Skip to main content
Log in

Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The development of the endocrine pancreas is controlled by a hierarchical network of transcriptional regulators. It is increasingly evident that this requires a tightly interconnected epigenetic “programme” to drive endocrine cell differentiation and maintain islet function. Epigenetic regulators such as DNA and histone-modifying enzymes are now known to contribute to determination of pancreatic cell lineage, maintenance of cellular differentiation states, and normal functioning of adult pancreatic endocrine cells. Persistent effects of an early suboptimal environment, known to increase risk of type 2 diabetes in later life, can alter the epigenetic control of transcriptional master regulators, such as Hnf4a and Pdx1. Recent genome-wide analyses also suggest that an altered epigenetic landscape is associated with the β cell failure observed in type 2 diabetes and aging. At the cellular level, epigenetic mechanisms may provide a mechanistic link between energy metabolism and stable patterns of gene expression. Key energy metabolites influence the activity of epigenetic regulators, which in turn alter transcription to maintain cellular homeostasis. The challenge is now to understand the detailed molecular mechanisms that underlie these diverse roles of epigenetics, and the extent to which they contribute to the pathogenesis of type 2 diabetes. In-depth understanding of the developmental and environmental epigenetic programming of the endocrine pancreas has the potential to lead to novel therapeutic approaches in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  PubMed  CAS  Google Scholar 

  2. Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346

    Article  PubMed  CAS  Google Scholar 

  3. Bloomgarden ZT (2004) Diabetes complications. Diabetes Care 27:1506–1514

    Article  PubMed  Google Scholar 

  4. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study. Diabetologia 42:139–145

    Article  PubMed  CAS  Google Scholar 

  5. Doria A, Patti ME, Kahn CR (2008) The emerging genetic architecture of type 2 diabetes. Cell Metab 8:186–200

    Article  PubMed  CAS  Google Scholar 

  6. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363:2339–2350

    Article  PubMed  CAS  Google Scholar 

  7. Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416

    Article  PubMed  CAS  Google Scholar 

  8. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  9. Jin W, Patti ME (2009) Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes. Clin Sci (Lond) 116:99–111

    Article  CAS  Google Scholar 

  10. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  PubMed  CAS  Google Scholar 

  11. Hochberg Z, Feil R, Constância M, Fraga M, Junien C et al (2010) Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32:159–224

    Article  PubMed  CAS  Google Scholar 

  12. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  PubMed  CAS  Google Scholar 

  14. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed  CAS  Google Scholar 

  15. Ito S, Shen L, Dai Q, Wu SC, Collins LB et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  PubMed  CAS  Google Scholar 

  16. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  PubMed  CAS  Google Scholar 

  17. Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    Article  PubMed  CAS  Google Scholar 

  18. Bai L, Morozov AV (2010) Gene regulation by nucleosome positioning. Trends Genet 26:476–483

    Article  PubMed  CAS  Google Scholar 

  19. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443

    Article  PubMed  CAS  Google Scholar 

  20. Brenner C, Fuks F (2007) A methylation rendezvous: reader meets writers. Dev Cell 12:843–844

    Article  PubMed  CAS  Google Scholar 

  21. Simon JA, Kingston RE (2009) Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10:697–708

    PubMed  CAS  Google Scholar 

  22. Grewal SI (2010) RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20:134–141

    Article  PubMed  CAS  Google Scholar 

  23. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  PubMed  CAS  Google Scholar 

  24. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  PubMed  CAS  Google Scholar 

  25. Ozanne SE, Constância M (2007) Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab 3:539–546

    Article  PubMed  CAS  Google Scholar 

  26. Gites GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326:4–35

    Article  CAS  Google Scholar 

  27. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240:530–565

    Article  PubMed  CAS  Google Scholar 

  28. Zaret KS, Grompe M (2008) Generation and regeneration of cells of the liver and pancreas. Science 322:1490–1494

    Article  PubMed  CAS  Google Scholar 

  29. Zaret KS (2008) Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 9:329–340

    Article  PubMed  CAS  Google Scholar 

  30. Puri S, Hebrok M (2010) Cellular plasticity within the pancreas—lessons learned from development. Dev Cell 18:342–356

