Skip to main content

Advertisement

Log in

Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

1,25(OH)2D3:

1,25-dihydroxy vitamin D3

4HT:

4-hydroxytamoxifen

AML:

Acute myeloid leukemia

AP:

Activator protein

ATF:

Activating transcription factor

ATRA:

All-trans retinoic acid

Bcr/Abl:

Breakpoint cluster region/Abelson murine leukemia viral oncogene homolog fusion protein

BLIMP:

B lymphocyte-induced maturation protein

Bmi:

Homolog of B cell-specific Moloney murine leukemia virus integration site

bZIP:

Basic leucine zipper

CIITA:

Class II major histocompatibility complex transactivator

CBP:

CREB binding protein

CD:

Cluster of differentiation

CDDO:

2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid

CDK:

Cyclin-dependent kinase

C/EBP:

CCAAT/enhancer binding protein

CLP:

Common lymphoid progenitor

CML:

Chronic myelogenous leukemia

CMP:

Common myeloid progenitor

c-Myc:

Avian myelocytomatosis viral oncogene homolog

Cox:

Cyclooxygenase

c-Rel:

Avian reticuloendotheliosis viral oncogene homolog

CREB:

CAMP response element-binding protein

CSF:

Colony-stimulating factor

CSFR:

CSF receptor

CXCL:

C-X-C-motif chemokine ligand

DAG:

Diacylgylcerol

DC:

Dendritic cell

EDAG:

Erythroid differentiation-associated gene

ER:

Estrogen receptor

ERK:

Extracellular signal-regulated kinase

Ets:

E26 transformation-specific

FAK:

Focal adhesion kinase

FcγR:

Fcγ receptor

FLT3:

Fms-like tyrosine kinase 3

FLT3L:

FLT3 ligand

Fos:

v-Fos murine osteosarcoma viral oncogene homolog

FoxO:

Forkhead box protein O

Fra:

Fos-related antigen

GABP:

GA-binding protein

GATA:

GATA-binding factor

G-CSF:

Granulocyte CSF

Gfi:

Growth factor-independent

GM-CSF:

Granulocyte/macrophage CSF

GMP:

Granulocyte/monocyte progenitor

GPCR:

G protein-coupled receptor

GSK:

Glycogen synthase kinase

HIV:

Human immunodeficiency virus

Hox:

Homeobox

HPK:

Hematopoietic progenitor kinase

HSC:

Hematopoietic stem cell

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IRF:

Interferon regulatory factor

JAK:

Janus kinase

JDP:

Jun dimerization protein

JNK:

c-Jun N-terminal kinase

kd:

Knock down

KLF:

Krueppel-like factor

ko:

Knock out

LAP:

Liver-enriched activating protein

LIF:

Leukemia inhibitory factor

LIP:

Liver-enriched inhibitory protein

LPS:

Lipopolysaccharide

Ly6C:

Lymphocyte antigen 6 complex locus C

Maf:

Musculoaponeurotic fibrosarcoma oncogene homolog

MAPK:

Mitogen-activated protein kinase

MAP3K:

MAPK kinase kinase

M-CSF:

Macrophage-colony stimulating factor

MDP:

Monocyte/macrophage and dendritic cell progenitor

MEK:

MAPK/ERK kinase

MEP:

Megakaryocyte-erythroid progenitor

METS:

Mitogenic Ets transcriptional suppressor

MIP:

Macrophage inflammatory protein

MKK:

MAPK kinase

MLL:

Mixed-lineage leukemia

MPP:

Multipotent progenitor

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor κ-light-chain-enhancer of activated B cells

NOD:

Non-obese diabetic

Numb:

Homolog of Drosophila Numb

OSM:

Oncostatin M

Pax:

Paired box protein

PI3K:

Phosphoinositide-3-kinase

PIP3:

Phosphoinositide-3,4,5-trisphosphate

PKB:

Protein kinase B

PKC:

Protein kinase C

PMA:

Phorbol-12-myristate 13-acetate

PTP:

Protein tyrosine phosphatase

PU.1:

Purine-rich box 1

PU.1/ER:

PU.1/estrogen receptor fusion protein

Pyk:

Proline-rich tyrosine kinase

RA:

Retinoic acid

Raf:

Rapidly accelerated fibrosarcoma

RAR:

Retinoic acid receptor

Ras:

Rat sarcoma

Rb:

Retinoblastoma protein

Rheb:

Ras homolog enriched in brain

RSK:

90-kDa ribosomal protein S6 kinase

RTK:

Receptor tyrosine kinase

RXR:

Retinoic X receptor

SCF:

Stem cell factor

SCID:

Severe combined immunodeficiency

Shp:

Src homology 2 domain-containing protein tyrosine phosphatase

SFK:

Src family kinase

sRAGE:

Soluble receptor for advanced glycation end products

Src:

v-Src avian sarcoma viral oncogene homolog

STAT:

Signal transducer and activator of transcription

TGF:

Transforming growth factor

THOC:

THO complex

TNF:

Tumor necrosis factor

TSC:

Tuberous sclerosis protein

Tyk:

Tyrosine kinase

UA:

Ursolic acid

VDR:

Vitamin D receptor

VDRE:

Vitamin D responsive element

Vit:

Vitamin

wt:

Wild type

References

  1. Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

    CAS  PubMed  Google Scholar 

  2. Chow A, Brown BD, Merad M (2011) Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 11:788–798

    CAS  PubMed  Google Scholar 

  3. Wang LD, Wagers AJ (2011) Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 12:643–655

    CAS  PubMed  Google Scholar 

  4. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406

    CAS  PubMed  Google Scholar 

  5. Mercer EM, Lin YC, Murre C (2011) Factors and networks that underpin early hematopoiesis. Semin Immunol 23:317–325

    PubMed Central  PubMed  Google Scholar 

  6. Walasek MA, van Os R, de Haan G (2012) Hematopoietic stem cell expansion: challenges and opportunities. Ann NY Acad Sci 1266:138–150

    CAS  PubMed  Google Scholar 

  7. Aggarwal R, Lu J, Pompili VJ, Das H (2012) Hematopoietic stem cells: transcriptional regulation, ex vivo expansion and clinical application. Curr Mol Med 12:34–49

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132:583–597

    CAS  PubMed  Google Scholar 

  9. Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7:105–117

    CAS  PubMed  Google Scholar 

  10. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    CAS  PubMed  Google Scholar 

  11. Graf T (2002) Differentiation plasticity of hematopoietic cells. Blood 99:3089–3101

    CAS  PubMed  Google Scholar 

  12. Friedman AD (2002) Runx1, c-Myb, and C/EBPalpha couple differentiation to proliferation or growth arrest during hematopoiesis. J Cell Biochem 86:624–629

    CAS  PubMed  Google Scholar 

  13. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Swirski FK (2011) The spatial and developmental relationships in the macrophage family. Arterioscler Thromb Vasc Biol 31:1517–1522

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80

    CAS  PubMed  Google Scholar 

  16. Yona S, Jung S (2010) Monocytes: subsets, origins, fates and functions. Curr Opin Hematol 17:53–59

    PubMed  Google Scholar 

  17. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Bonasio R, von Andrian UH (2006) Generation, migration and function of circulating dendritic cells. Curr Opin Immunol 18:503–511

    CAS  PubMed  Google Scholar 

  19. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    CAS  PubMed  Google Scholar 

  20. Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945

    CAS  PubMed  Google Scholar 

  21. Lehto VP, Hovi T, Vartio T, Badley RA, Virtanen I (1982) Reorganization of cytoskeletal and contractile elements during transition of human monocytes into adherent macrophages. Lab Invest 47:391–399

    CAS  PubMed  Google Scholar 

  22. Bertagnolo V, Brugnoli F, Grassilli S, Nika E, Capitani S (2012) Vav1 in differentiation of tumoral promyelocytes. Cell Signal 24:612–620

    CAS  PubMed  Google Scholar 

  23. Gaidano G, Bergui L, Schena M, Gaboli M, Cremona O, Marchisio PC, Caligaris-Cappio F (1990) Integrin distribution and cytoskeleton organization in normal and malignant monocytes. Leukemia 4:682–687

    CAS  PubMed  Google Scholar 

  24. Williams DE, Lu L, Broxmeyer HE (1987) Characterization of hematopoietic stem and progenitor cells. Immunol Res 6:294–304

    CAS  PubMed  Google Scholar 

  25. Rowley SD, Sharkis SJ, Hattenburg C, Sensenbrenner LL (1987) Culture from human bone marrow of blast progenitor cells with an extensive proliferative capacity. Blood 69:804–808

    CAS  PubMed  Google Scholar 

  26. Goud TJ, Schotte C, van Furth R (1975) Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro. J Exp Med 142:1180–1199

    CAS  PubMed  Google Scholar 

  27. Bainton DR, Golde DW (1978) Differentiation of macrophages from normal human bone marrow in liquid culture: electron microscopy and cytochemistry. J Clin Invest 61:1555–1569

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Satpathy AT, Wu X, Albring JC, Murphy KM (2012) Re(de)fining the dendritic cell lineage. Nat Immunol 13:1145–1154

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Cohn ZA, Hirsch JG, Fedorko ME (1966) The in vitro differentiation of mononuclear phagocytes. IV: the ultrastructure of macrophage differentiation in the peritoneal cavity and in culture. J Exp Med 123:747–756

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 5:e8668

    PubMed Central  PubMed  Google Scholar 

  31. Serbina NV, Jia T, Hohl TM, Pamer EG (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Soehnlein O, Lindbom L, Weber C (2009) Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114:4613–4623

    CAS  PubMed  Google Scholar 

  33. Tam MA, Rydstrom A, Sundquist M, Wick MJ (2008) Early cellular responses to Salmonella infection: dendritic cells, monocytes, and more. Immunol Rev 225:140–162

    CAS  PubMed  Google Scholar 

  34. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG (2011) The pathogenesis of sepsis. Annu Rev Pathol 6:19–48

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Szekanecz Z, Koch AE (2007) Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol 19:289–295

    PubMed  Google Scholar 

  36. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815

    CAS  PubMed  Google Scholar 

  37. Ingersoll MA, Platt AM, Potteaux S, Randolph GJ (2011) Monocyte trafficking in acute and chronic inflammation. Trends Immunol 32:470–477

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Dalmas E, Clement K, Guerre-Millo M (2011) Defining macrophage phenotype and function in adipose tissue. Trends Immunol 32:307–314

    CAS  PubMed  Google Scholar 

  40. Noursadeghi M, Katz DR, Miller RF (2006) HIV-1 infection of mononuclear phagocytic cells: the case for bacterial innate immune deficiency in AIDS. Lancet Infect Dis 6:794–804

    PubMed  Google Scholar 

  41. Tenen DG (2003) Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3:89–101

    CAS  PubMed  Google Scholar 

  42. Miranda MB, Johnson DE (2007) Signal transduction pathways that contribute to myeloid differentiation. Leukemia 21:1363–1377

    CAS  PubMed  Google Scholar 

  43. Friedman AD (2007) Transcriptional control of granulocyte and monocyte development. Oncogene 26:6816–6828

    CAS  PubMed  Google Scholar 

  44. Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3:650–665

    CAS  PubMed  Google Scholar 

  45. Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony-stimulating factors. Dev Comp Immunol 28:509–554

