Skip to main content

Advertisement

Log in

The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are nuclear receptors belonging to the superfamily of the steroid/thyroid hormone receptors. Members of this family are internalized to the nucleus both in a ligand-dependent or -independent manner and act as strong transcriptional regulators by binding to the DNA of their target genes. COUP-TFs are defined as orphan receptors, since ligands regulating their activity have not so far been identified. From the very beginning of metazoan evolution, these molecules have been involved in various key events during embryonic development and organogenesis. In this review, we will mainly focus on their function during development and maturation of the central nervous system, which has been well characterized in various animal classes ranging from ctenophores to mammals. We will start by introducing the current knowledge on COUP-TF mechanisms of action and then focus our discussion on the crucial processes underlying forebrain ontogenesis, with special emphasis on mammalian development. Finally, the conserved roles of COUP-TFs along phylogenesis will be highlighted, and some hypotheses, worth exploring in future years to gain more insight into the mechanisms controlled by these factors, will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aboitiz F (2011) Genetic and developmental homology in amniote brains. Toward conciliating radical views of brain evolution. Brain Res Bull 84(2):125–136

    PubMed  Google Scholar 

  2. Aboitiz F, Morales D, Montiel J (2003) The evolutionary origin of the mammalian isocortex: towards an integrated developmental and functional approach. Behav Brain Sci 26(5):535–552 (discussion 552–585)

    PubMed  Google Scholar 

  3. Super H, Uylings HB (2001) The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb Cortex 11(12):1101–1109

    CAS  PubMed  Google Scholar 

  4. Jones EG (1975) Lamination and differential distribution of thalamic afferents within the sensory-motor cortex of the squirrel monkey. J Comp Neurol 160(2):167–203

    CAS  PubMed  Google Scholar 

  5. Jones EG (1985) The thalamus. Plenum Press, Berlin

    Google Scholar 

  6. Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. Trends Neurosci 7(9):320–325

    Google Scholar 

  7. Puelles L (2011) Pallio-pallial tangential migrations and growth signaling: new scenario for cortical evolution? Brain Behav Evol 78:108–127

    PubMed  Google Scholar 

  8. Halassa M, Haydon P (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    CAS  PubMed  Google Scholar 

  10. Pereira FA, Tsai MJ, Tsai SY (2000) COUP-TF orphan nuclear receptors in development and differentiation. Cell Mol Life Sci 57(10):1388–1398

    CAS  PubMed  Google Scholar 

  11. Alfano C et al (2011) COUP-TFI promotes radial migration and proper morphology of callosal projection neurons by repressing Rnd2 expression. Development 138(21):4685–4697

    CAS  PubMed  Google Scholar 

  12. Armentano M et al (2007) COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas. Nat Neurosci 10(10):1277–1286

    CAS  PubMed  Google Scholar 

  13. Armentano M et al (2006) COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development 133(21):4151–4162

    CAS  PubMed  Google Scholar 

  14. Benito-Sipos J et al (2011) Seven up acts as a temporal factor during two different stages of neuroblast 5–6 development. Development 138(24):5311–5320

    CAS  PubMed  Google Scholar 

  15. Faedo A et al (2008) COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex 18(9):2117–2131

    PubMed  Google Scholar 

  16. Galliot B, Quiquand M (2011) A two-step process in the emergence of neurogenesis. Eur J Neurosci 34(6):847–862

    PubMed  Google Scholar 

  17. Gauchat D et al (2004) The orphan COUP-TF nuclear receptors are markers for neurogenesis from cnidarians to vertebrates. Dev Biol 275(1):104–123

    CAS  PubMed  Google Scholar 

  18. Kanai MI, Okabe M, Hiromi Y (2005) Seven-up Controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev Cell 8(2):203–213

    CAS  PubMed  Google Scholar 

  19. Langlois MC et al (2000) Amphicoup-TF, a nuclear orphan receptor of the lancelet Branchiostoma floridae, is implicated in retinoic acid signalling pathways. Dev Genes Evol 210(10):471–482