    Article  PubMed  CAS  Google Scholar 

  31. Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinol 138:1736–1741

    Article  CAS  Google Scholar 

  32. Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC et al (2010) Beta-cell growth and regeneration: replication is only part of the story*

  33. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  34. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  PubMed  CAS  Google Scholar 

  35. Xu CR, Cole PA, Meyers DJ, Kormish J, Dent S et al (2011) Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas. Science 332:963–966

    Article  PubMed  CAS  Google Scholar 

  36. van Arensbergen J, García-Hurtado J, Moran I, Maestro MA, Xu X et al (2010) Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res 20:722–732

    Article  PubMed  CAS  Google Scholar 

  37. Haumaitre C, Lenoir O, Scharfmann R (2008) Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 28:6373–6383

    Article  PubMed  CAS  Google Scholar 

  38. Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A et al (2011) Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 60:2861–2871

    Article  PubMed  CAS  Google Scholar 

  39. Rai K, Nadauld LD, Chidester S, Manos EJ, James SR et al (2006) Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol 26:7077–7085

    Article  PubMed  CAS  Google Scholar 

  40. Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PD et al (2009) Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 334:213–223

    Article  PubMed  CAS  Google Scholar 

  41. Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A (2011) Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 20:419–429

    Article  PubMed  CAS  Google Scholar 

  42. Papizan JB, Singer RA, Tschen SI, Dhawan S, Friel JM et al (2011) Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev 25:2291–2305

    Article  PubMed  CAS  Google Scholar 

  43. Chen H, Gu X, Su IH, Bottino R, Contreras JL et al (2009) Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23:975–985

    Article  PubMed  CAS  Google Scholar 

  44. Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG (2009) Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes 58:185–193

    Article  PubMed  CAS  Google Scholar 

  45. Francis J, Chakrabarti SK, Garmey JC, Mirmira RG (2005) Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem 280:36244–36253

    Article  PubMed  CAS  Google Scholar 

  46. Párrizas M, Maestro MA, Boj SF, Paniagua A, Casamitjana R et al (2001) Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol 21:3234–3243

    Article  PubMed  Google Scholar 

  47. Luco RF, Maestro MA, Sadoni N, Zink D, Ferrer J (2008) Targeted deficiency of the transcriptional activator Hnf1alpha alters subnuclear positioning of its genomic targets. PLoS Genet 4:e1000079

    Article  PubMed  CAS  Google Scholar 

  48. Kubicek S, Gilbert JC, Fomina-Yadlin D, Gitlin AD, Yuan Y et al (2012) Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proc Natl Acad Sci USA 109:5364–5369

    Article  PubMed  CAS  Google Scholar 

  49. Bhandare R, Schug J, Le Lay J, Fox A, Smirnova O et al (2010) Genome-wide analysis of histone modifications in human pancreatic islets. Genome Res 20:428–433

    Article  PubMed  CAS  Google Scholar 

  50. Stitzel ML, Sethupathy P, Pearson DS, Chines PS, Song L et al (2010) Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab 12:443–455

    Article  PubMed  CAS  Google Scholar 

  51. Mutskov V, Felsenfeld G (2009) The human insulin gene is part of a large open chromatin domain specific for human islets. Proc Natl Acad Sci USA 106:17419–17424

    Article  PubMed  CAS  Google Scholar 

  52. Thorrez L, Laudadio I, Van Deun K, Quintens R, Hendrickx N et al (2011) Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res 21:95–105

    Article  PubMed  CAS  Google Scholar 

  53. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG et al (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42:255–259

    Article  PubMed  CAS  Google Scholar 

  54. Morán I, Akerman I, van de Bunt M, Xie R, Benazra M et al (2012) Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 16:435–448

    Article  PubMed  CAS  Google Scholar 

  55. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  PubMed  CAS  Google Scholar 

  56. Hoffman BG, Robertson G, Zavaglia B, Beach M, Cullum R et al (2010) Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Res 20:1037–1051

    Article  PubMed  CAS  Google Scholar 

  57. Sekiya T, Muthurajan UM, Luger K, Tulin AV, Zaret KS (2009) Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev 23:804–809

    Article  PubMed  CAS  Google Scholar 

  58. Thompson RF, Fazzari MJ, Niu H, Barzilai N, Simmons RA et al (2010) Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J Biol Chem 285:15111–15118

