Skip to main content
Log in

Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The cell is a crowded volume, with estimated mean mass percentage of macromolecules and of water ranging from 7.5 to 45 and 55 to 92.5 %, respectively. However, the concentrations of macromolecules and water at the nanoscale within the various cell compartments are unknown. We recently developed a new approach, correlative cryo-analytical scanning transmission electron microscopy, for mapping the quantity of water within compartments previously shown to display GFP-tagged protein fluorescence on the same ultrathin cryosection. Using energy-dispersive X-ray spectrometry (EDXS), we then identified various elements (C, N, O, P, S, K, Cl, Mg) in these compartments and quantified them in mmol/l. Here, we used this new approach to quantify water and elements in the cytosol, mitochondria, condensed chromatin, nucleoplasm, and nucleolar components of control and stressed cancerous cells. The water content of the control cells was between 60 and 83 % (in the mitochondria and nucleolar fibrillar centers, respectively). Potassium was present at concentrations of 128–462 mmol/l in nucleolar fibrillar centers and condensed chromatin, respectively. The induction of nucleolar stress by treatment with a low dose of actinomycin-D to inhibit rRNA synthesis resulted in both an increase in water content and a decrease in the elements content in all cell compartments. We generated a nanoscale map of water and elements within the cell compartments, providing insight into their changes induced by nucleolar stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

    Article  PubMed  CAS  Google Scholar 

  2. Hancock R (2004) A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J Struct Biol 146:281–290

    Article  PubMed  CAS  Google Scholar 

  3. Schnell S, Hancock R (2008) The intranuclear environment. In: Hancock R (ed) The nucleus, vol 1. Humana Press, pp 3–19

  4. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869

    Article  PubMed  CAS  Google Scholar 

  5. Goodsell DS (1991) Inside a living cell. Trends Biochem Sci 16:203–206

    Article  PubMed  CAS  Google Scholar 

  6. Ando T, Skolnick J (2010) Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc Natl Acad Sci USA 107:18457–18462

    Article  PubMed  CAS  Google Scholar 

  7. Medalia O, Weber I, Frangakis AS, Nicastro D, Gerish G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213

    Article  PubMed  CAS  Google Scholar 

  8. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed  CAS  Google Scholar 

  9. Zimmerman S, Harrison B (1987) Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc Natl Acad Sci USA 84:1871–1875

    Article  PubMed  CAS  Google Scholar 

  10. Fullerton GD, Kanal KM, Cameron IL (2006) On the osmotically unresponsive water compartment in cells. Cell Biol Int 30:74–77

    Article  PubMed  CAS  Google Scholar 

  11. Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  PubMed  CAS  Google Scholar 

  12. Feig M, Pettitt M (1998) Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation. J Mol Biol 286:1075–1095

    Article  Google Scholar 

  13. Auffinger P, Hashem Y (2007) Nucleic acid salvation: from outside to insight. Curr Opin Struct Biol 17:325–333

    Article  PubMed  CAS  Google Scholar 

  14. Strick R, Strissel PL, Gavrilov K, Levi-Setti R (2001) Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J Cell Biol 155:899–910

    Article  PubMed  CAS  Google Scholar 

  15. Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866

    Article  PubMed  CAS  Google Scholar 

  16. Pederson T (2010) The nucleus introduced. Cold Spring Harb Perspect Biol 2:a000521

    Google Scholar 

  17. Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2:a000596

    Article  PubMed  Google Scholar 

  18. Howard JJ, Lynch GC, Pettitt BM (2011) Ion and solvent density distributions around canonical B-DNA from integral equations. J Phys Chem 27:547–556

    Google Scholar 

  19. Hancock R (2007) Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces. Semin Cell Dev Biol 18:668–675

    Article  PubMed  CAS  Google Scholar 

  20. Bohrmann B, Haider M, Kellenberger E (1993) Concentration evaluation of chromatin in unstained resin-embedded sections by means of low-dose ratio-contrast imaging in STEM. Ultramicroscopy 49:235–251

    Article  PubMed  CAS  Google Scholar 

  21. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectroscopy (SIMS microscopy). Biochem Biophys Acta 1724:228–238

    Article  PubMed  CAS  Google Scholar 

  22. Fernandez-Segura E, Warley A (2008) Electron probe X-ray microanalysis for the study of cell physiology. Methods Cell Biol 88:19–43

    Article  PubMed  CAS  Google Scholar 

  23. Terryn C, Michel J, Kilian L, Bonhomme P, Balossier G (2000) Comparison of intracellular water content measurements by dark-field imaging and EELS in medium voltage TEM. The Eur Phys J Appl Phys 11:215–226

    Article  CAS  Google Scholar 

  24. Zierold K, Michel J, Terryn C, Balossier G (2005) The distribution of light elements in biological cells measured by electron probe X-ray microanalysis of cryosections. Microsc Microanal 11:138–145

    Article  PubMed  CAS  Google Scholar 

  25. Delavoie F, Molinari M, Milliot M, Zahm JM, Coraux C, Michel J, Balossier G (2009) Salmeterol restores secretory functions in cystic fibrosis airway submucosal gland serous cells. Am J Resp Cell Mol Biol 40:388–397

    Article  CAS  Google Scholar 

  26. Nolin F, Ploton D, Wortham L, Tchelidze P, Balossier G, Banchet V, Bobichon H, Lalun N, Terryn C, Michel J (2012) Targeted nano analysis of water and ions using cryocorrelative light and scanning transmission electron microscopy. J Struct Biol 180:352–361

    Article  PubMed  CAS  Google Scholar 

  27. Kanda T, Sullivan KF, Wahl G (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385

    Article  PubMed  CAS  Google Scholar 

  28. Savino TM, Bastos R, Jansen E, Hernandez-Verdun D (1999) The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J Cell Sci 112:1889–1900

    PubMed  CAS  Google Scholar 

  29. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  PubMed  CAS  Google Scholar 

  30. Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, Kellner M, Gruber-Eber A, Kremmer E, Hölzel M et al (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285:12416–12425

    Article  PubMed  CAS  Google Scholar 

  31. Andersen JS, Lam YW, Leung AKL, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  32. Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145

    Article  PubMed  Google Scholar 

  33. Briegel A, Chen S, Koster AJ, Plitzko JM, Schwartz CL, Jensen GJ (2010) Correlated light and electron cryo-microscopy. Meth Enzymol 481:317–341

    Article  PubMed  Google Scholar 

  34. Fullerton GD, Cameron IL (2007) Water compartments in cells. Meth Enzymol 428:1–28

    Article  PubMed  CAS  Google Scholar 

  35. Cavanaugh A, Hirschler-Laszkiewiez I, Rothblum LI (2004) Ribosomal DNA transcription in mammals. In: Olson M (ed) The nucleolus. Kluwer Academic/Plenum Publishers, Dordrecht, pp 88–127

  36. Henras AK, Soudet J, Gérus M, Lebaron S, Caizergues-Ferrer M, Mougin A, Henry Y (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65:2334–2359

    Article  PubMed  CAS  Google Scholar 

  37. Puvion-Dutilleul F, Mazan S, Nicoloso M, Pichard E, Bachellerie JP, Puvion E (1992) Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol 58:149–162

    PubMed  CAS  Google Scholar 

  38. Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    Article  PubMed  CAS  Google Scholar 

  39. Fukamachi S, Bartoov B, Freeman KB (1972) Synthesis of ribonucleic acid by isolated rat liver mitochondria. Biochem J 128:299–309

    PubMed  CAS  Google Scholar 

  40. Laszlo J, Miller DS, McCarty KS, Hochstein P (1966) Actinomycin D: inhibition of respiration and glycolysis. Science 151:1007–1010

    Article  PubMed  CAS  Google Scholar 

  41. Scheffner M, Münger K, Byrne JC, Howley PM (1991) The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88:5523–5527

    Article  PubMed  CAS  Google Scholar 

  42. Lam YW, Lamond AI, Mann M, Andersen JS (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    Article  PubMed  CAS  Google Scholar 

  43. Bellissent-Funel MC (2011) Protein dynamics and hydration water. In: Le Bihan D (ed) Water: the forgotten biological molecule. Pan Stanford Publishing, Singapore, pp 23–47

  44. Chaplin M (2011) The water molecule, liquid water, hydrogen bonds, and water networks. In: Le Bihan D (ed) Water: the forgotten biological molecule. Pan Stanford Publishing, Singapore, pp 4–19

  45. Mentré P (2012) Water in the orchestration of the cell machinery. Some misunderstandings: a short review. J Biol Phys 38:13–26

    Article  PubMed  Google Scholar 

  46. Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudoin J, Ellenberg J (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28:3785–3798

    Article  PubMed  CAS  Google Scholar 

  47. Verschure PJ, Van der Kraan I, Manders EMM, Hoogstraten D, Houtsmuller AB, Van Driel R (2003) Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 4:861–866

    Article  PubMed  CAS  Google Scholar 

  48. Görisch SM, Richter K, Scheuermann MO, Herrmann H, Lichter P (2003) Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules. Exp Cell Res 289:282–294

    Article  PubMed  Google Scholar 

  49. Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16:202–211

    Article  PubMed  CAS  Google Scholar 

  50. Derenzini M, Pasquinelli G, O’Donohue MF, Ploton D, Thiry M (2006) Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem 54:131–146

    Article  PubMed  CAS  Google Scholar 

  51. Bortner CD, Sifre MI, Cidlowski JA (2008) Cationic gradient reversal and cytoskeleton-independent volume regulatory pathway define an early stage of apoptosis. J Biol Chem 283:7219–7229

    Article  PubMed  CAS  Google Scholar 

  52. Warley A, Stephen J, Hockaday A, Appleton TC (1983) X-ray microanalysis of HeLa S3 cells. J Cell Sci 60:217–229

    PubMed  CAS  Google Scholar 

  53. Arrebola F, Fernandez-Segura E, Campos A, Crespo PV, Skepper JN, Warley A (2006) Changes in intracellular electrolyte concentrations during apoptosis induced by UV irradiation of human myeloblastic cells. Am J Physiol Cell Physiol 290:638–649

    Article  Google Scholar 

  54. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  55. Cameron IL, Kanal KM, Fullerton GD (2006) Role of protein conformation and aggregation in pumping water in and out of a cell. Cell Biol Int 30:78–85

    Article  PubMed  CAS  Google Scholar 

  56. Deisenroth C, Zhang Y (2011) The ribosomal protein-mdm2-p53 pathway and energy metabolism: bridging the gap between feast and famine. Genes Cancer 2:392–403

    Article  PubMed  CAS  Google Scholar 

  57. Görlich D, Mattaj W (1996) Nucleocytoplasmic transport. Science 271:1513–1518

    Article  PubMed  Google Scholar 

  58. Donati G, Montanaro L, Derenzini M (2012) Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res 72:1602–1607

    Article  PubMed  CAS  Google Scholar 

  59. Bensaude O (2011) Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? Transcription 2:103–108

    Article  PubMed  Google Scholar 

  60. Hughes FM, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576

    Article  PubMed  CAS  Google Scholar 

  61. Zierold K (1986) The determination of wet weight concentrations of elements in freeze-dried cryosection from biological cells. Scanning Microsc 2:713–724

    Google Scholar 

Download references

Acknowledgments

We received funding from: the Agence Nationale pour la Recherche (ANR-07 Nano-CESIWIN), Europe Community (FEDER) and Région Champagne Ardennes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Ploton.

Additional information

J. Michel and D. Ploton are co-senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (DOC 38 kb)

Online Resource 2 (DOC 78 kb)

18_2013_1267_MOESM3_ESM.tif

Online Resource 3 Percentage water in control and actinomycin D-treated HeLa NOP 52-GFP cells. Quantification was carried out for regions of interest in several compartments: DFC/GC (nucleolar dense fibrillar component and granular component); FC/NLC (nucleolar fibrillar centers and nucleolar light caps); NPL (nucleoplasm); CY (cytosol); MIT (mitochondria). Data are means ± SD from triplicate experiments (n = 40 for each condition). (TIFF 2389 kb)

18_2013_1267_MOESM4_ESM.tif

Online Resource 4 Elements (N, P, S, K, Cl, Mg) were identified and quantified by EDXS in control and actinomycin D-treated HeLa NOP 52-GFP cells. Analyses were performed on regions of interest in several compartments: DFC/GC (nucleolar dense fibrillar component and granular component); FC/NLC (nucleolar fibrillar centers and nucleolar light caps); NPL (nucleoplasm); CYT (cytosol); MIT (mitochondria). Data are means ± SD from triplicate experiments (n = 40 for each condition). (TIFF 6637 kb)

18_2013_1267_MOESM5_ESM.doc

Online Resource 5 Elements (N, P, S, K, Cl, Mg) were identified and quantified by EDXS in control and actinomycin D-treated HeLa NOP 52-GFP cells. Analyses were performed on regions of interest in several compartments: DFC/GC (nucleolar dense fibrillar component and granular component); NPL (nucleoplasm); CYT (cytosol); MIT (mitochondria). Data are means ± SD from triplicate experiments (n = 40 for each condition) and are presented as spiderweb diagrams for each cell compartment. (DOC 21 kb)

Online Resource 6 (DOC 39 kb)

Online Resource 7 (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolin, F., Michel, J., Wortham, L. et al. Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach. Cell. Mol. Life Sci. 70, 2383–2394 (2013). https://doi.org/10.1007/s00018-013-1267-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1267-7

Keywords

Navigation