    CAS  PubMed  Google Scholar 

  20. Lodato S et al (2011) Loss of COUP-TFI alters the balance between caudal ganglionic eminence- and medial ganglionic eminence-derived cortical interneurons and results in resistance to epilepsy. J Neurosci 31(12):4650–4662

    CAS  PubMed  Google Scholar 

  21. Mettler U, Vogler G, Urban J (2006) Timing of identity: spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven-up and Prospero. Development 133(3):429–437

    CAS  PubMed  Google Scholar 

  22. Naka H et al (2008) Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 11(9):1014–1023

    CAS  PubMed  Google Scholar 

  23. Tang K et al (2012) COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development 139(9):1630–1639

    CAS  PubMed  Google Scholar 

  24. Tomassy GS et al (2010) Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc Natl Acad Sci USA 107(8):3576–3581

    CAS  PubMed  Google Scholar 

  25. Tricoire L et al (2010) Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. J Neurosci 30(6):2165–2176

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Tripodi M et al (2004) The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain. Development 131(24):6119–6129

    CAS  PubMed  Google Scholar 

  27. Zhou C, Tsai SY, Tsai MJ (2001) COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev 15(16):2054–2059

    CAS  PubMed  Google Scholar 

  28. Tsai SY, Tsai MJ (1997) Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age. Endocr Rev 18(2):229–240

    PubMed  Google Scholar 

  29. Qiu Y et al (1994) Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc Natl Acad Sci USA 91(10):4451–4455

    CAS  PubMed  Google Scholar 

  30. Miyajima N et al (1988) Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res 16(23):11057–11074

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Avram D et al (1999) Heterodimeric interactions between chicken ovalbumin upstream promoter-transcription factor family members ARP1 and ear2. J Biol Chem 274(20):14331–14336

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Li Y, Lambert MH, Xu HE (2003) Activation of nuclear receptors: a perspective from structural genomics. Structure 11(7):741–746

    PubMed  Google Scholar 

  33. Kruse SW et al (2008) Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 6(9):e227

    PubMed Central  PubMed  Google Scholar 

  34. Ladias JA, Karathanasis SK (1991) Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science 251(4993):561–565

    CAS  PubMed  Google Scholar 

  35. Wang LH et al (1989) COUP transcription factor is a member of the steroid receptor superfamily. Nature 340(6229):163–166

    CAS  PubMed  Google Scholar 

  36. Pereira FA et al (1995) Chicken ovalbumin upstream promoter transcription factor (COUP-TF): expression during mouse embryogenesis. J Steroid Biochem Mol Biol 53(1–6):503–508

    CAS  PubMed  Google Scholar 

  37. Liu Q, Dwyer N, O’Leary D (2000) Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J Neurosci 20(20):7682–7690

    CAS  PubMed  Google Scholar 

  38. Cooney AJ et al (1992) Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 12(9):4153–4163

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Novac N, Heinzel T (2004) Nuclear receptors: overview and classification. Curr Drug Targets Inflamm Allergy 3(4):335–346

    CAS  PubMed  Google Scholar 

  40. Ladias JA et al (1992) Transcriptional regulation of human apolipoprotein genes ApoB, ApoCIII, and ApoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J Biol Chem 267(22):15849–15860

    CAS  PubMed  Google Scholar 

  41. Paulweber B et al (1991) Identification of a negative regulatory region 5′ of the human apolipoprotein B promoter. J Biol Chem 266(32):21956–21961

    CAS  PubMed  Google Scholar 

  42. Rottman JN et al (1991) A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 11(7):3814–3820

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Widom RL et al (1991) Synergistic interactions between transcription factors control expression of the apolipoprotein AI gene in liver cells. Mol Cell Biol 11(2):677–687

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Widom RL, Rhee M, Karathanasis SK (1992) Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol 12(8):3380–3389

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Cooney AJ et al (1993) Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem 268(6):4152–4160

    CAS  PubMed  Google Scholar 

  46. Tran P et al (1992) COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol 12(10):4666–4676

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Leng X et al (1996) Molecular mechanisms of COUP-TF-mediated transcriptional repression: evidence for transrepression and active repression. Mol Cell Biol 16(5):2332–2340