    Article  PubMed  CAS  Google Scholar 

  59. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M et al (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31:1405–1426

    Article  PubMed  CAS  Google Scholar 

  60. Xu Z, Wei G, Chepelev I, Zhao K, Felsenfeld G (2011) Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription. Nat Struct Mol Biol 18:372–378

    Article  PubMed  CAS  Google Scholar 

  61. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S et al (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci USA 108:5449–5454

    Article  PubMed  CAS  Google Scholar 

  62. Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. Cell Stem Cell 9:17–23

    Article  PubMed  CAS  Google Scholar 

  63. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA 99:8078–8083

    Article  PubMed  CAS  Google Scholar 

  64. Kodama S, Kühtreiber W, Fujimura S, Dale EA, Faustman DL (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227

    Article  PubMed  CAS  Google Scholar 

  65. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G et al (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953

    Article  PubMed  CAS  Google Scholar 

  66. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R et al (2006) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  Google Scholar 

  67. Tayaramma T, Ma B, Rohde M, Mayer H (2006) Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 24:2858–2867

    Article  PubMed  CAS  Google Scholar 

  68. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  PubMed  CAS  Google Scholar 

  69. Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S et al (2009) The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 138:449–462

    Article  PubMed  CAS  Google Scholar 

  70. Thorel F, Népote V, Avril I, Kohno K, Desgraz R et al (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154

    Article  PubMed  CAS  Google Scholar 

  71. Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV (2011) Context-specific α- to-β cell reprogramming by forced Pdx1 expression. Genes Dev 25:1680–1685

    Article  PubMed  CAS  Google Scholar 

  72. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    Article  PubMed  CAS  Google Scholar 

  73. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  PubMed  CAS  Google Scholar 

  74. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    Article  PubMed  CAS  Google Scholar 

  75. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  PubMed  CAS  Google Scholar 

  76. Remacle C, Dumortier O, Bol V, Goosse K, Romanus P et al (2007) Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 9(Suppl 2):196–209

    Article  PubMed  CAS  Google Scholar 

  77. Park JH, Stoffers DA, Nicholls RD, Simmons RA (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118:2316–2324

    Article  PubMed  CAS  Google Scholar 

  78. Petry CJ, Dorling MW, Pawlak DB, Ozanne SE, Hales CN (2001) Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2:139–143

    Article  PubMed  CAS  Google Scholar 

  79. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA et al (2010) Chronic high-fat diet in fathers programs β cell dysfunction in female rat offspring. Nature 467:963–966

    Article  PubMed  CAS  Google Scholar 

  80. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    PubMed  CAS  Google Scholar 

  81. Suter M, Bocock P, Showalter L, Hu M, Shope C (2011) Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J 25:714–726

    Article  PubMed  CAS  Google Scholar 

  82. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE (2011) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    Article  CAS  Google Scholar 

  83. Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA et al (2009) Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 139:1054–1060

    Article  PubMed  CAS  Google Scholar 

  84. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  PubMed  CAS  Google Scholar 

  85. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566

    Article  PubMed  CAS  Google Scholar 

  86. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  87. Ozanne SE, Sandovici I, Constância M (2011) Maternal diet, aging and diabetes meet at a chromatin loop. Aging 3:548–554

    PubMed  CAS  Google Scholar 

  88. Chang AM, Halter JB (2003) Aging and insulin secretion. Am J Physiol Endocrinol Metab 284:E7–E12

    PubMed  CAS  Google Scholar 

  89. Møller N, Gormsen L, Fuglsang J, Gjedsted J (2003) Effects of ageing on insulin secretion and action. Horm Res 60:102–104

    PubMed  Google Scholar 

  90. Iozzo P, Beck-Nielsen H, Laakso M, Smith U, Yki-Järvinen H et al (1999) Independent influence of age on basal insulin secretion in nondiabetic humans. European Group for the Study of Insulin Resistance. J Clin Endocrinol Metab 84:863–868

    Article  PubMed  CAS  Google Scholar 

  91. Basu R, Breda E, Oberg AL, Powell CC, Dalla Man C et al (2003) Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes 52:1738–1748

    Article  PubMed  CAS  Google Scholar 

  92. Muzumdar R, Ma X, Atzmon G, Vuguin P, Yang X et al (2004) Decrease in glucose-stimulated insulin secretion with aging is independent of insulin action. Diabetes 53:441–446

    Article  PubMed  CAS  Google Scholar 

  93. Maedler K, Schumann DM, Schulthess F, Oberholzer J, Bosco D et al (2006) Aging correlates with decreased beta-cell proliferative capacity and enhanced sensitivity to apoptosis: a potential role for Fas and pancreatic duodenal homeobox-1. Diabetes 55:2455–2462

    Article  PubMed  CAS  Google Scholar 

  94. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  PubMed  CAS  Google Scholar 

  95. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A et al (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–457

    Article  PubMed  CAS  Google Scholar 

  96. Lee SH, Itkin-Ansari P, Levine F (2010) CENP-A, a protein required for chromosome segregation in mitosis, declines with age in islet but not exocrine cells. Aging 2:785–790

    PubMed  CAS  Google Scholar 

  97. Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    Article  PubMed  CAS  Google Scholar 

  98. Kuhlow D, Florian S, von Figura G, Weimer S, Schulz N et al (2010) Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging 2:650–658

    PubMed  CAS  Google Scholar 

  99. Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H et al (2009) Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J 23:1521–1528

    Article  PubMed  CAS  Google Scholar 

  100. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  PubMed  CAS  Google Scholar 

  101. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883

    Article  PubMed  CAS  Google Scholar 

  102. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    Article  PubMed  CAS  Google Scholar 

  103. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    Article  PubMed  CAS  Google Scholar 

  104. Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C et al (2010) Tissue-specific dysregulation of DNA methylation in aging. Aging Cell 9:506–518

    Article  PubMed  CAS  Google Scholar 

  105. Grönniger E, Weber B, Heil O, Peters N, Stäb F et al (2010) Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet 6:e1000971

    Article  PubMed  CAS  Google Scholar 

  106. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD et al (2011) Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117:e182–e189

    Article  PubMed  CAS  Google Scholar 

  107. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    Article  PubMed  CAS  Google Scholar 

  108. Szulwach KE, Li X, Li Y, Song CX, Wu H et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14:1607–1616

    Article  PubMed  CAS  Google Scholar 

  109. Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J et al (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci USA 107:8824–8829

    Article  PubMed  CAS  Google Scholar 

  110. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  PubMed  CAS  Google Scholar 

  111. Krishnan V, Chow MZ, Wang Z, Zhang L, Liu B et al (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA 108:12325–31230

    Article  PubMed  CAS  Google Scholar 

  112. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  PubMed  CAS  Google Scholar 

  113. Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A et al (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514

    Article  PubMed  CAS  Google Scholar 

  114. Funayama R, Saito M, Tanobe H, Ishikawa F (2006) Loss of linker histone H1 in cellular senescence. J Cell Biol 175:869–880

    Article  PubMed  CAS  Google Scholar 

  115. O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225

    Article  PubMed  CAS  Google Scholar 

  116. Chen H, Gu X, Liu Y, Wang J, Wirt SE et al (2011) PDGF signalling controls age-dependent proliferation in pancreatic β cells. Nature 478:349–355

    Article  PubMed  CAS  Google Scholar 

  117. Margueron R, Li G, Sarma K, Blais A, Zavadil J et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32:503–518

    Article  PubMed  CAS  Google Scholar 

  118. Rankin MM, Kushner JA (2010) Aging induces a distinct gene expression program in mouse islets. Islets 2:4–11

    Article  Google Scholar 

  119. Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M et al (2000) The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 9:453–460

    Article  PubMed  CAS  Google Scholar 

  120. Mackay DJ, Coupe AM, Shield JP, Storr JN, Temple IK et al (2002) Relaxation of imprinted expression of ZAC and HYMAI in a patient with transient neonatal diabetes mellitus. Hum Genet 110:139–144

    Article  PubMed  CAS  Google Scholar 

  121. Gardner RJ, Mackay DJ, Mungall AJ, Polychronakos C, Siebert R et al (2000) An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet 9:589–596

