Abstract
The DNA sequence largely defines gene expression and phenotype. However, it is becoming increasingly clear that an additional chromatin-based regulatory network imparts both stability and plasticity to genome output, modifying phenotype independently of the genetic blueprint. Indeed, alterations in this “epigenetic” control layer underlie, at least in part, the reason for monozygotic twins being discordant for disease. Functionally, this regulatory layer comprises post-translational modifications of DNA and histones, as well as small and large noncoding RNAs. Together these regulate gene expression by changing chromatin organization and DNA accessibility. Successive technological advances over the past decade have enabled researchers to map the chromatin state with increasing accuracy and comprehensiveness, catapulting genetic research into a genome-wide era. Here, aiming particularly at the genomics/epigenomics newcomer, we review the epigenetic basis that has helped drive the technological shift and how this progress is shaping our understanding of complex disease.
This is a preview of subscription content, access via your institution.

References
Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210(Pt 9):1526–1547. doi:10.1242/jeb.005017
Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. doi:10.1038/nature05919
Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33(1):3–11. doi:10.1016/j.jaut.2009.03.007
Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S et al (2009) Parental origin of sequence variants associated with complex diseases. Nature 462(7275):868–874. doi:10.1038/nature08625
Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58(12):2718–2725. doi:10.2337/db09-1003
Schanen NC (2006) Epigenetics of autism spectrum disorders. Hum Mol Genet 15 (Spec No 2):R138–R150. doi:10.1093/hmg/ddl213
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:10.1038/nature08514
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 97(10):5237–5242
Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7(12):e1002389. doi:10.1371/journal.pgen.1002389
Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires aid-dependent DNA demethylation. Nature 463(7284):1042–1047. doi:10.1038/nature08752
Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E et al (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470(7334):419–423. doi:10.1038/nature09672
Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133. doi:10.1038/nature09303
Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365. doi:10.1038/366362a0
Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117. doi:10.1146/annurev-biochem-052610-091920
Razin A, Szyf M (1984) DNA methylation patterns. Formation and function. Biochim Biophys Acta 782(4):331–342
Bird AP (1984) DNA methylation versus gene expression. J Embryol Exp Morphol 83 Suppl:31–40
Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR (1984) Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci USA 81(9):2806–2810
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi:10.1038/nature11233
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. doi:10.1101/gr.132159.111
van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8(5):e1000371. doi:10.1371/journal.pbio.1000371
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217. doi:10.1016/j.cell.2006.07.031
Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4(9):1179–1184
Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764. doi:10.1126/science.1146484
Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322(5906):1387–1392. doi:10.1126/science.1165171
King FJ, Szakmary A, Cox DN, Lin H (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary. Mol Cell 7(3):497–508
Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP, Hoffman R (2001) Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97(2):426–434
Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707. doi:10.1016/j.cell.2012.02.057
Nielsen H, Orum H, Engberg J (1992) A novel class of nucleolar RNAs from tetrahymena. FEBS Lett 307(3):337–342
Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85(7):1077–1088
Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89(4):565–573
Tycowski KT, You ZH, Graham PJ, Steitz JA (1998) Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell 2(5):629–638
King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11(2):425–435
Li SG, Zhou H, Luo YP, Zhang P, Qu LH (2005) Identification and functional analysis of 20 box H/ACA small nucleolar RNAs (snoRNAs) from Schizosaccharomyces pombe. J Biol Chem 280(16):16446–16455. doi:10.1074/jbc.M500326200
Yang JH, Zhang XC, Huang ZP, Zhou H, Huang MB, Zhang S et al (2006) Snoseeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucleic Acids Res 34(18):5112–5123. doi:10.1093/nar/gkl672
Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311(5758):230–232. doi:10.1126/science.1118265
Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145(2):178–181. doi:10.1016/j.cell.2011.03.014
Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. doi:10.1016/j.molcel.2011.08.018
Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300. doi:10.1038/nature10398
Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028. doi:10.1016/j.cell.2011.08.008
Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22(1):50–55. doi:10.1016/j.gde.2012.02.008
Feige JN, Auwerx J (2007) Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 17(6):292–301. doi:10.1016/j.tcb.2007.04.001
Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. doi:10.1038/nrg2485
Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20(11):1405–1428. doi:10.1101/gad.1424806
Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25(1):45–71
Spiegelman BM, Heinrich R (2004) Biological control through regulated transcriptional coactivators. Cell 119(2):157–167. doi:10.1016/j.cell.2004.09.037
Vaquero A, Reinberg D (2009) Calorie restriction and the exercise of chromatin. Genes Dev 23(16):1849–1869. doi:10.1101/gad.1807009
Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB (2001) Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3(7):667–674. doi:10.1038/35083062
Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118. doi:10.1038/nature03354
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. doi:10.1126/science.1179689
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi:10.1126/science.1175371
Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618. doi:10.1016/j.molcel.2006.06.026
Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci USA 81(14):4275–4279
Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89(5):1827–1831
Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448
Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467
Munroe DJ, Harris TJ (2010) Third-generation sequencing fireworks at Marco Island. Nat Biotech 28(5):426–428. doi:10.1038/nbt0510-426
Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626
Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240. doi:10.1093/hmg/ddq416
Sexton T, Schober H, Fraser P, Gasser SM (2007) Gene regulation through nuclear organization. Nat Struct Mol Biol 14(11):1049–1055. doi:10.1038/nsmb1324
Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. doi:10.1126/science.1067799
Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38(11):1341–1347. doi:10.1038/ng1891
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309. doi:10.1101/gr.5571506
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi:10.1126/science.1181369
Fullwood MJ, Ruan Y (2009) Chip-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107(1):30–39. doi:10.1002/jcb.22116
Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93(18):9821–9826
Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E et al (2008) A bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26(7):779–785. doi:10.1038/nbt1414
Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. doi:10.1038/ng1598
Serre D, Lee BH, Ting AH (2010) MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38(2):391–399. doi:10.1093/nar/gkp992
Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28(10):1097–1105. doi:10.1038/nbt.1682
Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877. doi:10.1093/nar/gki901
Sutherland E, Coe L, Raleigh EA (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol 225(2):327–348
Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I et al (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309. doi:10.1126/science.290.5500.2306
Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657. doi:10.1038/nmeth1068
Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488(7409):116–120. doi:10.1038/nature11243
Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28(8):817–825. doi:10.1038/nbt.1662
Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49. doi:10.1038/nature09906
Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S et al (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16(1):123–131. doi:10.1101/gr.4074106
Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20(1):90–100. doi:10.1101/gr.098509.109
Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17(6):877–885. doi:10.1101/gr.5533506
Djebali S, Lagarde J, Kapranov P, Lacroix V, Borel C, Mudge JM et al (2012) Evidence for transcript networks composed of chimeric RNAs in human cells. PLoS One 7(1):e28213. doi:10.1371/journal.pone.0028213
Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26(2):182–190. doi:10.1016/S1046-2023(02)00021-X
Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. doi:10.1126/science.1090095
Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1(2):266–286. doi:10.1002/wrna.31
Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD, Gage FH (2009) An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16(2):130–137. doi:10.1038/nsmb.1545
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi:10.1016/j.cell.2010.03.009
König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17(7):909–915. doi:10.1038/nsmb.1838
Feinberg AP, Irizarry RA (2010) Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci USA 107(Suppl 1):1757–1764. doi:10.1073/pnas.0906183107
Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56. doi:10.1016/B978-0-12-380866-0.60002-2
Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465(7299):721–727. doi:10.1038/nature09230
Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318. doi:10.1038/15490
Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854. doi:10.1038/nn1276
Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262. doi:10.1038/nrg2045
Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053. doi:10.1093/hmg/ddp353
Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467(7318):963–966. doi:10.1038/nature09491
Chong S, Vickaryous N, Ashe A, Zamudio N, Youngson N, Hemley S et al (2007) Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat Genet 39(5):614–622. doi:10.1038/ng2031
Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143(7):1084–1096. doi:10.1016/j.cell.2010.12.008
Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609. doi:10.1073/pnas.0500398102
Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5):1229–1236. doi:10.2337/db08-1666
El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG et al (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205(10):2409–2417. doi:10.1084/jem.20081188
Tateishi K, Okada Y, Kallin EM, Zhang Y (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458(7239):757–761. doi:10.1038/nature07777
Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED (2010) Comparative epigenomic analysis of murine and human adipogenesis. Cell 143(1):156–169. doi:10.1016/j.cell.2010.09.006
Norton L, Fourcaudot M, Abdul-Ghani MA, Winnier D, Mehta FF, Jenkinson CP, Defronzo RA (2011) Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia 54(12):3132–3142. doi:10.1007/s00125-011-2289-z
Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ et al (1999) Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 64(4):1127–1140
Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323. doi:10.1038/ng1732
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T et al (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315–1319. doi:10.1126/science.1198125
Lechner M, Boshoff C, Beck S (2010) Cancer epigenome. Adv Genet 70:247–276. doi:10.1016/B978-0-12-380866-0.60009-5
Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347(12):911–920. doi:10.1056/NEJMra020100
Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12(8):529–541. doi:10.1038/nrg3000
Mack GS (2010) To selectivity and beyond. Nat Biotechnol 28(12):1259–1266. doi:10.1038/nbt.1724
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Teperino, R., Lempradl, A. & Pospisilik, J.A. Bridging epigenomics and complex disease: the basics. Cell. Mol. Life Sci. 70, 1609–1621 (2013). https://doi.org/10.1007/s00018-013-1299-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-013-1299-z
Keywords
- Complex diseases
- Chromatin
- Epigenomics