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Berrodin TJ et al (1992) Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol Endocrinol 6(9):1468–1478

    CAS  PubMed  Google Scholar 

  49. Kliewer SA et al (1992) Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc Natl Acad Sci USA 89(4):1448–1452

    CAS  PubMed  Google Scholar 

  50. Kliewer SA et al (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358(6389):771–774

    CAS  PubMed  Google Scholar 

  51. Casanova J et al (1994) Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor. Mol Cell Biol 14(9):5756–5765

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Shibata H et al (1997) Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol Endocrinol 11(6):714–724

    CAS  PubMed  Google Scholar 

  53. Zamir I et al (1996) A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 16(10):5458–5465

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Perissi V et al (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116(4):511–526

    CAS  PubMed  Google Scholar 

  55. Ing NH et al (1992) Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem 267(25):17617–17623

    CAS  PubMed  Google Scholar 

  56. Lu XP, Salbert G, Pfahl M (1994) An evolutionary conserved COUP-TF binding element in a neural-specific gene and COUP-TF expression patterns support a major role for COUP-TF in neural development. Mol Endocrinol 8(12):1774–1788

    CAS  PubMed  Google Scholar 

  57. Power SC, Cereghini S (1996) Positive regulation of the vHNF1 promoter by the orphan receptors COUP-TF1/Ear3 and COUP-TFII/Arp1. Mol Cell Biol 16(3):778–791

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Hall RK, Sladek FM, Granner DK (1995) The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci USA 92(2):412–416

    CAS  PubMed  Google Scholar 

  59. Haddad IA et al (1986) Linkage, evolution, and expression of the rat apolipoprotein A-I, C-III, and A-IV genes. J Biol Chem 261(28):13268–13277

    CAS  PubMed  Google Scholar 

  60. Reue K, Leff T, Breslow JL (1988) Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors. J Biol Chem 263(14):6857–6864

    CAS  PubMed  Google Scholar 

  61. Liu YH, Teng CT (1991) Characterization of estrogen-responsive mouse lactoferrin promoter. J Biol Chem 266(32):21880–21885

    CAS  PubMed  Google Scholar 

  62. Hwung YP et al (1988) Differential binding of the chicken ovalbumin upstream promoter (COUP) transcription factor to two different promoters. J Biol Chem 263(26):13470–13474

    CAS  PubMed  Google Scholar 

  63. Hwung YP et al (1988) The COUP transcription factor binds to an upstream promoter element of the rat insulin II gene. Mol Cell Biol 8(5):2070–2077

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Cooney AJ et al (1991) Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat. J Virol 65(6):2853–2860

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Orchard K et al (1990) A novel T-cell protein which recognizes a palindromic sequence in the negative regulatory element of the human immunodeficiency virus long terminal repeat. J Virol 64(7):3234–3239

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Malik S, Karathanasis S (1995) Transcriptional activation by the orphan nuclear receptor ARP-1. Nucleic Acids Res 23(9):1536–1543

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Marcus SL et al (1996) A p56(lck) ligand serves as a coactivator of an orphan nuclear hormone receptor. J Biol Chem 271(44):27197–27200

    CAS  PubMed  Google Scholar 

  68. Krishnan V et al (1997) Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science 278(5345):1947–1950

    CAS  PubMed  Google Scholar 

  69. Fjose A, Weber U, Mlodzik M (1995) A novel vertebrate svp-related nuclear receptor is expressed as a step gradient in developing rhombomeres and is affected by retinoic acid. Mech Dev 52(2–3):233–246

    CAS  PubMed  Google Scholar 

  70. Zhuang Y, Gudas LJ (2008) Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression. Differentiation 76(7):760–771

    CAS  PubMed  Google Scholar 

  71. Gay F et al (2002) Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity. Mol Endocrinol 16(6):1332–1351

    CAS  PubMed  Google Scholar 

  72. Power RF et al (1991) Dopamine activation of an orphan of the steroid receptor superfamily. Science 252(5012):1546–1548

