Skip to main content
Log in

Role of NMDA receptors in adult neurogenesis: an ontogenetic (re)view on activity-dependent development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

It is now widely accepted that neurogenesis continues throughout life. Accumulating evidence suggests that neurotransmitters are essential signaling molecules that control the different steps of neurogenesis. Nevertheless, we are only beginning to understand the precise role of neurotransmitter receptors and in particular excitatory glutamatergic transmission in the differentiation of adult-born neurons. Recent technical advances allow single-cell gene deletion to study cell-autonomous effects during the maturation of adult-born neurons. Single-cell gene deletion overcomes some of the difficulties in interpreting global gene deletion effects on entire brain areas or systemic pharmacological approaches that might result in compensatory circuit effects. The aim of this review is to summarize recent advances in the understanding of the role of NMDA receptors (NMDARs) during the differentiation of adult-born neurons and put them in perspective with previous findings on cortical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Doetsch F et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  PubMed  CAS  Google Scholar 

  2. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    Google Scholar 

  3. Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22(14):6106–6113

    PubMed  CAS  Google Scholar 

  4. Mori K (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog Neurobiol 29(3):275–320

    Article  PubMed  CAS  Google Scholar 

  5. Shepherd GM et al (2007) The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res Rev 55(2):373–382

    Article  PubMed  Google Scholar 

  6. Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139(1):45–59

    Article  PubMed  CAS  Google Scholar 

  7. Strowbridge BW (2010) Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination. Neuron 65(3):295–297

    Article  PubMed  CAS  Google Scholar 

  8. Doucette W et al (2011) Associative cortex features in the first olfactory brain relay station. Neuron 69(6):1176–1187

    Article  PubMed  CAS  Google Scholar 

  9. Whitman MC, Greer CA (2007) Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27(37):9951–9961

    Article  PubMed  CAS  Google Scholar 

  10. Kelsch W, Lin CW, Lois C (2008) Sequential development of synapses in dendritic domains during adult neurogenesis. Proc Natl Acad Sci USA 105(43):16803–16808

    Article  PubMed  CAS  Google Scholar 

  11. Carleton A et al (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6(5):507–518

    PubMed  CAS  Google Scholar 

  12. Platel JC et al (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65(6):859–872

    Article  PubMed  CAS  Google Scholar 

  13. Platel JC et al (2010) Neurotransmitter signaling in postnatal neurogenesis: the first leg. Brain Res Rev 63(1–2):60–71

    Article  PubMed  CAS  Google Scholar 

  14. Young SZ, Taylor MM, Bordey A (2011) Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci 33(6):1123–1132

    Article  PubMed  Google Scholar 

  15. Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20(2):575–579

    Article  PubMed  Google Scholar 

  16. Hoglinger GU et al (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735

    Article  PubMed  Google Scholar 

  17. Winner B et al (2006) Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 197(1):113–121

    Article  PubMed  CAS  Google Scholar 

  18. O’Keeffe GC et al (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci USA 106(21):8754–8759

    Article  PubMed  Google Scholar 

  19. Banasr M et al (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3):450–460

    Article  PubMed  CAS  Google Scholar 

  20. Soumier A et al (2010) Region- and phase-dependent effects of 5-HT(1A) and 5-HT(2C) receptor activation on adult neurogenesis. Eur Neuropsychopharmacol 20(5):336–345

    Article  PubMed  CAS  Google Scholar 

  21. Mishra SK et al (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133(4):675–684

    Article  PubMed  CAS  Google Scholar 

  22. Lin JH et al (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302(1):356–366

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen L et al (2003) Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J Neurosci 23(8):3278–3294

    PubMed  CAS  Google Scholar 

  24. Liu X et al (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8(9):1179–1187

    Article  PubMed  CAS  Google Scholar 

  25. Brazel CY et al (2005) Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131(1):55–65

    Article  PubMed  CAS  Google Scholar 

  26. Di Giorgi-Gerevini V et al (2005) Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells. Cell Death Differ 12(8):1124–1133

    Article  PubMed  Google Scholar 

  27. Castiglione M et al (2008) Group I metabotropic glutamate receptors control proliferation, survival and differentiation of cultured neural progenitor cells isolated from the subventricular zone of adult mice. Neuropharmacology 55(4):560–567

    Article  PubMed  CAS  Google Scholar 

  28. Gandhi R et al (2008) Group I mGluR5 metabotropic glutamate receptors regulate proliferation of neuronal progenitors in specific forebrain developmental domains. J Neurochem 104(1):155–172

    PubMed  CAS  Google Scholar 

  29. Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24(35):7623–7631

    Article  PubMed  CAS  Google Scholar 

  30. Gascon E et al (2006) GABA regulates dendritic growth by stabilizing lamellipodia in newly generated interneurons of the olfactory bulb. J Neurosci 26(50):12956–12966

    Article  PubMed  CAS  Google Scholar 

  31. Platel JC et al (2008) Tonic activation of GLUK5 kainate receptors decreases neuroblast migration in whole-mounts of the subventricular zone. J Physiol 586(16):3783–3793