    CAS  PubMed  Google Scholar 

  46. Robb L (2007) Cytokine receptors and hematopoietic differentiation. Oncogene 26:6715–6723

    CAS  PubMed  Google Scholar 

  47. Karlsson KR, Cowley S, Martinez FO, Shaw M, Minger SL, James W (2008) Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Exp Hematol 36:1167–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Carlberg C, Molnar F, Mourino A (2012) Vitamin D receptor ligands: the impact of crystal structures. Expert Opin Ther Pat 22:417–435

    CAS  PubMed  Google Scholar 

  49. Gombart AF, Luong QT, Koeffler HP (2006) Vitamin D compounds: activity against microbes and cancer. Anticancer Res 26:2531–2542

    CAS  PubMed  Google Scholar 

  50. Di Rosa M, Malaguarnera M, Nicoletti F, Malaguarnera L (2011) Vitamin D3: a helpful immuno-modulator. Immunology 134:123–139

    PubMed  Google Scholar 

  51. Pramanik R, Asplin JR, Lindeman C, Favus MJ, Bai S, Coe FL (2004) Lipopolysaccharide negatively modulates vitamin D action by down-regulating expression of vitamin D-induced VDR in human monocytic THP-1 cells. Cell Immunol 232:137–143

    CAS  PubMed  Google Scholar 

  52. Miyaura C, Abe E, Suda T, Kuroki T (1985) Alternative differentiation of human promyelocytic leukemia cells (HL-60) induced selectively by retinoic acid and 1 alpha,25-dihydroxyvitamin D3. Cancer Res 45:4244–4248

    CAS  PubMed  Google Scholar 

  53. Wagsater D, Sirsjo A, Dimberg J (2003) Down-regulation of ID2 by all-trans retinoic acid in monocytic leukemia cells (THP-1). J Exp Clin Cancer Res 22:471–475

    CAS  PubMed  Google Scholar 

  54. Zhu L, Gong B, Bisgaier CL, Aviram M, Newton RS (1998) Induction of PPARgamma1 expression in human THP-1 monocytic leukemia cells by 9-cis-retinoic acid is associated with cellular growth suppression. Biochem Biophys Res Commun 251:842–848

    CAS  PubMed  Google Scholar 

  55. Hemmi H, Breitman TR (1985) Induction of functional differentiation of a human monocytic leukemia cell line (THP-1) by retinoic acid and cholera toxin. Jpn J Cancer Res 76:345–351

    CAS  PubMed  Google Scholar 

  56. Nakamura T, Hemmi H, Aso H, Ishida N (1986) Variants of a human monocytic leukemia cell line (THP-1): induction of differentiation by retinoic acid, interferon-gamma, and T-lymphocyte-derived differentiation-inducing activity. J Natl Cancer Inst 77:21–27

    CAS  PubMed  Google Scholar 

  57. Zimber A, Chedeville A, Abita JP, Barbu V, Gespach C (2000) Functional interactions between bile acids, all-trans retinoic acid, and 1,25-dihydroxy-vitamin D3 on monocytic differentiation and myeloblastin gene down-regulation in HL60 and THP-1 human leukemia cells. Cancer Res 60:672–678

    CAS  PubMed  Google Scholar 

  58. Ding Q, Jin T, Wang Z, Chen Y (2007) Catalase potentiates retinoic acid-induced THP-1 monocyte differentiation into macrophage through inhibition of peroxisome proliferator-activated receptor gamma. J Leukoc Biol 81:1568–1576

    CAS  PubMed  Google Scholar 

  59. Taimi M, Chateau MT, Cabane S, Marti J (1991) Synergistic effect of retinoic acid and 1,25-dihydroxyvitamin D3 on the differentiation of the human monocytic cell line U937. Leuk Res 15:1145–1152

    CAS  PubMed  Google Scholar 

  60. Breitman TR, Selonick SE, Collins SJ (1980) Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 77:2936–2940

    CAS  PubMed  Google Scholar 

  61. Aglietta M, Piacibello W, Stacchini A, Sanavio F, Gavosto F (1985) In-vitro effect of retinoic acid on normal and chronic myeloid leukemia granulopoiesis. Leuk Res 9:879–883

    CAS  PubMed  Google Scholar 

  62. Nagler A, Ricklis I, Gazit E, Tatarsky I, Fabian I (1986) Differentiation of bone marrow cells from myelodysplastic patients in the presence of 1,25 dihydroxyvitamin D3 or 13-cis retinoic acid. Eur J Clin Invest 16:297–301

    CAS  PubMed  Google Scholar 

  63. Chan S, Fung M, Mak N, Leung K (1997) Involvement of interleukin-1 in the differentiation-inducing activity of tumor necrosis factor-alpha on a murine myeloid leukemia (WEHI-3B JCS). Int J Oncol 10:821–826

    CAS  PubMed  Google Scholar 

  64. Samal BB, Stearns GW, Boone TC, Arakawa T (1993) Comparative analysis of the effects of recombinant cytokines on the growth and differentiation of ML-1, a human myelogenous leukemic cell line. Leuk Res 17:299–304

    CAS  PubMed  Google Scholar 

  65. Mak NK, Fung MC, Leung KN, Hapel AJ (1993) Monocytic differentiation of a myelomonocytic leukemic cell (WEHI 3B JCS) is induced by tumour necrosis factor-alpha (TNF-alpha). Cell Immunol 150:1–14

    PubMed  Google Scholar 

  66. Leung KN, Mak NK, Fung MC, Hapel AJ (1994) Synergistic effect of IL-4 and TNF-alpha in the induction of monocytic differentiation of a mouse myeloid leukaemic cell line (WEHI-3B JCS). Immunology 81:65–72

    CAS  PubMed  Google Scholar 

  67. Krutzik SR, Hewison M, Liu PT, Robles JA, Stenger S, Adams JS, Modlin RL (2008) IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J Immunol 181:7115–7120

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Tanigawa T, Elwood N, Metcalf D, Cary D, DeLuca E, Nicola NA, Begley CG (1993) The SCL gene product is regulated by and differentially regulates cytokine responses during myeloid leukemic cell differentiation. Proc Natl Acad Sci USA 90:7864–7868

    CAS  PubMed  Google Scholar 

  69. Netea MG, Lewis EC, Azam T, Joosten LA, Jaekal J, Bae SY, Dinarello CA, Kim SH (2008) Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci USA 105:3515–3520

    CAS  PubMed  Google Scholar 

  70. Tamura T, Ozato K (2002) ICSBP/IRF-8: its regulatory roles in the development of myeloid cells. J Interferon Cytokine Res 22:145–152

    CAS  PubMed  Google Scholar 

  71. Perussia B, Dayton ET, Fanning V, Thiagarajan P, Hoxie J, Trinchieri G (1983) Immune interferon and leukocyte-conditioned medium induce normal and leukemic myeloid cells to differentiate along the monocytic pathway. J Exp Med 158:2058–2080

    CAS  PubMed  Google Scholar 

  72. Kolb-Maurer A, Weissinger F, Kurzai O, Maurer M, Wilhelm M, Goebel W (2004) Bacterial infection of human hematopoietic stem cells induces monocytic differentiation. FEMS Immunol Med Microbiol 40:147–153

    CAS  PubMed  Google Scholar 

  73. Adams DO (1975) The structure of mononuclear phagocytes differentiating in vivo. II. The effect of Mycobacterium tuberculosis. Am J Pathol 80:101–116

    CAS  PubMed  Google Scholar 

  74. Hall RE, Agarwal S, Kestler DP (2000) Induction of leukemia cell differentiation and apoptosis by recombinant P48, a modulin derived from Mycoplasma fermentans. Biochem Biophys Res Commun 269:284–289

    CAS  PubMed  Google Scholar 

  75. Petit AJ, Terpstra FG, Miedema F (1987) Human immunodeficiency virus infection down-regulates HLA class II expression and induces differentiation in promonocytic U937 cells. J Clin Invest 79:1883–1889

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Roulston A, D’Addario M, Boulerice F, Caplan S, Wainberg MA, Hiscott J (1992) Induction of monocytic differentiation and NF-kappa B-like activities by human immunodeficiency virus 1 infection of myelomonoblastic cells. J Exp Med 175:751–763

    CAS  PubMed  Google Scholar 

  77. Chang ZL (2009) Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 101:709–721

    CAS  PubMed  Google Scholar 

  78. Livneh E, Fishman DD (1997) Linking protein kinase C to cell-cycle control. Eur J Biochem 248:1–9

    CAS  PubMed  Google Scholar 

  79. Katagiri K, Hattori S, Nakamura S, Yamamoto T, Yoshida T, Katagiri T (1994) Activation of Ras and formation of GAP complex during TPA-induced monocytic differentiation of HL-60 cells. Blood 84:1780–1789

    CAS  PubMed  Google Scholar 

  80. Hass R, Prudovsky I, Kruhoffer M (1997) Differential effects of phorbol ester on signaling and gene expression in human leukemia cells. Leuk Res 21:589–594

    CAS  PubMed  Google Scholar 

  81. Schwende H, Fitzke E, Ambs P, Dieter P (1996) Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol 59:555–561

    CAS  PubMed  Google Scholar 

  82. Kim SJ, Bang OS, Lee YS, Kang SS (1998) Production of inducible nitric oxide is required for monocytic differentiation of U937 cells induced by vitamin E-succinate. J Cell Sci 111:435–441

    CAS  PubMed  Google Scholar 

  83. Coccia EM, Del Russo N, Stellacci E, Testa U, Marziali G, Battistini A (1999) STAT1 activation during monocyte to macrophage maturation: role of adhesion molecules. Int Immunol 11:1075–1083

    CAS  PubMed  Google Scholar 

  84. Zhang T, He YM, Wang JS, Shen J, Xing YY, Xi T (2011) Ursolic acid induces HL60 monocytic differentiation and upregulates C/EBPbeta expression by ERK pathway activation. Anticancer Drugs 22:158–165

    CAS  PubMed  Google Scholar 

  85. Ji Y, Lee HJ, Goodman C, Uskokovic M, Liby K, Sporn M, Suh N (2006) The synthetic triterpenoid CDDO-imidazolide induces monocytic differentiation by activating the Smad and ERK signaling pathways in HL60 leukemia cells. Mol Cancer Ther 5:1452–1458

    CAS  PubMed  Google Scholar 

  86. Akashi K, Traver D, Zon LI (2005) The complex cartography of stem cell commitment. Cell 121:160–162

    CAS  PubMed  Google Scholar 

  87. Gotze KS, Ramirez M, Tabor K, Small D, Matthews W, Civin CI (1998) Flt3high and Flt3low CD34 + progenitor cells isolated from human bone marrow are functionally distinct. Blood 91:1947–1958

    CAS  PubMed  Google Scholar 

  88. Rusten LS, Lyman SD, Veiby OP, Jacobsen SE (1996) The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34 + bone marrow progenitor cells in vitro. Blood 87:1317–1325

    CAS  PubMed  Google Scholar 

  89. Gabbianelli M, Pelosi E, Montesoro E, Valtieri M, Luchetti L, Samoggia P, Vitelli L, Barberi T, Testa U, Lyman S et al (1995) Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood 86:1661–1670

    CAS  PubMed  Google Scholar 

  90. Kolb-Maurer A, Wilhelm M, Weissinger F, Brocker EB, Goebel W (2002) Interaction of human hematopoietic stem cells with bacterial pathogens. Blood 100:3703–3709