    CAS  PubMed  Google Scholar 

  73. Jonk LJ et al (1994) Cloning and expression during development of three murine members of the COUP family of nuclear orphan receptors. Mech Dev 47(1):81–97

    CAS  PubMed  Google Scholar 

  74. Neuman K et al (1995) Orphan receptor COUP-TF I antagonizes retinoic acid-induced neuronal differentiation. J Neurosci Res 41(1):39–48

    CAS  PubMed  Google Scholar 

  75. Schuh TJ, Kimelman D (1995) COUP-TFI is a potential regulator of retinoic acid-modulated development in Xenopus embryos. Mech Dev 51(1):39–49

    CAS  PubMed  Google Scholar 

  76. van der Wees J et al (1996) Developmental expression and differential regulation by retinoic acid of Xenopus COUP-TF-A and COUP-TF-B. Mech Dev 54(2):173–184

    PubMed  Google Scholar 

  77. Qiu Y et al (1997) Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev 11(15):1925–1937

    CAS  PubMed  Google Scholar 

  78. Luo J et al (1996) Compound mutants for retinoic acid receptor (RAR) beta and RAR alpha 1 reveal developmental functions for multiple RAR beta isoforms. Mech Dev 55(1):33–44

    CAS  PubMed  Google Scholar 

  79. Clotman F, Van Maele-Fabry G, Picard JJ (1998) All-trans-retinoic acid upregulates the expression of COUP-TFI in early-somite mouse embryos cultured in vitro. Neurotoxicol Teratol 20(6):591–599

    CAS  PubMed  Google Scholar 

  80. O’Leary DD, Chou SJ, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56(2):252–269

    PubMed  Google Scholar 

  81. Sousa VH, Fishell G (2010) Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Curr Opin Genet Dev 20(4):391–399

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Garel S, Huffman KJ, Rubenstein JL (2003) Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130(9):1903–1914

    CAS  PubMed  Google Scholar 

  83. Storm EE et al (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133(9):1831–1844

    CAS  PubMed  Google Scholar 

  84. Crossley PH et al (2001) Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108(2):183–206

    CAS  PubMed  Google Scholar 

  85. Shimamura K et al (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121(12):3923–3933

    CAS  PubMed  Google Scholar 

  86. Dye CA, El Shawa H, Huffman KJ (2011) A lifespan analysis of intraneocortical connections and gene expression in the mouse II. Cereb Cortex 21(6):1331–1350

    PubMed  Google Scholar 

  87. Dye CA, El Shawa H, Huffman KJ (2011) A lifespan analysis of intraneocortical connections and gene expression in the mouse I. Cereb Cortex 21(6):1311–1330

    PubMed  Google Scholar 

  88. Miyata T et al (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131(13):3133–3145

    CAS  PubMed  Google Scholar 

  89. Nadarajah B et al (2002) Ventricle-directed migration in the developing cerebral cortex. Nat Neurosci 5(3):218–224

    CAS  PubMed  Google Scholar 

  90. Nadarajah B et al (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4(2):143–150

    CAS  PubMed  Google Scholar 

  91. Noctor SC et al (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144

    CAS  PubMed  Google Scholar 

  92. Kwan KY, Šestan N, Anton ES (2012) Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139(9):1535–1546

    CAS  PubMed  Google Scholar 

  93. LoTurco JJ, Bai J (2006) The multipolar stage and disruptions in neuronal migration. Trends Neurosci 29(7):407–413

    CAS  PubMed  Google Scholar 

  94. Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23(31):9996–10001

    CAS  PubMed  Google Scholar 

  95. Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145(1):61–83

    CAS  PubMed  Google Scholar 

  96. Heng JI et al (2008) Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455(7209):114–118

    CAS  PubMed  Google Scholar 

  97. Nakamura K et al (2006) In vivo function of Rnd2 in the development of neocortical pyramidal neurons. Neurosci Res 54(2):149–153

    CAS  PubMed  Google Scholar 

  98. Uesugi K et al (2009) Different Requirement for Rnd GTPases of R-Ras GAP Activity of Plexin-C1 and Plexin-D1. J Biol Chem 284(11):6743–6751