    Article  PubMed  CAS  Google Scholar 

  122. Arima T, Drewell RA, Arney KL, Inoue J, Makita Y (2001) A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus. Hum Mol Genet 10:1475–1483

    Article  PubMed  CAS  Google Scholar 

  123. Du X, Rousseau M, Ounissi-Benkalha H, Marchand L, Jetha A et al (2011) Differential expression pattern of ZAC in developing mouse and human pancreas. J Mol Histol 42:129–136

    Article  PubMed  CAS  Google Scholar 

  124. Ma D, Shield JP, Dean W, Leclerc I, Knauf C et al (2004) Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest 114:339–348

    PubMed  CAS  Google Scholar 

  125. Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622

    Article  PubMed  CAS  Google Scholar 

  126. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R et al (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54:360–367

    Article  PubMed  CAS  Google Scholar 

  127. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26:1203–1212

    Article  PubMed  CAS  Google Scholar 

  128. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P et al (2009) Parental origin of sequence variants associated with complex diseases. Nature 462:868–874

    Article  PubMed  CAS  Google Scholar 

  129. Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T et al (2012) Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 21:371–383

    Article  PubMed  CAS  Google Scholar 

  130. Donohoe DR, Bultman SJ (2012) Metaboloepigenetics: Interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. doi:10.1002/jcp.24054

  131. Hanover JA, Krause MW, Love DC (2012) Post-translational modifications: Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13:312–321

    Article  PubMed  CAS  Google Scholar 

  132. Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132:2333S–2335S

    PubMed  CAS  Google Scholar 

  133. Turner BM (2009) Epigenetic responses to environmental change and their evolutionary implications. Philos Trans R Soc Lond B Biol Sci 364:3403–3418

    Article  PubMed  CAS  Google Scholar 

  134. Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12:321–327

    Article  PubMed  CAS  Google Scholar 

  135. Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15:551–589

    Article  PubMed  CAS  Google Scholar 

  136. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    PubMed  CAS  Google Scholar 

  137. Smith GC, Konycheva G, Dziadek MA, Ravelich SR, Patel S et al (2011) Pre- and postnatal methyl deficiency in the rat differentially alters glucose homeostasis. J Nutrigenet Nutrigenomics 4:175–191

    Article  PubMed  CAS  Google Scholar 

  138. Sandovici I, Smith NH, Ozanne SE, Constância M (2008) The dynamic epigenome: the impact of the environment on epigenetic regulation of gene expression and developmental programming. In: Tost J (ed) Epigenetics. Caister Academic, Norfolk, pp 343–370

    Google Scholar 

  139. Khulan B, Cooper WN, Skinner BM, Bauer J, Owens S et al (2012) Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum Mol Genet 21:2086–2101

    Article  PubMed  CAS  Google Scholar 

  140. Yu J, Auwerx J (2009) The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci 1173(Suppl 1):E10–E19

    Article  PubMed  CAS  Google Scholar 

  141. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  PubMed  CAS  Google Scholar 

  142. Grummt I, Ladurner AG (2008) A metabolic throttle regulates the epigenetic state of rDNA. Cell 133:577–580

    Article  PubMed  CAS  Google Scholar 

  143. Guarente L (2011) The logic linking protein acetylation and metabolism. Cell Metab 14:151–153

    Article  PubMed  CAS  Google Scholar 

  144. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103:10230–10235

    Article  PubMed  CAS  Google Scholar 

  145. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  PubMed  CAS  Google Scholar 

  146. Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148:24–28

    Article  PubMed  CAS  Google Scholar 

  147. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526

    Article  PubMed  CAS  Google Scholar 

  148. Liu HK, Green BD, Flatt PR, McClenaghan NH, McCluskey JT (2004) Effects of long-term exposure to nicotinamide and sodium butyrate on growth, viability, and the function of clonal insulin secreting cells. Endocr Res 30:61–68

    Article  PubMed  CAS  Google Scholar 

  149. Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P (2011) Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 286:6049–6060

    Article  PubMed  CAS  Google Scholar 

  150. Zhang S, Roche K, Nasheuer HP, Lowndes NF (2011) Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem 286:37483–37495

    Article  PubMed  CAS  Google Scholar 

  151. Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T et al (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480:557–560