    CAS  PubMed  Google Scholar 

  91. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR (1995) Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3:147–161

    CAS  PubMed  Google Scholar 

  92. Haas SC, Huber R, Gutsch R, Kandemir JD, Cappello C, Krauter J, Duyster J, Ganser A, Brand K (2010) ITD- and FL-induced FLT3 signal transduction leads to increased C/EBPbeta-LIP expression and LIP/LAP ratio by different signalling modules. Br J Haematol 148:777–790

    CAS  PubMed  Google Scholar 

  93. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, Steffen B, Matsumura I, Kanakura Y, Bohmer FD, Muller-Tidow C, Berdel WE, Serve H (2003) Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101:3164–3173

    CAS  PubMed  Google Scholar 

  94. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J, Libra M, Stivala F, Milella M, Tafuri A, Lunghi P, Bonati A, Martelli AM, McCubrey JA (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22:686–707

    CAS  PubMed  Google Scholar 

  95. Polak R, Buitenhuis M (2012) The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood 119:911–923

    CAS  PubMed  Google Scholar 

  96. Zhang Y, Zhang J, Studzinski GP (2006) AKT pathway is activated by 1, 25-dihydroxyvitamin D3 and participates in its anti-apoptotic effect and cell cycle control in differentiating HL60 cells. Cell Cycle 5:447–451

    CAS  PubMed  Google Scholar 

  97. Wang Y, Wang H, Piper MG, McMaken S, Mo X, Opalek J, Schmidt AM, Marsh CB (2010) sRAGE induces human monocyte survival and differentiation. J Immunol 185:1822–1835

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Hsu MJ, Lin WW, Tsao WC, Chang YC, Hsu TL, Chiu AW, Chio CC, Hsieh SL (2004) Enhanced adhesion of monocytes via reverse signaling triggered by decoy receptor 3. Exp Cell Res 292:241–251

    CAS  PubMed  Google Scholar 

  99. Gaurnier-Hausser A, Rothman VL, Dimitrov S, Tuszynski GP (2008) The novel angiogenic inhibitor, angiocidin, induces differentiation of monocytes to macrophages. Cancer Res 68:5905–5914

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Maekawa T, Imoto A, Satoh T, Okazaki T, Takahashi S (2011) Induction of beta-catenin by the suppression of signal regulatory protein alpha1 in K562 cells. Int J Mol Med 27:865–872

    CAS  PubMed  Google Scholar 

  101. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Fu CT, Zhu KY, Mi JQ, Liu YF, Murray ST, Fu YF, Ren CG, Dong ZW, Liu YJ, Dong M, Jin Y, Chen Y, Deng M, Zhang W, Chen B, Breslin P, Chen SJ, Chen Z, Becker MW, Zhu J, Zhang JW, Liu TX (2010) An evolutionarily conserved PTEN-C/EBPalpha-CTNNA1 axis controls myeloid development and transformation. Blood 115:4715–4724

    CAS  PubMed  Google Scholar 

  103. Smink JJ, Tunn PU, Leutz A (2010) Rapamycin inhibits osteoclast formation in giant cell tumor of bone through the C/EBPbeta: MafB axis. J Mol Med 90:25–30

    Google Scholar 

  104. Carney L, Pierce A, Rijnen M, Gonzalez Sanchez MB, Hamzah HG, Zhang L, Tamura T, Whetton AD (2009) THOC5 couples M-CSF receptor signaling to transcription factor expression. Cell Signal 21:309–316

    CAS  PubMed  Google Scholar 

  105. Hazzalin CA, Mahadevan LC (2002) MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 3:30–40

    CAS  PubMed  Google Scholar 

  106. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    CAS  PubMed  Google Scholar 

  107. Chung E, Kondo M (2011) Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 49:248–268

    CAS  PubMed  Google Scholar 

  108. Coleman ML, Marshall CJ, Olson MF (2004) RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5:355–366

    CAS  PubMed  Google Scholar 

  109. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T, Pellicer A (2000) Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol 20:2915–2925

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Palmero I, Pantoja C, Serrano M (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395:125–126

    CAS  PubMed  Google Scholar 

  112. Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21(WAF1/CIP1) gene. Exp Cell Res 246:280–289

    CAS  PubMed  Google Scholar 

  113. Passioura T, Dolnikov A, Shen S, Symonds G (2005) N-ras-induced growth suppression of myeloid cells is mediated by IRF-1. Cancer Res 65:797–804

    CAS  PubMed  Google Scholar 

  114. Jin DI, Jameson SB, Reddy MA, Schenkman D, Ostrowski MC (1995) Alterations in differentiation and behavior of monocytic phagocytes in transgenic mice that express dominant suppressors of ras signaling. Mol Cell Biol 15:693–703

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Pearn L, Fisher J, Burnett AK, Darley RL (2007) The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 109:4461–4469

    CAS  PubMed  Google Scholar 

  116. Hibi S, Lohler J, Friel J, Stocking C, Ostertag W (1993) Induction of monocytic differentiation and tumorigenicity by v-Ha-ras in differentiation arrested hematopoietic cells. Blood 81:1841–1848

    CAS  PubMed  Google Scholar 

  117. Fatrai S, van Gosliga D, Han L, Daenen SM, Vellenga E, Schuringa JJ (2011) KRAS(G12V) enhances proliferation and initiates myelomonocytic differentiation in human stem/progenitor cells via intrinsic and extrinsic pathways. J Biol Chem 286:6061–6070

    CAS  PubMed  Google Scholar 

  118. Mavilio F, Kreider BL, Valtieri M, Naso G, Shirsat N, Venturelli D, Reddy EP, Rovera G (1989) Alteration of growth and differentiation factors response by Kirsten and Harvey sarcoma viruses in the IL-3-dependent murine hematopoietic cell line 32D C13(G). Oncogene 4:301–308

    CAS  PubMed  Google Scholar 

  119. Pierce JH, Aaronson SA (1985) Myeloid cell transformation by ras-containing murine sarcoma viruses. Mol Cell Biol 5:667–674

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Dunbar CE, Crosier PS, Nienhuis AW (1991) Introduction of an activated RAS oncogene into murine bone marrow lymphoid progenitors via retroviral gene transfer results in thymic lymphomas. Oncogene Res 6:39–51

    CAS  PubMed  Google Scholar 

  121. Hawley RG, Fong AZ, Ngan BY, Hawley TS (1995) Hematopoietic transforming potential of activated ras in chimeric mice. Oncogene 11:1113–1123

    CAS  PubMed  Google Scholar 

  122. MacKenzie KL, Dolnikov A, Millington M, Shounan Y, Symonds G (1999) Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice. Blood 93:2043–2056

    CAS  PubMed  Google Scholar 

  123. Gallagher AP, Burnett AK, Bowen DT, Darley RL (1998) Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a protein kinase C-dependent process. Cancer Res 58:2029–2035

    CAS  PubMed  Google Scholar 

  124. Skorski T, Nieborowska-Skorska M, Szczylik C, Kanakaraj P, Perrotti D, Zon G, Gewirtz A, Perussia B, Calabretta B (1995) C-RAF-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hematopoiesis. Cancer Res 55:2275–2278

    CAS  PubMed  Google Scholar 

  125. Keller JR, Ruscetti FW, Heidecker G, Linnekin DM, Rapp U, Troppmair J, Gooya J, Muszynski KW (1996) The effect of c-raf antisense oligonucleotides on growth factor-induced proliferation of hematopoietic cells. Curr Top Microbiol Immunol 211:43–53

    CAS  PubMed  Google Scholar 

  126. Kharbanda S, Saleem A, Emoto Y, Stone R, Rapp U, Kufe D (1994) Activation of Raf-1 and mitogen-activated protein kinases during monocytic differentiation of human myeloid leukemia cells. J Biol Chem 269:872–878

    CAS  PubMed  Google Scholar 

  127. Yen A, Williams M, Platko JD, Der C, Hisaka M (1994) Expression of activated RAF accelerates cell differentiation and RB protein down-regulation but not hypophosphorylation. Eur J Cell Biol 65:103–113

    CAS  PubMed  Google Scholar 

  128. Wang X, Studzinski GP (2006) Raf-1 signaling is required for the later stages of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells but is not mediated by the MEK/ERK module. J Cell Physiol 209:253–260

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Miranda MB, Xu H, Torchia JA, Johnson DE (2005) Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway. Leuk Res 29:1293–1306

    CAS  PubMed  Google Scholar 

  130. Miranda MB, McGuire TF, Johnson DE (2002) Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 16:683–692

    CAS  PubMed  Google Scholar 

  131. Whelan RD, Kiley SC, Parker PJ (1999) Tetradecanoyl phorbol acetate-induced microtubule reorganization is required for sustained mitogen-activated protein kinase activation and morphological differentiation of U937 cells. Cell Growth Differ 10:271–277

    CAS  PubMed  Google Scholar 

  132. Ober-Blobaum JL, Engelhardt G, Hebel S, Rink L, Haase H (2010) Cadmium ions promote monocytic differentiation of human leukemia HL-60 cells treated with 1alpha,25-dihydroxyvitamin D3. Biol Chem 391:1295–1303

    PubMed  Google Scholar 

  133. Hu X, Moscinski LC, Valkov NI, Fisher AB, Hill BJ, Zuckerman KS (2000) Prolonged activation of the mitogen-activated protein kinase pathway is required for macrophage-like differentiation of a human myeloid leukemic cell line. Cell Growth Differ 11:191–200

    CAS  PubMed  Google Scholar 

  134. Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK, Molenaar D, Teusink B, Versalovic J (2012) Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS ONE 6:e18783

    Google Scholar 

  135. Okuma E, Inazawa Y, Saeki K, Yuo A (2002) Potential roles of extracellular signal-regulated kinase but not p38 during myeloid differentiation of U937 cells stimulated by cytokines: augmentation of differentiation via prolonged activation of extracellular signal-regulated kinase. Exp Hematol 30:571–581

    CAS  PubMed  Google Scholar 

  136. Wang X, Studzinski GP (2001) Activation of extracellular signal-regulated kinases (ERKs) defines the first phase of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells. J Cell Biochem 80:471–482

    CAS  PubMed  Google Scholar 

  137. Lee JK, Jung JC, Chun JS, Kang SS, Bang OS (2002) Expression of p21WAF1 is dependent on the activation of ERK during vitamin E-succinate-induced monocytic differentiation. Mol Cells 13:125–129

    PubMed  Google Scholar 

  138. Ji Y, Kutner A, Verstuyf A, Verlinden L, Studzinski GP (2002) Derivatives of vitamins D2 and D3 activate three MAPK pathways and upregulate pRb expression in differentiating HL60 cells. Cell Cycle 1:410–415

    CAS  PubMed  Google Scholar 

  139. Marcinkowska E, Garay E, Gocek E, Chrobak A, Wang X, Studzinski GP (2006) Regulation of C/EBPbeta isoforms by MAPK pathways in HL60 cells induced to differentiate by 1,25-dihydroxyvitamin D3. Exp Cell Res 312:2054–2065

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Jack GD, Zhang L, Friedman AD (2009) M-CSF elevates c-Fos and phospho-C/EBPalpha(S21) via ERK whereas G-CSF stimulates SHP2 phosphorylation in marrow progenitors to contribute to myeloid lineage specification. Blood 114:2172–2180