    CAS  PubMed  Google Scholar 

  99. Kakimoto T, Katoh H, Negishi M (2004) Identification of splicing variants of Rapostlin, a novel RND2 effector that interacts with neural Wiskott-Aldrich syndrome protein and induces neurite branching. J Biol Chem 279(14):14104–14110

    CAS  PubMed  Google Scholar 

  100. Lickiss T et al (2012) Examining the relationship between early axon growth and transcription factor expression in the developing cerebral cortex. J Anat 220(3):201–211

    CAS  PubMed  Google Scholar 

  101. Shoukimas GM, Hinds JW (1978) The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J Comp Neurol 179(4):795–830

    CAS  PubMed  Google Scholar 

  102. Norris CR, Kalil K (1991) Guidance of callosal axons by radial glia in the developing cerebral cortex. J Neurosci 11(11):3481–3492

    CAS  PubMed  Google Scholar 

  103. Chedotal A, Rijli FM (2009) Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 19(2):139–145

    CAS  PubMed  Google Scholar 

  104. Corbin JG, Nery S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182

    CAS  PubMed  Google Scholar 

  105. Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790

    CAS  PubMed  Google Scholar 

  106. Borello U, Pierani A (2010) Patterning the cerebral cortex: traveling with morphogens. Curr Opin Genet Dev 20(4):408–415

    CAS  PubMed  Google Scholar 

  107. Marin-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21(2):64–71

    CAS  PubMed  Google Scholar 

  108. Soriano E, Del Rio JA (2005) The cells of cajal-retzius: still a mystery one century after. Neuron 46(3):389–394

    CAS  PubMed  Google Scholar 

  109. Griveau A et al (2010) A novel role for Dbx1-derived Cajal-Retzius cells in early regionalization of the cerebral cortical neuroepithelium. PLoS Biol 8(7):e1000440

    PubMed Central  PubMed  Google Scholar 

  110. Takiguchi-Hayashi K et al (2004) Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 24(9):2286–2295

    CAS  PubMed  Google Scholar 

  111. Faux C et al (2012) Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 20(3):168–189

    CAS  PubMed  Google Scholar 

  112. Tanaka DH, Nakajima K (2012) Migratory pathways of GABAergic interneurons when they enter the neocortex. Eur J Neurosci 35(11):1655–1660

    PubMed  Google Scholar 

  113. Tanaka DH, Nakajima K (2012) GABAergic interneuron migration and the evolution of the neocortex. Dev Growth Differ 54(3):366–372

    CAS  PubMed  Google Scholar 

  114. Helmstaedter M et al (2007) Reconstruction of an average cortical column in silico. Brain Res Rev 55(2):193–203

    CAS  PubMed  Google Scholar 

  115. Lee S et al (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30(50):16796–16808

    CAS  PubMed Central  PubMed  Google Scholar 

  116. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2(1):11–23

    CAS  PubMed  Google Scholar 

  117. Baraban SC (2007) Emerging epilepsy models: insights from mice, flies, worms and fish. Curr Opin Neurol 20(2):164–168

    CAS  PubMed  Google Scholar 

  118. Cossart R, Bernard C, Ben-Ari Y (2005) Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci 28(2):108–115

    CAS  PubMed  Google Scholar 

  119. Genius J et al (2012) Disturbed function of GABAergic interneurons in schizophrenia: relevance for medical treatment? Curr Pharm Biotechnol 13:1549–1556

    CAS  PubMed  Google Scholar 

  120. Marin O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13(2):107–120

    CAS  PubMed  Google Scholar 

  121. Miyoshi G et al (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30(5):1582–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Vucurovic K et al (2010) Serotonin 3A receptor subtype as an early and protracted marker of cortical interneuron subpopulations. Cereb Cortex 20(10):2333–2347

    PubMed  Google Scholar 

  123. Kanatani S et al (2008) COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. J Neurosci 28(50):13582–13591

    CAS  PubMed  Google Scholar 

  124. Nadarajah B et al (2003) Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb Cortex 13(6):607–611

    CAS  PubMed  Google Scholar 

  125. Reinchisi G et al (2011) COUP-TFII expressing interneurons in human fetal forebrain. Cereb Cortex 22(12):2820–30

    Google Scholar 

  126. Yozu M, Tabata H, Nakajima K (2005) The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 25(31):7268–7277

    CAS  PubMed  Google Scholar 

  127. Butt SJ et al (2008) The requirement of Nk2–1 in the temporal specification of cortical interneuron subtypes. Neuron 59(5):722–732

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Cai Y et al (2013) Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons. J Comp Neurol 521(2):479–97

    Google Scholar 

  129. Swindell EC et al (2006) Rx-Cre, a tool for inactivation of gene expression in the developing retina. Genesis 44(8):361–363

    CAS  PubMed  Google Scholar 

  130. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21(8):323–331

    CAS  PubMed  Google Scholar 

  131. Adams RB Jr et al (2010) Culture, gaze and the neural processing of fear expressions. Soc Cogn Affect Neurosci 5(2–3):340–348

    PubMed Central  PubMed  Google Scholar 

  132. Medina L, Bupesh M, Abellan A (2011) Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala. Brain Behav Evol 78(3):216–236

    PubMed  Google Scholar 

  133. Medina L, Bupesh M, Abellàn A (2011) Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala. Brain 3:11

    Google Scholar 

  134. Soma M et al (2009) Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 513(1):113–128

    CAS  PubMed  Google Scholar 

  135. Puelles L et al (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424(3):409–438

    CAS  PubMed  Google Scholar 

  136. Nery S, FIshell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5:9

    Google Scholar 

  137. Anderson S et al (1999) Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9(6):646–654

    CAS  PubMed  Google Scholar 

  138. Pleasure SJ et al (2000) Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28(3):727–740

    CAS  PubMed  Google Scholar 

  139. Butt SJ et al (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48(4):591–604

    CAS  PubMed  Google Scholar 

  140. Fogarty M et al (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27(41):10935–10946

    CAS  PubMed  Google Scholar 

  141. Lavdas AA et al (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19(18):7881–7888

    CAS  PubMed  Google Scholar 

  142. Sussel L et al (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126(15):3359–3370

    CAS  PubMed  Google Scholar 

  143. Wichterle H et al (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128(19):3759–3771

    CAS  PubMed  Google Scholar 

  144. Fuentealba P et al (2010) Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J Neurosci 30(5):1595–1609

    CAS  PubMed  Google Scholar 

  145. Philippe H et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19(8):706–712

    CAS  PubMed  Google Scholar 

  146. De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132(2):185–195

    PubMed Central  PubMed  Google Scholar 

  147. Mlodzik M et al (1990) The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60(2):211–224

    CAS  PubMed  Google Scholar 

  148. Maurange C, Cheng L, Gould AP (2008) Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133(5):891–902

    CAS  PubMed  Google Scholar 

  149. Urban J, Mettler U (2006) Connecting temporal identity to mitosis: the regulation of Hunchback in Drosophila neuroblast lineages. Cell Cycle 5(9):950–952

    CAS  PubMed  Google Scholar 

  150. Bossing T et al (1996) The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179(1):41–64

    CAS  PubMed  Google Scholar 

  151. Molyneaux BJ et al (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8(6):427–437

    CAS  PubMed  Google Scholar 

  152. Pierani A, Wassef M (2009) Cerebral cortex development: from progenitors patterning to neocortical size during evolution. Dev Growth Differ 51(3):325–342

    PubMed  Google Scholar 

  153. Rakic P et al (2009) Decision by division: making cortical maps. Trends Neurosci 32(5):291–301

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126(21):4653–4689

    CAS  PubMed  Google Scholar 

  155. Schmidt H et al (1997) The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol 189(2):186–204

    CAS  PubMed  Google Scholar 

  156. Brody T, Odenwald WF (2000) Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev Biol 226(1):34–44

    CAS  PubMed  Google Scholar 

  157. Isshiki T et al (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106(4):511–521

    CAS  PubMed  Google Scholar 

  158. Kambadur R et al (1998) Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12(2):246–260

    CAS  PubMed  Google Scholar 

  159. Novotny T, Eiselt R, Urban J (2002) Hunchback is required for the specification of the early sublineage of neuroblast 7–3 in the Drosophila central nervous system. Development 129(4):1027–1036

    CAS  PubMed  Google Scholar 

  160. Zhou C et al (1999) The nuclear orphan receptor COUP-TFI is required for differentiation of subplate neurons and guidance of thalamocortical axons. Neuron 24(4):847–859

    CAS  PubMed  Google Scholar 

  161. Vlahou A, Flytzanis CN (2000) Subcellular trafficking of the nuclear receptor COUP-TF in the early embryonic cell cycle. Dev Biol 218(2):284–298

    CAS  PubMed  Google Scholar 

  162. Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26(22):3227–3239

    CAS  PubMed  Google Scholar 

  163. Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129(9):2087–2098

    CAS  PubMed  Google Scholar 

  164. Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8(6):438–450

    CAS  PubMed  Google Scholar 

  165. Armentano M et al (2007) COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas. Nat Neurosci 10:1277–1286

    CAS  PubMed  Google Scholar 

  166. Azim E et al (2009) Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development. Cereb Cortex 19(Suppl 1):i62–i69

    PubMed  Google Scholar 

  167. Petersen SC et al (2011) A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. J Neurosci 31(43):15362–15375

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Zhou HM, Walthall WW (1998) UNC-55, an orphan nuclear hormone receptor, orchestrates synaptic specificity among two classes of motor neurons in Caenorhabditis elegans. J Neurosci 18(24):10438–10444

    CAS  PubMed  Google Scholar 

  169. Walthall WW, Plunkett JA (1995) Genetic transformation of the synaptic pattern of a motoneuron class in Caenorhabditis elegans. J Neurosci 15(2):1035–1043

    CAS  PubMed  Google Scholar 

  170. O’Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18(1):90–100

    PubMed Central  PubMed  Google Scholar 

  171. Sansom SN, Livesey FJ (2009) Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harb Perspect Biol 1(2):a002519

    PubMed  Google Scholar 

  172. Shepherd GM (2009) Intracortical cartography in an agranular area. Front Neurosci 3(3):337–343

    PubMed Central  PubMed  Google Scholar 

  173. Shipp S (2005) The importance of being agranular: a comparative account of visual and motor cortex. Philos Trans R Soc Lond B 360(1456):797–814

    Google Scholar 

  174. Bishop KM, Goudreau G, O’Leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288(5464):344–349

    CAS  PubMed  Google Scholar 

  175. Mallamaci A et al (2000) Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat Neurosci 3(7):679–686

    CAS  PubMed  Google Scholar 

  176. Fukuchi-Shimogori T, Grove EA (2003) Emx2 patterns the neocortex by regulating FGF positional signaling. Nat Neurosci 6(8):825–831

    CAS  PubMed  Google Scholar 

  177. Huffman KJ, Garel S, Rubenstein JL (2004) Fgf8 regulates the development of intra-neocortical projections. J Neurosci 24(41):8917–8923

    CAS  PubMed  Google Scholar 

  178. Shimogori T, Grove EA (2005) Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J Neurosci 25(28):6550–6560

    CAS  PubMed  Google Scholar 

  179. Cholfin JA, Rubenstein JL (2007) Genetic regulation of prefrontal cortex development and function. Novartis Found Symp 288:165–173 (discussion 173–7, 276–81)

    CAS  PubMed  Google Scholar 

  180. Cholfin JA, Rubenstein JL (2007) Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci USA 104(18):7652–7657

    CAS  PubMed  Google Scholar 

  181. Sahara S et al (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2:10

    PubMed Central  PubMed  Google Scholar 

  182. Zembrzycki A et al (2007) Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain. Neural Dev 2:8

    PubMed Central  PubMed  Google Scholar 

  183. Cholfin JA, Rubenstein JL (2008) Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 509(2):144–155

    PubMed  Google Scholar 

  184. Scearce-Levie K et al (2008) Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behav 7(3):344–354

    CAS  PubMed  Google Scholar 

  185. Assimacopoulos S et al (2012) Fibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography. J Neurosci 32(21):7191–7201

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Salas R et al (2002) Induction of chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) gene expression is mediated by ETS factor binding sites. Eur J Biochem 269(1):317–325

    CAS  PubMed  Google Scholar 

  187. Guillemot F, Zimmer C (2011) From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 71(4):574–588

    CAS  PubMed  Google Scholar 

  188. Mason I (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8(8):583–596

    CAS  PubMed  Google Scholar 

  189. Rubenstein JL (2011) Annual research review: development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry 52(4):339–355

    PubMed Central  PubMed  Google Scholar 

  190. Faedo A, Borello U, Rubenstein JL (2010) Repression of Fgf signaling by sprouty1–2 regulates cortical patterning in two distinct regions and times. J Neurosci 30(11):4015–4023

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Hasegawa H et al (2004) Laminar patterning in the developing neocortex by temporally coordinated fibroblast growth factor signaling. J Neurosci 24(40):8711–8719

    CAS  PubMed  Google Scholar 

  192. Tanibe M et al (2012) xCOUP-TF-B regulates xCyp26 transcription and modulates retinoic acid signaling for anterior neural patterning in Xenopus. Int J Dev Biol 56(4):239–244

    CAS  PubMed  Google Scholar 

  193. Richards LJ, Plachez C, Ren T (2004) Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 66(4):276–289

    CAS  PubMed  Google Scholar 

  194. Liu Q, Dwyer ND, O’Leary DD (2000) Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J Neurosci 20(20):7682–7690

    CAS  PubMed  Google Scholar 

  195. Vaccarino FM et al (1999) Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci 2(3):246–253

    CAS  PubMed  Google Scholar 

  196. Raballo R et al (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20(13):5012–5023

    CAS  PubMed  Google Scholar 

  197. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369

    CAS  PubMed  Google Scholar 

  198. Sinor AD, Lillien L (2004) Akt-1 expression level regulates CNS precursors. J Neurosci 24(39):8531–8541

    CAS  PubMed  Google Scholar 

  199. Jepsen K et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450(7168):415–419

    CAS  PubMed  Google Scholar 

  200. Alfano C, Studer M (2012) Neocortical arealization: evolution, mechanisms and open questions. Dev Neurobiol. doi:10.1002/dneu.22067

  201. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176

    CAS  PubMed  Google Scholar 

  202. Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18(9):383–388

    CAS  PubMed  Google Scholar 

  203. Fishell G, Hanashima C (2008) Pyramidal neurons grow up and change their mind. Neuron 57(3):333–338

    CAS  PubMed  Google Scholar 

  204. Arlotta P et al (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221

    CAS  PubMed  Google Scholar 

  205. Zhang LJ et al (2009) A chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) complex represses expression of the gene encoding tumor necrosis factor alpha-induced protein 8 (TNFAIP8). J Biol Chem 284(10):6156–6168

    CAS  PubMed  Google Scholar 

  206. Alcamo EA et al (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57(3):364–377

    CAS  PubMed  Google Scholar 

  207. Britanova O et al (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57(3):378–392

    CAS  PubMed  Google Scholar 

  208. Halilagic A et al (2007) Retinoids control anterior and dorsal properties in the developing forebrain. Dev Biol 303(1):362–375

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Monica Courtney for her English editing and proofreading. Work in the laboratory is supported by the Agence Nationale Recherche (“ANR Chaire d’Excellence” Program) under grant number R09125AA, by the Fondation Recherche Medicale (“Equipe FRM 2011”) under grant number R11078AA to M.S., by an AXA Research Fund fellowship to E.M., and by a CNRS fellowship from Lebanon to K.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Studer.

Additional information

Elia Magrinelli and Kawssar Harb have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfano, C., Magrinelli, E., Harb, K. et al. The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly. Cell. Mol. Life Sci. 71, 43–62 (2014). https://doi.org/10.1007/s00018-013-1320-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1320-6

Keywords

Navigation