    PubMed  CAS  Google Scholar 

  152. Gambetta MC, Oktaba K, Müller J (2009) Essential role of the glycosyltransferase sxc/Ogt in Polycomb repression. Science 325:93–96

    Article  PubMed  CAS  Google Scholar 

  153. Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I et al (2009) GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 459:455–459

    Article  PubMed  CAS  Google Scholar 

  154. Hanover JA, Lai Z, Lee G, Lubas WA, Sato SM (1999) Elevated O-linked N-acetylglucosamine metabolism in pancreatic beta-cells. Arch Biochem Biophys 362:38–45

    Article  PubMed  CAS  Google Scholar 

  155. Liu K, Paterson AJ, Chin E, Kudlow JE (2000) Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death. Proc Natl Acad Sci USA 97:2820–2825

    Article  PubMed  CAS  Google Scholar 

  156. Soesanto Y, Luo B, Parker G, Jones D, Cooksey RC et al (2011) Pleiotropic and age-dependent effects of decreased protein modification by O-linked N-acetylglucosamine on pancreatic β-cell function and vascularisation. J Biol Chem 286:26118–26126

    Article  PubMed  CAS  Google Scholar 

  157. Lehman DM, Fu DJ, Freeman AB, Hunt KJ, Leach RJ et al (2005) A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-beta-d glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 54:1214–1221

    Article  PubMed  CAS  Google Scholar 

  158. Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN et al (2012) Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci USA 109:2376–2381

    Article  PubMed  CAS  Google Scholar 

  159. Wisniewski JR, Zougman A, Mann M (2008) Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 36:570–577

    Article  PubMed  CAS  Google Scholar 

  160. Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A et al (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32:4100–4108

    Article  PubMed  CAS  Google Scholar 

  161. Yildirim O, Li R, Hung JH, Chen PB, Dong X et al (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147:1498–1510

    Article  PubMed  CAS  Google Scholar 

  162. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872

    Article  PubMed  CAS  Google Scholar 

  163. Chia N, Wang L, Lu X, Senut MC, Brenner C et al (2011) Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics 6:853–856

    Article  PubMed  CAS  Google Scholar 

  164. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  165. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    Article  PubMed  CAS  Google Scholar 

  166. Theys N, Clippe A, Bouckenooghe T, Reusens B, Remacle C (2009) Early low protein diet aggravates unbalance between antioxidant enzymes leading to islet dysfunction. PLoS One 4:e6110

    Article  PubMed  CAS  Google Scholar 

  167. Tarry-Adkins JL, Chen JH, Jones RH, Smith NH, Ozanne SE (2010) Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J 24:2762–2771

    Article  PubMed  CAS  Google Scholar 

  168. Dreja T, Jovanovic Z, Rasche A, Kluge R, Herwig R et al (2010) Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia 53:309–320

    Article  PubMed  CAS  Google Scholar 

  169. Valle MM, Graciano MF, Lopes de Oliveira ER, Camporez JP, Akamine EH et al (2011) Alterations of NADPH oxidase activity in rat pancreatic islets induced by a high-fat diet. Pancreas 40:390–395

    Article  PubMed  CAS  Google Scholar 

  170. Tanaka Y, Tran PO, Harmon J, Robertson RP (2002) A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci USA 99:12363–12368

    Article  PubMed  CAS  Google Scholar 

  171. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118:3378–3389

    Article  PubMed  CAS  Google Scholar 

  172. McDaniell R, Lee BK, Song L, Liu Z, Boyle AP et al (2010) Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328:235–239

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of Miguel Constância’s lab for critical reading of the manuscript and helpful suggestions. This work was supported by the Biotechnology and Biological Sciences Research Council, the British Heart Foundation, the FP6 Epigenome Network of Excellence programme, GlaxoSmithKline, the Nuffield Foundation, the Royal Society, the National Institute for Health Research Cambridge Biomedical Research Centre, and the Medical Research Council Centre for Obesity and Related Metabolic Diseases.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ionel Sandovici, Susan E. Ozanne or Miguel Constância.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandovici, I., Hammerle, C.M., Ozanne, S.E. et al. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell. Mol. Life Sci. 70, 1575–1595 (2013). https://doi.org/10.1007/s00018-013-1297-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1297-1

Keywords

Navigation