    CAS  PubMed  Google Scholar 

  141. Nakahara T, Moroi Y, Uchi H, Furue M (2006) Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 42:1–11

    CAS  PubMed  Google Scholar 

  142. Dreskin SC, Thomas GW, Dale SN, Heasley LE (2001) Isoforms of Jun kinase are differentially expressed and activated in human monocyte/macrophage (THP-1) cells. J Immunol 166:5646–5653

    CAS  PubMed  Google Scholar 

  143. Ito Y, Mishra NC, Yoshida K, Kharbanda S, Saxena S, Kufe D (2001) Mitochondrial targeting of JNK/SAPK in the phorbol ester response of myeloid leukemia cells. Cell Death Differ 8:794–800

    CAS  PubMed  Google Scholar 

  144. Wang Q, Wang X, Studzinski GP (2003) Jun N-terminal kinase pathway enhances signaling of monocytic differentiation of human leukemia cells induced by 1,25-dihydroxyvitamin D3. J Cell Biochem 89:1087–1101

    CAS  PubMed  Google Scholar 

  145. Yang Z, Kondo T, Voorhorst CS, Nabinger SC, Ndong L, Yin F, Chan EM, Yu M, Wurstlin O, Kratz CP, Niemeyer CM, Flotho C, Hashino E, Chan RJ (2009) Increased c-Jun expression and reduced GATA2 expression promote aberrant monocytic differentiation induced by activating PTPN11 mutants. Mol Cell Biol 29:4376–4393

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA (2006) The JNK are important for development and survival of macrophages. J Immunol 176:2219–2228

    CAS  PubMed  Google Scholar 

  147. Arnold R, Frey CR, Muller W, Brenner D, Krammer PH, Kiefer F (2007) Sustained JNK signaling by proteolytically processed HPK1 mediates IL-3 independent survival during monocytic differentiation. Cell Death Differ 14:568–575

    CAS  PubMed  Google Scholar 

  148. Zhang Y, Morgan MJ, Chen K, Choksi S, Liu ZG (2012) Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119:2895–2905

    CAS  PubMed  Google Scholar 

  149. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    CAS  PubMed  Google Scholar 

  150. Mackay HJ, Twelves CJ (2007) Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 7:554–562

    CAS  PubMed  Google Scholar 

  151. Hass R, Pfannkuche HJ, Kharbanda S, Gunji H, Meyer G, Hartmann A, Hidaka H, Resch K, Kufe D, Goppelt-Strube M (1991) Protein kinase C activation and protooncogene expression in differentiation/retrodifferentiation of human U-937 leukemia cells. Cell Growth Differ 2:541–548

    CAS  PubMed  Google Scholar 

  152. Lin YF, Lee HM, Leu SJ, Tsai YH (2007) The essentiality of PKCalpha and PKCbetaI translocation for CD14 + monocyte differentiation towards macrophages and dendritic cells, respectively. J Cell Biochem 102:429–441

    CAS  PubMed  Google Scholar 

  153. Lin YF, Leu SJ, Huang HM, Tsai YH (2010) Selective activation of specific PKC isoforms dictating the fate of CD14(+) monocytes towards differentiation or apoptosis. J Cell Physiol 226:122–131

    Google Scholar 

  154. Solomon DH, O’Driscoll K, Sosne G, Weinstein IB, Cayre YE (1991) 1 alpha,25-dihydroxyvitamin D3-induced regulation of protein kinase C gene expression during HL-60 cell differentiation. Cell Growth Differ 2:187–194

    CAS  PubMed  Google Scholar 

  155. Kang SN, Lee MH, Kim KM, Cho D, Kim TS (2001) Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: involvement of protein kinase C. Biochem Pharmacol 61:1487–1495

    CAS  PubMed  Google Scholar 

  156. Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11:103–112

    CAS  PubMed  Google Scholar 

  157. Whetton AD, Heyworth CM, Nicholls SE, Evans CA, Lord JM, Dexter TM, Owen-Lynch PJ (1994) Cytokine-mediated protein kinase C activation is a signal for lineage determination in bipotential granulocyte macrophage colony-forming cells. J Cell Biol 125:651–659

    CAS  PubMed  Google Scholar 

  158. Nicholls SE, Heyworth CM, Dexter TM, Lord JM, Johnson GD, Whetton AD (1995) IL-4 promotes macrophage development by rapidly stimulating lineage restriction of bipotent granulocyte-macrophage colony-forming cells. J Immunol 155:845–853

    CAS  PubMed  Google Scholar 

  159. Shearman MS, Heyworth CM, Dexter TM, Haefner B, Owen PJ, Whetton AD (1993) Haemopoietic stem cell development to neutrophils is associated with subcellular redistribution and differential expression of protein kinase C subspecies. J Cell Sci 104:173–180

    CAS  PubMed  Google Scholar 

  160. Rossi F, McNagny M, Smith G, Frampton J, Graf T (1996) Lineage commitment of transformed haematopoietic progenitors is determined by the level of PKC activity. EMBO J 15:1894–1901

    CAS  PubMed  Google Scholar 

  161. Seales EC, Shaikh FM, Woodard-Grice AV, Aggarwal P, McBrayer AC, Hennessy KM, Bellis SL (2005) A protein kinase C/Ras/ERK signaling pathway activates myeloid fibronectin receptors by altering beta1 integrin sialylation. J Biol Chem 280:37610–37615

    CAS  PubMed  Google Scholar 

  162. Mahoney CW, Shuman J, McKnight SL, Chen HC, Huang KP (1992) Phosphorylation of CCAAT-enhancer binding protein by protein kinase C attenuates site-selective DNA binding. J Biol Chem 267:19396–19403

    CAS  PubMed  Google Scholar 

  163. Ting Y, Medina DJ, Strair RK, Schaar DG (2010) Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun 394:606–611

    CAS  PubMed  Google Scholar 

  164. Pierce A, Heyworth CM, Nicholls SE, Spooncer E, Dexter TM, Lord JM, Owen-Lynch PJ, Wark G, Whetton AD (1998) An activated protein kinase C alpha gives a differentiation signal for hematopoietic progenitor cells and mimicks macrophage colony-stimulating factor-stimulated signaling events. J Cell Biol 140:1511–1518

    CAS  PubMed  Google Scholar 

  165. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF (1993) Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 268:20110–20115

    CAS  PubMed  Google Scholar 

  166. Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z (2005) RACK1 mediates activation of JNK by protein kinase C. Mol Cell 19:309–320

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Pandey P, Nakazawa A, Ito Y, Datta R, Kharbanda S, Kufe D (2000) Requirement for caspase activation in monocytic differentiation of myeloid leukemia cells. Oncogene 19:3941–3947

    CAS  PubMed  Google Scholar 

  168. Macfarlane DE, Manzel L (1994) Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem 269:4327–4331

    CAS  PubMed  Google Scholar 

  169. Slosberg ED, Yao Y, Xing F, Ikui A, Jirousek MR, Weinstein IB (2000) The protein kinase C beta-specific inhibitor LY379196 blocks TPA-induced monocytic differentiation of HL60 cells the protein kinase C beta-specific inhibitor LY379196 blocks TPA-induced monocytic differentiation of HL60 cells. Mol Carcinog 27:166–176

    CAS  PubMed  Google Scholar 

  170. Laouar A, Collart FR, Chubb CB, Xie B, Huberman E (1999) Interaction between alpha 5 beta 1 integrin and secreted fibronectin is involved in macrophage differentiation of human HL-60 myeloid leukemia cells. J Immunol 162:407–414

    CAS  PubMed  Google Scholar 

  171. Martin GS (2001) The hunting of the Src. Nat Rev Mol Cell Biol 2:467–475

    CAS  PubMed  Google Scholar 

  172. Yeatman TJ (2004) A renaissance for SRC. Nat Rev Cancer 4:470–480

    CAS  PubMed  Google Scholar 

  173. Willman CL, Stewart CC, Longacre TL, Head DR, Habbersett R, Ziegler SF, Perlmutter RM (1991) Expression of the c-fgr and hck protein-tyrosine kinases in acute myeloid leukemic blasts is associated with early commitment and differentiation events in the monocytic and granulocytic lineages. Blood 77:726–734

    CAS  PubMed  Google Scholar 

  174. Kazansky AV, Rosen JM (2001) Signal transducers and activators of transcription 5B potentiates v-Src-mediated transformation of NIH-3T3 cells. Cell Growth Differ 12:1–7

    CAS  PubMed  Google Scholar 

  175. Kloth MT, Laughlin KK, Biscardi JS, Boerner JL, Parsons SJ, Silva CM (2003) STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor. J Biol Chem 278:1671–1679

    CAS  PubMed  Google Scholar 

  176. Ptasznik A, Traynor-Kaplan A, Bokoch GM (1995) G protein-coupled chemoattractant receptors regulate Lyn tyrosine kinase.Shc adapter protein signaling complexes. J Biol Chem 270:19969–19973

    CAS  PubMed  Google Scholar 

  177. Li Y, Mohammad RM, al-Katib A, Varterasian ML, Chen B (1997) Bryostatin 1 (bryo1)-induced monocytic differentiation in THP-1 human leukemia cells is associated with enhanced c-fyn tyrosine kinase and M-CSF receptors. Leuk Res 21:391–397

    CAS  PubMed  Google Scholar 

  178. Xue ZH, Zhao CQ, Chua GL, Tan SW, Tang XY, Wong SC, Tan SM (2010) Integrin alphaMbeta2 clustering triggers phosphorylation and activation of protein kinase C delta that regulates transcription factor Foxp1 expression in monocytes. J Immunol 184:3697–3709

    CAS  PubMed  Google Scholar 

  179. Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ (2000) Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2:203–210

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Lennartsson J, Wernstedt C, Engstrom U, Hellman U, Ronnstrand L (2003) Identification of Tyr900 in the kinase domain of c-Kit as a Src-dependent phosphorylation site mediating interaction with c-Crk. Exp Cell Res 288:110–118

    CAS  PubMed  Google Scholar 

  181. Gee CE, Griffin J, Sastre L, Miller LJ, Springer TA, Piwnica-Worms H, Roberts TM (1986) Differentiation of myeloid cells is accompanied by increased levels of pp 60c-src protein and kinase activity. Proc Natl Acad Sci USA 83:5131–5135

    CAS  PubMed  Google Scholar 

  182. Willman CL, Stewart CC, Griffith JK, Stewart SJ, Tomasi TB (1987) Differential expression and regulation of the c-src and c-fgr protooncogenes in myelomonocytic cells. Proc Natl Acad Sci USA 84:4480–4484

    CAS  PubMed  Google Scholar 

  183. Matikainen S, Hurme M (1994) Comparison of retinoic acid and phorbol myristate acetate as inducers of monocytic differentiation. Int J Cancer 57:98–103

    CAS  PubMed  Google Scholar 

  184. Chiaradonna F, Fontana L, Iavarone C, Carriero MV, Scholz G, Barone MV, Stoppelli MP (1999) Urokinase receptor-dependent and -independent p56/59(hck) activation state is a molecular switch between myelomonocytic cell motility and adherence. EMBO J 18:3013–3023

    CAS  PubMed  Google Scholar 

  185. Katagiri K, Katagiri T, Koyama Y, Morikawa M, Yamamoto T, Yoshida T (1991) Expression of src family genes during monocytic differentiation of HL-60 cells. J Immunol 146:701–707

    CAS  PubMed  Google Scholar 

  186. Katagiri K, Katagiri T, Kajiyama K, Yamamoto T, Yoshida T (1993) Tyrosine-phosphorylation of tubulin during monocytic differentiation of HL-60 cells. J Immunol 150:585–593

    CAS  PubMed  Google Scholar 

  187. Yao Y, Zhou Q, Ericson SG (2004) Vanadate stimulates monocytic differentiation activity of IL-6 by enhancing actin filament polymerization in HL-60 cells. J Biomed Sci 11:940–949

    CAS  PubMed  Google Scholar 

  188. Mermel CH, McLemore ML, Liu F, Pereira S, Woloszynek J, Lowell CA, Link DC (2006) Src family kinases are important negative regulators of G-CSF-dependent granulopoiesis. Blood 108:2562–2568

    CAS  PubMed  Google Scholar 

  189. Harder KW, Parsons LM, Armes J, Evans N, Kountouri N, Clark R, Quilici C, Grail D, Hodgson GS, Dunn AR, Hibbs ML (2001) Gain- and loss-of-function Lyn mutant mice define a critical inhibitory role for Lyn in the myeloid lineage. Immunity 15:603–615

    CAS  PubMed  Google Scholar 

  190. Napolitani G, Bortoletto N, Racioppi L, Lanzavecchia A, D’Oro U (2003) Activation of src-family tyrosine kinases by LPS regulates cytokine production in dendritic cells by controlling AP-1 formation. Eur J Immunol 33:2832–2841

    CAS  PubMed  Google Scholar 

  191. Mirnics ZK, Caudell E, Gao Y, Kuwahara K, Sakaguchi N, Kurosaki T, Burnside J, Mirnics K, Corey SJ (2004) Microarray analysis of Lyn-deficient B cells reveals germinal center-associated nuclear protein and other genes associated with the lymphoid germinal center. J Immunol 172:4133–4141

    CAS  PubMed  Google Scholar 

  192. Zhou HR, Jia Q, Pestka JJ (2005) Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicol Sci 85:916–926

    CAS  PubMed  Google Scholar 

  193. Schreiner SJ, Schiavone AP, Smithgall TE (2002) Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain. J Biol Chem 277:45680–45687

    CAS  PubMed  Google Scholar 

  194. Carotta S, Wu L, Nutt SL (2010) Surprising new roles for PU.1 in the adaptive immune response. Immunol Rev 238:63–75

    CAS  PubMed  Google Scholar 

  195. Rosmarin AG, Yang Z, Resendes KK (2005) Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 33:131–143

    CAS  PubMed  Google Scholar 

  196. Gangenahalli GU, Gupta P, Saluja D, Verma YK, Kishore V, Chandra R, Sharma RK, Ravindranath T (2005) Stem cell fate specification: role of master regulatory switch transcription factor PU.1 in differential hematopoiesis. Stem Cells Dev 14:140–152

    CAS  PubMed  Google Scholar 

  197. Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577

    CAS  PubMed  Google Scholar 

  198. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15:5647–5658

    CAS  PubMed  Google Scholar 

  199. Kastner P, Chan S (2008) PU.1: a crucial and versatile player in hematopoiesis and leukemia. Int J Biochem Cell Biol 40:22–27

    CAS  PubMed  Google Scholar 

  200. Sakhinia E, Byers R, Bashein A, Hoyland J, Buckle AM, Brady G (2006) Gene expression analysis of myeloid and lymphoid lineage markers during mouse haematopoiesis. Br J Haematol 135:105–116

    CAS  PubMed  Google Scholar 

  201. Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL (2005) PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201:1487–1502

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S, Arinobu Y, Geary K, Zhang P, Dayaram T, Fenyus ML, Elf S, Chan S, Kastner P, Huettner CS, Murray R, Tenen DG, Akashi K (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590–1600

    CAS  PubMed  Google Scholar 

  203. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, Narravula S, Torbett BE, Orkin SH, Tenen DG (2000) PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96:2641–2648

    CAS  PubMed  Google Scholar 

  204. Chateauvieux S, Eifes S, Morceau F, Grigorakaki C, Schnekenburger M, Henry E, Dicato M, Diederich M (2011) Valproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway. Biochem Pharmacol 81:498–509

    CAS  PubMed  Google Scholar 

  205. Liew CW, Rand KD, Simpson RJ, Yung WW, Mansfield RE, Crossley M, Proetorius-Ibba M, Nerlov C, Poulsen FM, Mackay JP (2006) Molecular analysis of the interaction between the hematopoietic master transcription factors GATA-1 and PU.1. J Biol Chem 281:28296–28306

    CAS  PubMed  Google Scholar 

  206. Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF, Friend DS, Stevens RL, Anastasi J, Singh H (2002) Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17:665–676

    CAS  PubMed  Google Scholar 

  207. Wang D, D’Costa J, Civin CI, Friedman AD (2006) C/EBPalpha directs monocytic commitment of primary myeloid progenitors. Blood 108:1223–1229

    CAS  PubMed  Google Scholar 

  208. DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–1441

    CAS  PubMed  Google Scholar 

  209. Li CY, Zhan YQ, Li W, Xu CW, Xu WX, Yu DH, Peng RY, Cui YF, Yang X, Hou N, Li YH, Dong B, Sun HB, Yang XM (2007) Overexpression of a hematopoietic transcriptional regulator EDAG induces myelopoiesis and suppresses lymphopoiesis in transgenic mice. Leukemia 21:2277–2286

    CAS  PubMed  Google Scholar 

  210. Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA, Zhang DE, Moreau-Gachelin F, Tenen DG (1995) PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11:1549–1560

    CAS  PubMed  Google Scholar 

  211. Dahl R, Simon MC (2003) The importance of PU.1 concentration in hematopoietic lineage commitment and maturation. Blood Cells Mol Dis 31:229–233

    CAS  PubMed  Google Scholar 

  212. Friedman AD (2007) C/EBPalpha induces PU.1 and interacts with AP-1 and NF-kappaB to regulate myeloid development. Blood Cells Mol Dis 39:340–343

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y, Akashi K, Fiering S, Tenen DG (2004) Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36:624–630

    CAS  PubMed  Google Scholar 

  214. Yeamans C, Wang D, Paz-Priel I, Torbett BE, Tenen DG, Friedman AD (2007) C/EBPalpha binds and activates the PU.1 distal enhancer to induce monocyte lineage commitment. Blood 110:3136–3142

    CAS  PubMed  Google Scholar 

  215. Houston IB, Kamath MB, Schweitzer BL, Chlon TM, DeKoter RP (2007) Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol 35:1056–1068

    CAS  PubMed Central  PubMed  Google Scholar 

  216. de Bruin AM, Libregts SF, Valkhof M, Boon L, Touw IP, Nolte MA (2012) IFNgamma induces monopoiesis and inhibits neutrophil development during inflammation. Blood 119:1543–1554

    PubMed  Google Scholar 

  217. Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584

    CAS  PubMed  Google Scholar 

  218. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–766

    CAS  PubMed  Google Scholar 

  219. Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    CAS  PubMed  Google Scholar 

  220. Dionne CJ, Tse KY, Weiss AH, Franco CB, Wiest DL, Anderson MK, Rothenberg EV (2005) Subversion of T lineage commitment by PU.1 in a clonal cell line system. Dev Biol 280:448–466

    CAS  PubMed  Google Scholar 

  221. Laiosa CV, Stadtfeld M, Xie H, de Andres-Aguayo L, Graf T (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25:731–744

    CAS  PubMed  Google Scholar 

  222. Feng R, Desbordes SC, Xie H, Tillo ES, Pixley F, Stanley ER, Graf T (2008) PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci USA 105:6057–6062

    CAS  PubMed  Google Scholar 

  223. Olson MC, Scott EW, Hack AA, Su GH, Tenen DG, Singh H, Simon MC (1995) PU. 1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 3:703–714

    CAS  PubMed  Google Scholar 

  224. Henkel GW, McKercher SR, Leenen PJ, Maki RA (1999) Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1. Blood 93:2849–2858

    CAS  PubMed  Google Scholar 

  225. Friedman AD (2002) Transcriptional regulation of granulocyte and monocyte development. Oncogene 21:3377–3390

    CAS  PubMed  Google Scholar 

  226. Starck J, Weiss-Gayet M, Gonnet C, Guyot B, Vicat JM, Morle F (2010) Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. Blood 116:4795–4805

    CAS  PubMed  Google Scholar 

  227. Yang ZF, Drumea K, Cormier J, Wang J, Zhu X, Rosmarin AG (2011) GABP transcription factor is required for myeloid differentiation, in part, through its control of Gfi-1 expression. Blood 118:2243–2253

    CAS  PubMed  Google Scholar 

  228. Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F, Iwasaki H, Hirai H, Katz JP, Haspel RL, Gray S, Akashi K, Segre J, Kaestner KH, Tenen DG, Jain MK (2007) The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J 26:4138–4148

    CAS  PubMed  Google Scholar 

  229. Steidl U, Rosenbauer F, Verhaak RG, Gu X, Ebralidze A, Otu HH, Klippel S, Steidl C, Bruns I, Costa DB, Wagner K, Aivado M, Kobbe G, Valk PJ, Passegue E, Libermann TA, Delwel R, Tenen DG (2006) Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet 38:1269–1277

    CAS  PubMed  Google Scholar 

  230. Ghani S, Riemke P, Schonheit J, Lenze D, Stumm J, Hoogenkamp M, Lagendijk A, Heinz S, Bonifer C, Bakkers J, Abdelilah-Seyfried S, Hummel M, Rosenbauer F (2011) Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood 118:2275–2284

    CAS  PubMed  Google Scholar 

  231. Kong KY, Owens KS, Rogers JH, Mullenix J, Velu CS, Grimes HL, Dahl R (2010) MIR-23A microRNA cluster inhibits B-cell development. Exp Hematol 38(629–640):e621

    Google Scholar 

  232. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    CAS  PubMed  Google Scholar 

  233. Johnson PF (2005) Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci 118:2545–2555

    CAS  PubMed  Google Scholar 

  234. Wang X, Scott E, Sawyers CL, Friedman AD (1999) C/EBPalpha bypasses granulocyte colony-stimulating factor signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts. Blood 94:560–571

    CAS  PubMed  Google Scholar 

  235. Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR, Tenen DG (2001) c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell Biol 21:3789–3806

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Timchenko NA, Wilde M, Nakanishi M, Smith JR, Darlington GJ (1996) CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 10:804–815

    CAS  PubMed  Google Scholar 

  237. Friedman AD, Keefer JR, Kummalue T, Liu H, Wang QF, Cleaves R (2003) Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein alpha. Blood Cells Mol Dis 31:338–341

    CAS  PubMed  Google Scholar 

  238. Kirstetter P, Schuster MB, Bereshchenko O, Moore S, Dvinge H, Kurz E, Theilgaard-Monch K, Mansson R, Pedersen TA, Pabst T, Schrock E, Porse BT, Jacobsen SE, Bertone P, Tenen DG, Nerlov C (2008) Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 13:299–310

    CAS  PubMed  Google Scholar 

  239. Chen Y, Costa RM, Love NR, Soto X, Roth M, Paredes R, Amaya E (2009) C/EBPalpha initiates primitive myelopoiesis in pluripotent embryonic cells. Blood 114:40–48

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Suh HC, Gooya J, Renn K, Friedman AD, Johnson PF, Keller JR (2006) C/EBPalpha determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 107:4308–4316

    CAS  PubMed  Google Scholar 

  241. Fukuchi Y, Shibata F, Ito M, Goto-Koshino Y, Sotomaru Y, Ito M, Kitamura T, Nakajima H (2006) Comprehensive analysis of myeloid lineage conversion using mice expressing an inducible form of C/EBP alpha. EMBO J 25:3398–3410

    CAS  PubMed  Google Scholar 

  242. Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Hsu CL, King-Fleischman AG, Lai AY, Matsumoto Y, Weissman IL, Kondo M (2006) Antagonistic effect of CCAAT enhancer-binding protein-alpha and Pax5 in myeloid or lymphoid lineage choice in common lymphoid progenitors. Proc Natl Acad Sci USA 103:672–677

    CAS  PubMed  Google Scholar 

  244. Heavey B, Charalambous C, Cobaleda C, Busslinger M (2003) Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPalpha and GATA factors. EMBO J 22:3887–3897

    CAS  PubMed  Google Scholar 

  245. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG (1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 94:569–574

    CAS  PubMed  Google Scholar 

  246. Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM, Shigematsu H, Levantini E, Huettner CS, Lekstrom-Himes JA, Akashi K, Tenen DG (2004) Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 21:853–863

    CAS  PubMed  Google Scholar 

  247. Heath V, Suh HC, Holman M, Renn K, Gooya JM, Parkin S, Klarmann KD, Ortiz M, Johnson P, Keller J (2004) C/EBPalpha deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vitro and in vivo. Blood 104:1639–1647

    CAS  PubMed  Google Scholar 

  248. Wang QF, Friedman AD (2002) CCAAT/enhancer-binding proteins are required for granulopoiesis independent of their induction of the granulocyte colony-stimulating factor receptor. Blood 99:2776–2785

    CAS  PubMed  Google Scholar 

  249. Kato N, Kitaura J, Doki N, Komeno Y, Watanabe-Okochi N, Togami K, Nakahara F, Oki T, Enomoto Y, Fukuchi Y, Nakajima H, Harada Y, Harada H, Kitamura T (2010) Two types of C/EBPalpha mutations play distinct but collaborative roles in leukemogenesis: lessons from clinical data and BMT models. Blood 117:221–233

    PubMed  Google Scholar 

  250. Schwieger M, Lohler J, Fischer M, Herwig U, Tenen DG, Stocking C (2004) A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood 103:2744–2752

    CAS  PubMed  Google Scholar 

  251. Niebuhr B, Iwanski GB, Schwieger M, Roscher S, Stocking C, Cammenga J (2009) Investigation of C/EBPalpha function in human (versus murine) myelopoiesis provides novel insight into the impact of CEBPA mutations in acute myelogenous leukemia (AML). Leukemia 23:978–983

    CAS  PubMed  Google Scholar 

  252. Matsushita H, Nakajima H, Nakamura Y, Tsukamoto H, Tanaka Y, Jin G, Yabe M, Asai S, Ono R, Nosaka T, Sugita K, Morimoto A, Hayashi Y, Hotta T, Ando K, Miyachi H (2008) C/EBPalpha and C/EBPvarepsilon induce the monocytic differentiation of myelomonocytic cells with the MLL-chimeric fusion gene. Oncogene 27:6749–6760

    CAS  PubMed  Google Scholar 

  253. Schepers H, Wierenga AT, van Gosliga D, Eggen BJ, Vellenga E, Schuringa JJ (2007) Reintroduction of C/EBPalpha in leukemic CD34 + stem/progenitor cells impairs self-renewal and partially restores myelopoiesis. Blood 110:1317–1325

    CAS  PubMed  Google Scholar 

  254. Huber R, Pietsch D, Panterodt T, Brand K (2012) Regulation of C/EBPbeta and resulting functions in cells of the monocytic lineage. Cell Signal 24:1287–1296

    CAS  PubMed  Google Scholar 

  255. Gutsch R, Kandemir JD, Pietsch D, Cappello C, Meyer J, Simanowski K, Huber R, Brand K (2011) CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J Biol Chem 286:22716–22729

    CAS  PubMed  Google Scholar 

  256. Hirai H, Zhang P, Dayaram T, Hetherington CJ, Mizuno S, Imanishi J, Akashi K, Tenen DG (2006) C/EBPbeta is required for ‘emergency’ granulopoiesis. Nat Immunol 7:732–739

    CAS  PubMed  Google Scholar 

  257. Popernack PM, Truong LT, Kamphuis M, Henderson AJ (2001) Ectopic expression of CCAAT/enhancer binding protein beta (C/EBPbeta) in long-term bone marrow cultures induces granulopoiesis and alters stromal cell function. J Hematother Stem Cell Res 10:631–642

    CAS  PubMed  Google Scholar 

  258. Park MH, Park SY, Kim Y (2008) Induction of proline-rich tyrosine kinase2 (Pyk2) through C/EBPbeta is involved in PMA-induced monocyte differentiation. FEBS Lett 582:415–422

    CAS  PubMed  Google Scholar 

  259. Screpanti I, Romani L, Musiani P, Modesti A, Fattori E, Lazzaro D, Sellitto C, Scarpa S, Bellavia D, Lattanzio G et al (1995) Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBO J 14:1932–1941

    CAS  PubMed  Google Scholar 

  260. Gorgoni B, Maritano D, Marthyn P, Righi M, Poli V (2002) C/EBP beta gene inactivation causes both impaired and enhanced gene expression and inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J Immunol 168:4055–4062

    CAS  PubMed  Google Scholar 

  261. Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80:353–361

    CAS  PubMed  Google Scholar 

  262. Antonson P, Stellan B, Yamanaka R, Xanthopoulos KG (1996) A novel human CCAAT/enhancer binding protein gene, C/EBPepsilon, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14q11.2 close to the T-cell receptor alpha/delta locus. Genomics 35:30–38

    CAS  PubMed  Google Scholar 

  263. Yoshida H, Ichikawa H, Tagata Y, Katsumoto T, Ohnishi K, Akao Y, Naoe T, Pandolfi PP, Kitabayashi I (2007) PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation. Mol Cell Biol 27:5819–5834

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Nakajima H, Watanabe N, Shibata F, Kitamura T, Ikeda Y, Handa M (2006) N-terminal region of CCAAT/enhancer-binding protein epsilon is critical for cell cycle arrest, apoptosis, and functional maturation during myeloid differentiation. J Biol Chem 281:14494–14502

    CAS  PubMed  Google Scholar 

  265. Dimberg A, Bahram F, Karlberg I, Larsson LG, Nilsson K, Oberg F (2002) Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cyclin E and posttranscriptional up-regulation of p27(Kip1). Blood 99:2199–2206

    CAS  PubMed  Google Scholar 

  266. Verbeek W, Gombart AF, Chumakov AM, Muller C, Friedman AD, Koeffler HP (1999) C/EBPepsilon directly interacts with the DNA binding domain of c-myb and cooperatively activates transcription of myeloid promoters. Blood 93:3327–3337

    CAS  PubMed  Google Scholar 

  267. Bedi R, Du J, Sharma AK, Gomes I, Ackerman SJ (2009) Human C/EBP-epsilon activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood 113:317–327

    CAS  PubMed  Google Scholar 

  268. Halene S, Gaines P, Sun H, Zibello T, Lin S, Khanna-Gupta A, Williams SC, Perkins A, Krause D, Berliner N (2010) C/EBPepsilon directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx. Exp Hematol 38:90–103

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Verbeek W, Wachter M, Lekstrom-Himes J, Koeffler HP (2001) C/EBPepsilon -/- mice: increased rate of myeloid proliferation and apoptosis. Leukemia 15:103–111

    CAS  PubMed  Google Scholar 

  270. Tavor S, Vuong PT, Park DJ, Gombart AF, Cohen AH, Koeffler HP (2002) Macrophage functional maturation and cytokine production are impaired in C/EBP epsilon-deficient mice. Blood 99:1794–1801

    CAS  PubMed  Google Scholar 

  271. Gombart AF, Krug U, O’Kelly J, An E, Vegesna V, Koeffler HP (2005) Aberrant expression of neutrophil and macrophage-related genes in a murine model for human neutrophil-specific granule deficiency. J Leukoc Biol 78:1153–1165

    CAS  PubMed  Google Scholar 

  272. Shiohara M, Gombart AF, Sekiguchi Y, Hidaka E, Ito S, Yamazaki T, Koeffler HP, Komiyama A (2004) Phenotypic and functional alterations of peripheral blood monocytes in neutrophil-specific granule deficiency. J Leukoc Biol 75:190–197

    CAS  PubMed  Google Scholar 

  273. Chih DY, Park DJ, Gross M, Idos G, Vuong PT, Hirama T, Chumakov AM, Said J, Koeffler HP (2004) Protein partners of C/EBPepsilon. Exp Hematol 32:1173–1181

    CAS  PubMed  Google Scholar 

  274. Kreutz M, Andreesen R, Krause SW, Szabo A, Ritz E, Reichel H (1993) 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 82:1300–1307

    CAS  PubMed  Google Scholar 

  275. Chute JP, Ross JR, McDonnell DP (2010) Minireview: nuclear receptors, hematopoiesis, and stem cells. Mol Endocrinol 24:1–10

    CAS  PubMed  Google Scholar 

  276. Campbell FC, Xu H, El-Tanani M, Crowe P, Bingham V (2010) The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control. Biochem Pharmacol 79:1–9

    CAS  PubMed Central  PubMed  Google Scholar 

  277. Carlberg C, Seuter S, Heikkinen S (2012) The first genome-wide view of vitamin D receptor locations and their mechanistic implications. Anticancer Res 32:271–282

    CAS  PubMed  Google Scholar 

  278. Ohta M, Okabe T, Ozawa K, Urabe A, Takaku F (1985) 1 alpha,25-Dihydroxyvitamin D3 (calcitriol) stimulates proliferation of human circulating monocytes in vitro. FEBS Lett 185:9–13

    CAS  PubMed  Google Scholar 

  279. Brown G, Choudhry MA, Durham J, Drayson MT, Michell RH (1999) Monocytically differentiating HL60 cells proliferate rapidly before they mature. Exp Cell Res 253:511–518

    CAS  PubMed  Google Scholar 

  280. Yang W, Freedman LP (1999) 20-Epi analogues of 1,25-dihydroxyvitamin D3 are highly potent inducers of DRIP coactivator complex binding to the vitamin D3 receptor. J Biol Chem 274:16838–16845

    CAS  PubMed  Google Scholar 

  281. Kumagai T, O’Kelly J, Said JW, Koeffler HP (2003) Vitamin D2 analog 19-nor-1,25-dihydroxyvitamin D2: antitumor activity against leukemia, myeloma, and colon cancer cells. J Natl Cancer Inst 95:896–905

    CAS  PubMed  Google Scholar 

  282. Hewison M, Dabrowski M, Vadher S, Faulkner L, Cockerill FJ, Brickell PM, O’Riordan JL, Katz DR (1996) Antisense inhibition of vitamin D receptor expression induces apoptosis in monoblastoid U937 cells. J Immunol 156:4391–4400

    CAS  PubMed  Google Scholar 

  283. Taoka T, Collins ED, Irino S, Norman AW (1993) 1,25(OH)2-vitamin D3 mediated changes in mRNA for c-myc and 1,25(OH)2D3 receptor in HL-60 cells and related subclones. Mol Cell Endocrinol 95:51–57

    CAS  PubMed  Google Scholar 

  284. Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP (1996) Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 10:142–153

    CAS  PubMed  Google Scholar 

  285. Carlberg C, Molnar F (2012) Current status of vitamin D signaling and its therapeutic applications. Curr Top Med Chem 12:528–547

    CAS  PubMed  Google Scholar 

  286. James SY, Williams MA, Kelsey SM, Newland AC, Colston KW (1997) Interaction of vitamin D derivatives and granulocyte-macrophage colony-stimulating factor in leukaemic cell differentiation. Leukemia 11:1017–1025

    CAS  PubMed  Google Scholar 

  287. Garay E, Jankowski P, Lizano P, Marczak S, Maehr H, Adorini L, Uskokovic MR, Studzinski GP (2007) Calcitriol derivatives with two different side-chains at C-20. Part 4: further chain modifications that alter VDR-dependent monocytic differentiation potency in human leukemia cells. Bioorg Med Chem 15:4444–4455

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Choudhuri U, Adams JA, Byrom N, McCarthy DM, Barrett J (1990) 1,25-Dihydroxyvitamin D3 induces normal mononuclear blood cells to differentiate in the direction of monocyte-macrophages. Haematologia (Budap) 23:9–19

    CAS  Google Scholar 

  289. Kreutz M, Andreesen R (1990) Induction of human monocyte to macrophage maturation in vitro by 1,25-dihydroxyvitamin D3. Blood 76:2457–2461

    CAS  PubMed  Google Scholar 

  290. Brown G, Bunce CM, Rowlands DC, Williams GR (1994) All-trans retinoic acid and 1 alpha,25-dihydroxyvitamin D3 co-operate to promote differentiation of the human promyeloid leukemia cell line HL60 to monocytes. Leukemia 8:806–815

    CAS  PubMed  Google Scholar 

  291. Nakajima H, Kizaki M, Ueno H, Muto A, Takayama N, Matsushita H, Sonoda A, Ikeda Y (1996) All-trans and 9-cis retinoic acid enhance 1,25-dihydroxyvitamin D3-induced monocytic differentiation of U937 cells. Leuk Res 20:665–676

    CAS  PubMed  Google Scholar 

  292. Bastie JN, Balitrand N, Guidez F, Guillemot I, Larghero J, Calabresse C, Chomienne C, Delva L (2004) 1 alpha,25-dihydroxyvitamin D3 transrepresses retinoic acid transcriptional activity via vitamin D receptor in myeloid cells. Mol Endocrinol 18:2685–2699

    CAS  PubMed  Google Scholar 

  293. Nakamaki T, Kawakami K, Sato S, Hino K, Tomoyasu S, Tsuruoka N, Honma Y, Hozumi M (1992) The role of granulocyte-macrophage colony-stimulating factor in induction of monocytic differentiation of HL-60 cells: synergistic interaction with 1 alpha, 25-dihydroxyvitamin D3 and interferon-gamma in inducing interleukin-1 beta. Anticancer Res 12:1331–1337

    CAS  PubMed  Google Scholar 

  294. Botling J, Oberg F, Torma H, Tuohimaa P, Blauer M, Nilsson K (1996) Vitamin D3- and retinoic acid-induced monocytic differentiation: interactions between the endogenous vitamin D3 receptor, retinoic acid receptors, and retinoid X receptors in U-937 cells. Cell Growth Differ 7:1239–1249

    CAS  PubMed  Google Scholar 

  295. Piemonti L, Monti P, Sironi M, Fraticelli P, Leone BE, Dal Cin E, Allavena P, Di Carlo V (2000) Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 164:4443–4451

    CAS  PubMed  Google Scholar 

  296. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R (2001) Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA 98:6800–6805

    CAS  PubMed  Google Scholar 

  297. Sochorova K, Budinsky V, Rozkova D, Tobiasova Z, Dusilova-Sulkova S, Spisek R, Bartunkova J (2009) Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. Clin Immunol 133:69–77

    CAS  PubMed  Google Scholar 

  298. Gobel F, Taschner S, Jurkin J, Konradi S, Vaculik C, Richter S, Kneidinger D, Muhlbacher C, Bieglmayer C, Elbe-Burger A, Strobl H (2009) Reciprocal role of GATA-1 and vitamin D receptor in human myeloid dendritic cell differentiation. Blood 114:3813–3821

    PubMed  Google Scholar 

  299. Bhatia M, Kirkland JB, Meckling-Gill KA (1995) Monocytic differentiation of acute promyelocytic leukemia cells in response to 1,25-dihydroxyvitamin D3 is independent of nuclear receptor binding. J Biol Chem 270:15962–15965

    CAS  PubMed  Google Scholar 

  300. O’Kelly J, Hisatake J, Hisatake Y, Bishop J, Norman A, Koeffler HP (2002) Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptor knockout mice. J Clin Invest 109:1091–1099

    PubMed Central  PubMed  Google Scholar 

  301. Chen W, Royer WE Jr (2010) Structural insights into interferon regulatory factor activation. Cell Signal 22:883–887

    CAS  PubMed Central  PubMed  Google Scholar 

  302. Manzella L, Conte E, Cocchiaro G, Guarniera E, Sciacca B, Bonaiuto C, Stagno F, Messina A (1999) Role of interferon regulatory factor 1 in monocyte/macrophage differentiation. Eur J Immunol 29:3009–3016

    CAS  PubMed  Google Scholar 

  303. Matikainen S, Ronni T, Hurme M, Pine R, Julkunen I (1996) Retinoic acid activates interferon regulatory factor-1 gene expression in myeloid cells. Blood 88:114–123

    CAS  PubMed  Google Scholar 

  304. Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L, Matikainen S, Julkunen I (2005) Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J Immunol 175:6570–6579

    CAS  PubMed  Google Scholar 

  305. Ju XS, Ruau D, Jantti P, Sere K, Becker C, Wiercinska E, Bartz C, Erdmann B, Dooley S, Zenke M (2007) Transforming growth factor beta1 up-regulates interferon regulatory factor 8 during dendritic cell development. Eur J Immunol 37:1174–1183

    CAS  PubMed  Google Scholar 

  306. Tanaka N, Ishihara M, Lamphier MS, Nozawa H, Matsuyama T, Mak TW, Aizawa S, Tokino T, Oren M, Taniguchi T (1996) Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382:816–818

    CAS  PubMed  Google Scholar 

  307. Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL (2002) Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene 21:7776–7785

    CAS  PubMed  Google Scholar 

  308. Kano A, Haruyama T, Akaike T, Watanabe Y (1999) IRF-1 is an essential mediator in IFN-gamma-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochem Biophys Res Commun 257:672–677

    CAS  PubMed  Google Scholar 

  309. Yamamoto M, Kato T, Hotta C, Nishiyama A, Kurotaki D, Yoshinari M, Takami M, Ichino M, Nakazawa M, Matsuyama T, Kamijo R, Kitagawa S, Ozato K, Tamura T (2011) Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS ONE 6:e25812

    CAS  PubMed Central  PubMed  Google Scholar 

  310. Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K (2000) ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13:155–165

    CAS  PubMed  Google Scholar 

  311. Lu R, Pitha PM (2001) Monocyte differentiation to macrophage requires interferon regulatory factor 7. J Biol Chem 276:45491–45496

    CAS  PubMed  Google Scholar 

  312. Schmidt M, Bies J, Tamura T, Ozato K, Wolff L (2004) The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 up-regulates expression of tumor suppressor p15(Ink4b) in murine myeloid cells. Blood 103:4142–4149

    CAS  PubMed  Google Scholar 

  313. Tamura T, Kong HJ, Tunyaplin C, Tsujimura H, Calame K, Ozato K (2003) ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood 102:4547–4554

    CAS  PubMed  Google Scholar 

  314. Zhu C, Saberwal G, Lu Y, Platanias LC, Eklund EA (2004) The interferon consensus sequence-binding protein activates transcription of the gene encoding neurofibromin 1. J Biol Chem 279:50874–50885

    CAS  PubMed  Google Scholar 

  315. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC 3rd, Ozato K, Horak I (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87:307–317

    CAS  PubMed  Google Scholar 

  316. Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann DA (1991) Interferon regulatory factor 1 is a myeloid differentiation primary response gene induced by interleukin 6 and leukemia inhibitory factor: role in growth inhibition. Cell Growth Differ 2:401–407

    CAS  PubMed  Google Scholar 

  317. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ et al (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263:1612–1615

    CAS  PubMed  Google Scholar 

  318. Blanco JC, Contursi C, Salkowski CA, DeWitt DL, Ozato K, Vogel SN (2000) Interferon regulatory factor (IRF)-1 and IRF-2 regulate interferon gamma-dependent cyclooxygenase 2 expression. J Exp Med 191:2131–2144

    CAS  PubMed Central  PubMed  Google Scholar 

  319. Hobart M, Ramassar V, Goes N, Urmson J, Halloran PF (1997) IFN regulatory factor-1 plays a central role in the regulation of the expression of class I and II MHC genes in vivo. J Immunol 158:4260–4269

    CAS  PubMed  Google Scholar 

  320. Testa U, Stellacci E, Pelosi E, Sestili P, Venditti M, Orsatti R, Fragale A, Petrucci E, Pasquini L, Belardelli F, Gabriele L, Battistini A (2004) Impaired myelopoiesis in mice devoid of interferon regulatory factor 1. Leukemia 18:1864–1871

    CAS  PubMed  Google Scholar 

  321. Tsujimura H, Nagamura-Inoue T, Tamura T, Ozato K (2002) IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. J Immunol 169:1261–1269

    CAS  PubMed  Google Scholar 

  322. Becker AM, Michael DG, Satpathy AT, Sciammas R, Singh H, Bhattacharya D (2012) IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 119:2003–2012

    CAS  PubMed  Google Scholar 

  323. Li L, Jin H, Xu J, Shi Y, Wen Z (2011) Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117:1359–1369

    CAS  PubMed  Google Scholar 

  324. Kinder M, Thompson JE, Wei C, Shelat SG, Blair IA, Carroll M, Pure E (2010) Interferon regulatory factor-8-driven myeloid differentiation is regulated by 12/15-lipoxygenase-mediated redox signaling. Exp Hematol 38:1036–1046

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Khalfin-Rabinovich Y, Weinstein A, Levi BZ (2011) PML is a key component for the differentiation of myeloid progenitor cells to macrophages. Int Immunol 23:287–296

    CAS  PubMed  Google Scholar 

  326. Scheller M, Foerster J, Heyworth CM, Waring JF, Lohler J, Gilmore GL, Shadduck RK, Dexter TM, Horak I (1999) Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 94:3764–3771

    CAS  PubMed  Google Scholar 

  327. Konieczna I, Horvath E, Wang H, Lindsey S, Saberwal G, Bei L, Huang W, Platanias L, Eklund EA (2008) Constitutive activation of SHP2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia. J Clin Invest 118:853–867

    CAS  PubMed Central  PubMed  Google Scholar 

  328. Saberwal G, Horvath E, Hu L, Zhu C, Hjort E, Eklund EA (2009) The interferon consensus sequence binding protein (ICSBP/IRF8) activates transcription of the FANCF gene during myeloid differentiation. J Biol Chem 284:33242–33254

