mol Syst Biol 8:610PubMedCrossRefGoogle Scholar
  84. 84.
    Woelfle M, Xu Y, Qin X, Johnson C (2007) Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci USA 104:18819–18824PubMedCrossRefGoogle Scholar
  85. 85.
    Vijayan V, Zuzow R, O’Shea E (2009) Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 106:22564–22568PubMedCrossRefGoogle Scholar
  86. 86.
    Rovinskiy N, Agbleke AA, Chesnokova O, Pang Z, Higgins NP (2012) Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 8(8):e1002845PubMedCrossRefGoogle Scholar
  87. 87.
    Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP, Cockroft SL, Bradley M, Ylstra B, Gilbert N (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20:387–395PubMedCrossRefGoogle Scholar
  88. 88.
    Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM, Lewis NE, Landick R, Palsson BØ (2010) RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci USA 107:20500–20505PubMedCrossRefGoogle Scholar
  89. 89.
    Norris V, den Blaauwen T, Doi RH, Harshey RM, Janniere L, Jiménez-Sánchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M Jr, Skarstad K, Thellier M (2007) Toward a hyperstructure taxonomy. Annu Rev Microbiol 61:309–329Google Scholar
  90. 90.
    Wang W, Li GW, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–1449PubMedCrossRefGoogle Scholar
  91. 91.
    Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany
  2. 2.MRC Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations