Skip to main content

Bridging epigenomics and complex disease: the basics

Abstract

The DNA sequence largely defines gene expression and phenotype. However, it is becoming increasingly clear that an additional chromatin-based regulatory network imparts both stability and plasticity to genome output, modifying phenotype independently of the genetic blueprint. Indeed, alterations in this “epigenetic” control layer underlie, at least in part, the reason for monozygotic twins being discordant for disease. Functionally, this regulatory layer comprises post-translational modifications of DNA and histones, as well as small and large noncoding RNAs. Together these regulate gene expression by changing chromatin organization and DNA accessibility. Successive technological advances over the past decade have enabled researchers to map the chromatin state with increasing accuracy and comprehensiveness, catapulting genetic research into a genome-wide era. Here, aiming particularly at the genomics/epigenomics newcomer, we review the epigenetic basis that has helped drive the technological shift and how this progress is shaping our understanding of complex disease.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210(Pt 9):1526–1547. doi:10.1242/jeb.005017

    Article  PubMed  Google Scholar 

  2. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. doi:10.1038/nature05919

    Article  PubMed  CAS  Google Scholar 

  3. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33(1):3–11. doi:10.1016/j.jaut.2009.03.007

    Article  PubMed  CAS  Google Scholar 

  4. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S et al (2009) Parental origin of sequence variants associated with complex diseases. Nature 462(7275):868–874. doi:10.1038/nature08625

    Article  PubMed  CAS  Google Scholar 

  5. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58(12):2718–2725. doi:10.2337/db09-1003

    Article  PubMed  CAS  Google Scholar 

  6. Schanen NC (2006) Epigenetics of autism spectrum disorders. Hum Mol Genet 15 (Spec No 2):R138–R150. doi:10.1093/hmg/ddl213

    Article  PubMed  CAS  Google Scholar 

  7. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:10.1038/nature08514

    Article  PubMed  CAS  Google Scholar 

  8. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 97(10):5237–5242

    Article  PubMed  CAS  Google Scholar 

  9. Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7(12):e1002389. doi:10.1371/journal.pgen.1002389

    Article  PubMed  CAS  Google Scholar 

  10. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires aid-dependent DNA demethylation. Nature 463(7284):1042–1047. doi:10.1038/nature08752

    Article  PubMed  CAS  Google Scholar 

  11. Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E et al (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470(7334):419–423. doi:10.1038/nature09672

    Article  PubMed  CAS  Google Scholar 

  12. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133. doi:10.1038/nature09303

    Article  PubMed  CAS  Google Scholar 

  13. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365. doi:10.1038/366362a0

    Article  PubMed  CAS  Google Scholar 

  14. Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117. doi:10.1146/annurev-biochem-052610-091920

    Article  PubMed  CAS  Google Scholar 

  15. Razin A, Szyf M (1984) DNA methylation patterns. Formation and function. Biochim Biophys Acta 782(4):331–342

    Article  PubMed  CAS  Google Scholar 

  16. Bird AP (1984) DNA methylation versus gene expression. J Embryol Exp Morphol 83 Suppl:31–40

    PubMed  CAS  Google Scholar 

  17. Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR (1984) Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci USA 81(9):2806–2810

    Article  PubMed  CAS  Google Scholar 

  18. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi:10.1038/nature11233

    Article  PubMed  CAS  Google Scholar 

  19. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. doi:10.1101/gr.132159.111

    Article  PubMed  CAS  Google Scholar 

  20. van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8(5):e1000371. doi:10.1371/journal.pbio.1000371

    Article  PubMed  CAS  Google Scholar 

  21. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217. doi:10.1016/j.cell.2006.07.031

    Article  PubMed  CAS  Google Scholar 

  22. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4(9):1179–1184

    Article  PubMed  CAS  Google Scholar 

  23. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764. doi:10.1126/science.1146484

    Article  PubMed  CAS  Google Scholar 

  24. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322(5906):1387–1392. doi:10.1126/science.1165171

    Article  PubMed  CAS  Google Scholar 

  25. King FJ, Szakmary A, Cox DN, Lin H (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary. Mol Cell 7(3):497–508

    Article  PubMed  CAS  Google Scholar 

  26. Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP, Hoffman R (2001) Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97(2):426–434

    Article  PubMed  CAS  Google Scholar 

  27. Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707. doi:10.1016/j.cell.2012.02.057

    Article  PubMed  CAS  Google Scholar 

  28. Nielsen H, Orum H, Engberg J (1992) A novel class of nucleolar RNAs from tetrahymena. FEBS Lett 307(3):337–342

    Article  PubMed  CAS  Google Scholar 

  29. Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85(7):1077–1088

    Article  PubMed  Google Scholar 

  30. Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89(4):565–573

    Article  PubMed  CAS  Google Scholar 

  31. Tycowski KT, You ZH, Graham PJ, Steitz JA (1998) Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell 2(5):629–638

    Article  PubMed  CAS  Google Scholar 

  32. King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11(2):425–435

    Article  PubMed  CAS  Google Scholar 

  33. Li SG, Zhou H, Luo YP, Zhang P, Qu LH (2005) Identification and functional analysis of 20 box H/ACA small nucleolar RNAs (snoRNAs) from Schizosaccharomyces pombe. J Biol Chem 280(16):16446–16455. doi:10.1074/jbc.M500326200

    Article  PubMed  CAS  Google Scholar 

  34. Yang JH, Zhang XC, Huang ZP, Zhou H, Huang MB, Zhang S et al (2006) Snoseeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucleic Acids Res 34(18):5112–5123. doi:10.1093/nar/gkl672

    Article  PubMed  CAS  Google Scholar 

  35. Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311(5758):230–232. doi:10.1126/science.1118265

    Article  PubMed  CAS  Google Scholar 

  36. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145(2):178–181. doi:10.1016/j.cell.2011.03.014

    Article  PubMed  CAS  Google Scholar 

  37. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. doi:10.1016/j.molcel.2011.08.018

    Article  PubMed  CAS  Google Scholar 

  38. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300. doi:10.1038/nature10398

    Article  PubMed  CAS  Google Scholar 

  39. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028. doi:10.1016/j.cell.2011.08.008

    Article  PubMed  CAS  Google Scholar 

  40. Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22(1):50–55. doi:10.1016/j.gde.2012.02.008

    Article  PubMed  CAS  Google Scholar 

  41. Feige JN, Auwerx J (2007) Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 17(6):292–301. doi:10.1016/j.tcb.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  42. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. doi:10.1038/nrg2485

    Article  PubMed  CAS  Google Scholar 

  43. Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20(11):1405–1428. doi:10.1101/gad.1424806

    Article  PubMed  CAS  Google Scholar 

  44. Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25(1):45–71

    Article  PubMed  CAS  Google Scholar 

  45. Spiegelman BM, Heinrich R (2004) Biological control through regulated transcriptional coactivators. Cell 119(2):157–167. doi:10.1016/j.cell.2004.09.037

    Article  PubMed  CAS  Google Scholar 

  46. Vaquero A, Reinberg D (2009) Calorie restriction and the exercise of chromatin. Genes Dev 23(16):1849–1869. doi:10.1101/gad.1807009

    Article  PubMed  CAS  Google Scholar 

  47. Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB (2001) Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3(7):667–674. doi:10.1038/35083062

    Article  PubMed  CAS  Google Scholar 

  48. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606

    Article  PubMed  CAS  Google Scholar 

  49. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118. doi:10.1038/nature03354

    Article  PubMed  CAS  Google Scholar 

  50. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. doi:10.1126/science.1179689

    Article  PubMed  CAS  Google Scholar 

  51. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi:10.1126/science.1175371

    Article  PubMed  CAS  Google Scholar 

  52. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618. doi:10.1016/j.molcel.2006.06.026

    Article  PubMed  CAS  Google Scholar 

  53. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci USA 81(14):4275–4279

    Article  PubMed  CAS  Google Scholar 

  54. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947

    Article  PubMed  CAS  Google Scholar 

  55. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89(5):1827–1831

    Article  PubMed  CAS  Google Scholar 

  56. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  PubMed  CAS  Google Scholar 

  57. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467

    Article  PubMed  CAS  Google Scholar 

  58. Munroe DJ, Harris TJ (2010) Third-generation sequencing fireworks at Marco Island. Nat Biotech 28(5):426–428. doi:10.1038/nbt0510-426

    Article  CAS  Google Scholar 

  59. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626

    Article  PubMed  CAS  Google Scholar 

  60. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240. doi:10.1093/hmg/ddq416

    Article  PubMed  CAS  Google Scholar 

  61. Sexton T, Schober H, Fraser P, Gasser SM (2007) Gene regulation through nuclear organization. Nat Struct Mol Biol 14(11):1049–1055. doi:10.1038/nsmb1324

    Article  PubMed  CAS  Google Scholar 

  62. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. doi:10.1126/science.1067799

    Article  PubMed  CAS  Google Scholar 

  63. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38(11):1341–1347. doi:10.1038/ng1891

    Article  PubMed  CAS  Google Scholar 

  64. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309. doi:10.1101/gr.5571506

    Article  PubMed  CAS  Google Scholar 

  65. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi:10.1126/science.1181369

    Article  PubMed  CAS  Google Scholar 

  66. Fullwood MJ, Ruan Y (2009) Chip-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107(1):30–39. doi:10.1002/jcb.22116

    Article  PubMed  CAS  Google Scholar 

  67. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93(18):9821–9826

    Article  PubMed  CAS  Google Scholar 

  68. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E et al (2008) A bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26(7):779–785. doi:10.1038/nbt1414

    Article  PubMed  CAS  Google Scholar 

  69. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. doi:10.1038/ng1598

    Article  PubMed  CAS  Google Scholar 

  70. Serre D, Lee BH, Ting AH (2010) MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38(2):391–399. doi:10.1093/nar/gkp992

    Article  PubMed  CAS  Google Scholar 

  71. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28(10):1097–1105. doi:10.1038/nbt.1682

    Article  PubMed  CAS  Google Scholar 

  72. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877. doi:10.1093/nar/gki901

    Article  PubMed  CAS  Google Scholar 

  73. Sutherland E, Coe L, Raleigh EA (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol 225(2):327–348

    Article  PubMed  CAS  Google Scholar 

  74. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I et al (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309. doi:10.1126/science.290.5500.2306

    Article  PubMed  CAS  Google Scholar 

  75. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657. doi:10.1038/nmeth1068

    Article  PubMed  CAS  Google Scholar 

  76. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488(7409):116–120. doi:10.1038/nature11243

    Article  PubMed  CAS  Google Scholar 

  77. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28(8):817–825. doi:10.1038/nbt.1662

    Article  PubMed  CAS  Google Scholar 

  78. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49. doi:10.1038/nature09906

    Article  PubMed  CAS  Google Scholar 

  79. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S et al (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16(1):123–131. doi:10.1101/gr.4074106

    Article  PubMed  CAS  Google Scholar 

  80. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20(1):90–100. doi:10.1101/gr.098509.109

    Article  PubMed  CAS  Google Scholar 

  81. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17(6):877–885. doi:10.1101/gr.5533506

    Article  PubMed  CAS  Google Scholar 

  82. Djebali S, Lagarde J, Kapranov P, Lacroix V, Borel C, Mudge JM et al (2012) Evidence for transcript networks composed of chimeric RNAs in human cells. PLoS One 7(1):e28213. doi:10.1371/journal.pone.0028213

    Article  PubMed  CAS  Google Scholar 

  83. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26(2):182–190. doi:10.1016/S1046-2023(02)00021-X

    Article  PubMed  CAS  Google Scholar 

  84. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. doi:10.1126/science.1090095

    Article  PubMed  CAS  Google Scholar 

  85. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1(2):266–286. doi:10.1002/wrna.31