    CAS  PubMed  Google Scholar 

  329. Linnekin D, Mou S, Deberry CS, Weiler SR, Keller JR, Ruscetti FW, Longo DL (1997) Stem cell factor, the JAK-STAT pathway and signal transduction. Leuk Lymphoma 27:439–444

    CAS  PubMed  Google Scholar 

  330. Boneberg EM, Hartung T (2002) Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res 51:119–128

    CAS  PubMed  Google Scholar 

  331. Gomez-Lechon MJ (1999) Oncostatin M: signal transduction and biological activity. Life Sci 65:2019–2030

    CAS  PubMed  Google Scholar 

  332. Dubourdeau M, Chene G, Coste A, Bernad J, Lepert JC, Orfila C, Pipy B, Rousseau D (2008) Opposite roles of STAT and PPARgamma in the induction of p21WAF1 expression by IL-13 in human peripheral blood monocytes. Eur Cytokine Netw 19:156–165

    CAS  PubMed  Google Scholar 

  333. Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN (1993) Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 90:8429–8433

    CAS  PubMed  Google Scholar 

  334. O’Shea JJ, Pesu M, Borie DC, Changelian PS (2004) A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 3:555–564

    PubMed  Google Scholar 

  335. Tanuma N, Nakamura K, Shima H, Kikuchi K (2000) Protein-tyrosine phosphatase PTPepsilon C inhibits Jak-STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem 275:28216–28221

    CAS  PubMed  Google Scholar 

  336. Si J, Collins SJ (2002) IL-3-induced enhancement of retinoic acid receptor activity is mediated through Stat5, which physically associates with retinoic acid receptors in an IL-3-dependent manner. Blood 100:4401–4409

    CAS  PubMed  Google Scholar 

  337. Mangan JK, Rane SG, Kang AD, Amanullah A, Wong BC, Reddy EP (2004) Mechanisms associated with IL-6-induced up-regulation of Jak3 and its role in monocytic differentiation. Blood 103:4093–4101

    CAS  PubMed  Google Scholar 

  338. Grossman WJ, Verbsky JW, Yang L, Berg LJ, Fields LE, Chaplin DD, Ratner L (1999) Dysregulated myelopoiesis in mice lacking Jak3. Blood 94:932–939

    CAS  PubMed  Google Scholar 

  339. Eilers A, Seegert D, Schindler C, Baccarini M, Decker T (1993) The response of gamma interferon activation factor is under developmental control in cells of the macrophage lineage. Mol Cell Biol 13:3245–3254

    CAS  PubMed Central  PubMed  Google Scholar 

  340. Eilers A, Kanda K, Klose B, Krolewski J, Decker T (1996) Constitutive STAT1 tyrosine phosphorylation in U937 monocytes overexpressing the TYK2 protein tyrosine kinase does not induce gene transcription. Cell Growth Differ 7:833–840

    CAS  PubMed  Google Scholar 

  341. Dimberg A, Nilsson K, Oberg F (2000) Phosphorylation-deficient Stat1 inhibits retinoic acid-induced differentiation and cell cycle arrest in U-937 monoblasts. Blood 96:2870–2878

    CAS  PubMed  Google Scholar 

  342. Jerke U, Tkachuk S, Kiyan J, Stepanova V, Kusch A, Hinz M, Dietz R, Haller H, Fuhrman B, Dumler I (2009) Stat1 nuclear translocation by nucleolin upon monocyte differentiation. PLoS ONE 4:e8302

    PubMed Central  PubMed  Google Scholar 

  343. Watanabe M, Kashiwakura Y, Huang P, Ochiai K, Futami J, Li SA, Takaoka M, Nasu Y, Sakaguchi M, Huh NH, Kumon H (2009) Immunological aspects of REIC/Dkk-3 in monocyte differentiation and tumor regression. Int J Oncol 34:657–663

    CAS  PubMed  Google Scholar 

  344. Ribechini E, Leenen PJ, Lutz MB (2009) Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells. Eur J Immunol 39:3538–3551

    CAS  PubMed  Google Scholar 

  345. de Koning JP, Soede-Bobok AA, Ward AC, Schelen AM, Antonissen C, van Leeuwen D, Lowenberg B, Touw IP (2000) STAT3-mediated differentiation and survival and of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27(Kip1). Oncogene 19:3290–3298

    PubMed  Google Scholar 

  346. Yoshida T, Iwamoto T, Adachi K, Yokota T, Miyake Y, Hamaguchi M (2005) Functional analysis of the effect of forced activation of STAT3 on M1 mouse leukemia cells. Int J Mol Med 15:269–275

    CAS  PubMed  Google Scholar 

  347. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S (1996) STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci USA 93:3963–3966

    CAS  PubMed  Google Scholar 

  348. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N, Kitaoka T, Fukada T, Hibi M, Hirano T (1996) A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 15:3651–3658

    CAS  PubMed  Google Scholar 

  349. Shiozawa Y, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang Z, Song J, Wang J, Lee CH, Sud S, Pienta KJ, Krebsbach PH, Taichman RS (2010) Erythropoietin couples hematopoiesis with bone formation. PLoS ONE 5:e10853

    PubMed Central  PubMed  Google Scholar 

  350. Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K, DePinho RA, Levy DE (2002) STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17:63–72

    CAS  PubMed  Google Scholar 

  351. Panopoulos AD, Zhang L, Snow JW, Jones DM, Smith AM, El Kasmi KC, Liu F, Goldsmith MA, Link DC, Murray PJ, Watowich SS (2006) STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 108:3682–3690

    CAS  PubMed  Google Scholar 

  352. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–49

    CAS  PubMed  Google Scholar 

  353. Numata A, Shimoda K, Kamezaki K, Haro T, Kakumitsu H, Shide K, Kato K, Miyamoto T, Yamashita Y, Oshima Y, Nakajima H, Iwama A, Aoki K, Takase K, Gondo H, Mano H, Harada M (2005) Signal transducers and activators of transcription 3 augments the transcriptional activity of CCAAT/enhancer-binding protein alpha in granulocyte colony-stimulating factor signaling pathway. J Biol Chem 280:12621–12629

    CAS  PubMed  Google Scholar 

  354. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    CAS  PubMed  Google Scholar 

  355. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    CAS  PubMed  Google Scholar 

  356. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    CAS  PubMed  Google Scholar 

  357. Szabo E, Preis LH, Birrer MJ (1994) Constitutive cJun expression induces partial macrophage differentiation in U-937 cells. Cell Growth Differ 5:439–446

    CAS  PubMed  Google Scholar 

  358. Bryja V, Sedlacek J, Zahradnickova E, Sevcikova S, Pachernik J, Soucek K, Hofmanova J, Kozubik A, Smarda J (2003) Lipoxygenase inhibitors enhance tumor suppressive effects of jun proteins on v-myb-transformed monoblasts BM2. Prostaglandins Other Lipid Mediat 72:131–145

    CAS  PubMed  Google Scholar 

  359. Liu MY, Wu MC (1992) Induction of human monocyte cell line U937 differentiation and CSF-1 production by phorbol ester. Exp Hematol 20:974–979

    CAS  PubMed  Google Scholar 

  360. Liao HF, Shyu SY, Kuo YH, Yang YC, Chen YJ (2005) Compound 278E, structurally modified from tanshinone, induces monocytic differentiation and regulates proto-oncogene expression in human leukemic HL-60 cells. Anticancer Drugs 16:175–183

    CAS  PubMed  Google Scholar 

  361. Momiyama N, Shimada H, Mitsuhashi M (1996) Suppression of c-jun by antisense oligonucleotides inhibits cell adhesion but not respiratory burst during phorbol ester-induced differentiation of U937 human monoblastic cells. Cell Growth Differ 7:1005–1012

    CAS  PubMed  Google Scholar 

  362. Zada AA, Singh SM, Reddy VA, Elsasser A, Meisel A, Haferlach T, Tenen DG, Hiddemann W, Behre G (2003) Downregulation of c-Jun expression and cell cycle regulatory molecules in acute myeloid leukemia cells upon CD44 ligation. Oncogene 22:2296–2308

    CAS  PubMed  Google Scholar 

  363. Datta R, Sherman ML, Stone RM, Kufe D (1991) Expression of the jun-B gene during induction of monocytic differentiation. Cell Growth Differ 2:43–49

    CAS  PubMed  Google Scholar 

  364. Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA (1993) Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol 13:841–851

    CAS  PubMed Central  PubMed  Google Scholar 

  365. Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF (2001) Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 104:21–32

    CAS  PubMed  Google Scholar 

  366. Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL, Braun BS, Passegue E (2009) JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15:341–352

    CAS  PubMed Central  PubMed  Google Scholar 

  367. Sasaki T, Wada T, Kishimoto H, Irie-Sasaki J, Matsumoto G, Goto T, Yao Z, Wakeham A, Mak TW, Suzuki A, Cho SK, Zuniga-Pflucker JC, Oliveira-dos-Santos AJ, Katada T, Nishina H, Penninger JM (2001) The stress kinase mitogen-activated protein kinase kinase (MKK)7 is a negative regulator of antigen receptor and growth factor receptor-induced proliferation in hematopoietic cells. J Exp Med 194:757–768

    CAS  PubMed Central  PubMed  Google Scholar 

  368. Surdziel E, Cabanski M, Dallmann I, Lyszkiewicz M, Krueger A, Ganser A, Scherr M, Eder M (2011) Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 117:4338–4348

    CAS  PubMed  Google Scholar 

  369. Hass R, Brach M, Kharbanda S, Giese G, Traub P, Kufe D (1991) Inhibition of phorbol ester-induced monocytic differentiation by dexamethasone is associated with down-regulation of c-fos and c-jun (AP-1). J Cell Physiol 149:125–131

    CAS  PubMed  Google Scholar 

  370. Perez C, Vilaboa NE, Aller P (1994) Etoposide-induced differentiation of U937 promonocytic cells: AP-1-dependent gene expression and protein kinase C activation. Cell Growth Differ 5:949–955

    CAS  PubMed  Google Scholar 

  371. Li J, King I, Sartorelli AC (1994) Differentiation of WEHI-3B D + myelomonocytic leukemia cells induced by ectopic expression of the protooncogene c-jun. Cell Growth Differ 5:743–751

    CAS  PubMed  Google Scholar 

  372. Schuler A, Schwieger M, Engelmann A, Weber K, Horn S, Muller U, Arnold MA, Olson EN, Stocking C (2008) The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate. Blood 111:4532–4541

    PubMed  Google Scholar 

  373. Kobayashi S, Kimura F, Ikeda T, Osawa Y, Torikai H, Kobayashi A, Sato K, Motoyoshi K (2009) BCR-ABL promotes neutrophil differentiation in the chronic phase of chronic myeloid leukemia by downregulating c-Jun expression. Leukemia 23:1622–1627

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kerstin Püllmann for helpful discussions, Sharon Page for critical reading of the manuscript, and apologize to all authors/working groups whose work has not been considered for this review. This work was supported by the Stiftung für Pathobiochemie und Molekulare Diagnostik der Deutschen Gesellschaft für Klinische Chemie und Laboratoriumsmedizin (DGKL) and by the Deutsche Forschungsgemeinschaft (DFG; SFB 566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korbinian Brand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, R., Pietsch, D., Günther, J. et al. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell. Mol. Life Sci. 71, 63–92 (2014). https://doi.org/10.1007/s00018-013-1322-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1322-4

Keywords

Navigation