    Article  PubMed  CAS  Google Scholar 

  86. Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD, Gage FH (2009) An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16(2):130–137. doi:10.1038/nsmb.1545

    Article  PubMed  CAS  Google Scholar 

  87. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi:10.1016/j.cell.2010.03.009

    Article  PubMed  CAS  Google Scholar 

  88. König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17(7):909–915. doi:10.1038/nsmb.1838

    Article  PubMed  CAS  Google Scholar 

  89. Feinberg AP, Irizarry RA (2010) Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci USA 107(Suppl 1):1757–1764. doi:10.1073/pnas.0906183107

    Article  PubMed  CAS  Google Scholar 

  90. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56. doi:10.1016/B978-0-12-380866-0.60002-2

    Article  PubMed  Google Scholar 

  91. Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465(7299):721–727. doi:10.1038/nature09230

    Article  PubMed  CAS  Google Scholar 

  92. Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318. doi:10.1038/15490

    Article  PubMed  CAS  Google Scholar 

  93. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854. doi:10.1038/nn1276

    Article  PubMed  CAS  Google Scholar 

  94. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262. doi:10.1038/nrg2045

    Article  PubMed  CAS  Google Scholar 

  95. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053. doi:10.1093/hmg/ddp353

    Article  PubMed  CAS  Google Scholar 

  96. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467(7318):963–966. doi:10.1038/nature09491

    Article  PubMed  CAS  Google Scholar 

  97. Chong S, Vickaryous N, Ashe A, Zamudio N, Youngson N, Hemley S et al (2007) Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat Genet 39(5):614–622. doi:10.1038/ng2031

    Article  PubMed  CAS  Google Scholar 

  98. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143(7):1084–1096. doi:10.1016/j.cell.2010.12.008

    Article  PubMed  CAS  Google Scholar 

  99. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609. doi:10.1073/pnas.0500398102

    Article  PubMed  CAS  Google Scholar 

  100. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5):1229–1236. doi:10.2337/db08-1666

    Article  PubMed  CAS  Google Scholar 

  101. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG et al (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205(10):2409–2417. doi:10.1084/jem.20081188

    Article  PubMed  CAS  Google Scholar 

  102. Tateishi K, Okada Y, Kallin EM, Zhang Y (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458(7239):757–761. doi:10.1038/nature07777

    Article  PubMed  CAS  Google Scholar 

  103. Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED (2010) Comparative epigenomic analysis of murine and human adipogenesis. Cell 143(1):156–169. doi:10.1016/j.cell.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  104. Norton L, Fourcaudot M, Abdul-Ghani MA, Winnier D, Mehta FF, Jenkinson CP, Defronzo RA (2011) Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia 54(12):3132–3142. doi:10.1007/s00125-011-2289-z

    Article  PubMed  CAS  Google Scholar 

  105. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ et al (1999) Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 64(4):1127–1140

    Article  PubMed  CAS  Google Scholar 

  106. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323. doi:10.1038/ng1732

    Article  PubMed  CAS  Google Scholar 

  107. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T et al (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315–1319. doi:10.1126/science.1198125

    Article  PubMed  CAS  Google Scholar 

  108. Lechner M, Boshoff C, Beck S (2010) Cancer epigenome. Adv Genet 70:247–276. doi:10.1016/B978-0-12-380866-0.60009-5

    Article  PubMed  CAS  Google Scholar 

  109. Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347(12):911–920. doi:10.1056/NEJMra020100

    Article  PubMed  Google Scholar 

  110. Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12(8):529–541. doi:10.1038/nrg3000

    Article  PubMed  CAS  Google Scholar 

  111. Mack GS (2010) To selectivity and beyond. Nat Biotechnol 28(12):1259–1266. doi:10.1038/nbt.1724

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Pospisilik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teperino, R., Lempradl, A. & Pospisilik, J.A. Bridging epigenomics and complex disease: the basics. Cell. Mol. Life Sci. 70, 1609–1621 (2013). https://doi.org/10.1007/s00018-013-1299-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1299-z

Keywords

  • Complex diseases
  • Chromatin
  • Epigenomics