    Article  PubMed  CAS  Google Scholar 

  32. Yamaguchi M, Mori K (2005) Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc Natl Acad Sci USA 102(27):9697–9702

    Article  PubMed  CAS  Google Scholar 

  33. Winner B et al (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16(9):1681–1689

    Article  PubMed  Google Scholar 

  34. Kelsch W et al (2009) A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci 29(38):11852–11858

    Article  PubMed  CAS  Google Scholar 

  35. Nissant A et al (2009) Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci 12(6):728–730

    Article  PubMed  CAS  Google Scholar 

  36. Gao Y, Strowbridge BW (2009) Long-term plasticity of excitatory inputs to granule cells in the rat olfactory bulb. Nat Neurosci 12(6):731–733

    Article  PubMed  CAS  Google Scholar 

  37. Ge S et al (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566

    Article  PubMed  CAS  Google Scholar 

  38. Cases O et al (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16(2):297–307

    Article  PubMed  CAS  Google Scholar 

  39. Abdel-Majid RM et al (1998) Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat Genet 19(3):289–291

    Article  PubMed  CAS  Google Scholar 

  40. Hannan AJ et al (2001) PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 4(3):282–288

    Article  PubMed  CAS  Google Scholar 

  41. Lu HC et al (2003) Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical ‘barrel’ map development. Nat Neurosci 6(9):939–947

    Article  PubMed  CAS  Google Scholar 

  42. Iwasato T et al (2008) Cortical adenylyl cyclase 1 is required for thalamocortical synapse maturation and aspects of layer IV barrel development. J Neurosci 28(23):5931–5943

    Article  PubMed  CAS  Google Scholar 

  43. Narboux-Neme N et al (2012) Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. J Neurosci 32(18):6183–6196

    Article  PubMed  CAS  Google Scholar 

  44. Procaccini C et al (2011) Excessive novelty-induced c-Fos expression and altered neurogenesis in the hippocampus of GluA1 knockout mice. Eur J Neurosci 33(1):161–174

    Article  PubMed  Google Scholar 

  45. Monyer H et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  PubMed  CAS  Google Scholar 

  46. Fiacco TA et al (2007) Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54(4):611–626

    Article  PubMed  CAS  Google Scholar 

  47. Bezzi P et al (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285

    Article  PubMed  CAS  Google Scholar 

  48. Dave KA et al (2011) Prostaglandin E2 induces glutamate release from subventricular zone astrocytes. Neuron Glia Biol 6(3):201–207

    Google Scholar 

  49. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90(5):2074–2077

    Article  PubMed  CAS  Google Scholar 

  50. Lin CW et al (2010) Genetically increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits. Neuron 65(1):32–39

    Article  PubMed  CAS  Google Scholar 

  51. Kelsch W et al (2012) GluN2B-containing NMDA receptors promote wiring of adult-born neurons into olfactory bulb circuits. J Neurosci 32(36):12603–12611

    Article  PubMed  CAS  Google Scholar 

  52. Nacher J et al (2007) N-methyl-d-aspartate receptor expression during adult neurogenesis in the rat dentate gyrus. Neuroscience 144(3):855–864

    Article  PubMed  CAS  Google Scholar 

  53. Ye GL et al (2005) AMPA and NMDA receptor-mediated currents in developing dentate gyrus granule cells. Brain Res Dev Brain Res 155(1):26–32

    Article  PubMed  CAS  Google Scholar 

  54. Tashiro A et al (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442(7105):929–933

    Article  PubMed  CAS  Google Scholar 

  55. Jagasia R et al (2009) GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29(25):7966–7977

    Article  PubMed  CAS  Google Scholar 

  56. Namba T et al (2011) NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via Disrupted-In-Schizophrenia 1 (DISC1). J Neurochem 118(1):34–44

    Article  PubMed  CAS  Google Scholar 

  57. Rakic P et al (2009) Decision by division: making cortical maps. Trends Neurosci 32(5):291–301

    Article  PubMed  CAS  Google Scholar 

  58. LoTurco JJ, Blanton MG, Kriegstein AR (1991) Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci 11(3):792–799

    PubMed  CAS  Google Scholar 

  59. Behar TN et al (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19(11):4449–4461

    PubMed  CAS  Google Scholar 

  60. del Rio JA et al (1995) Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. Cereb Cortex 5(1):13–21

    Article  PubMed  Google Scholar 

  61. Fishell G, Mason CA, Hatten ME (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362(6421):636–638

    Article  PubMed  CAS  Google Scholar 

  62. Soria JM, Valdeolmillos M (2002) Receptor-activated calcium signals in tangentially migrating cortical cells. Cereb Cortex 12(8):831–839

    Article  PubMed  CAS  Google Scholar 

  63. Bortone D, Polleux F (2009) KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62(1):53–71

    Article  PubMed  CAS  Google Scholar 

  64. Forrest D et al (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13(2):325–338

    Article  PubMed  CAS  Google Scholar 

  65. Li Y et al (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76(3):427–437

    Article  PubMed  CAS  Google Scholar 

  66. Kutsuwada T et al (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16(2):333–344

    Article  PubMed  CAS  Google Scholar 

  67. Messersmith EK et al (1997) Migration of neocortical neurons in the absence of functional NMDA receptors. Mol Cell Neurosci 9(5–6):347–357

    Article  PubMed  CAS  Google Scholar 

  68. Iwasato T et al (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406(6797):726–731

    Article  PubMed  CAS  Google Scholar 

  69. Datwani A et al (2002) NMDA receptor-dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the barrel cortex. Mol Cell Neurosci 21(3):477–492

    Article  PubMed  CAS  Google Scholar 

  70. Maskos U, McKay RD (2003) Neural cells without functional N-Methyl-d-Aspartate (NMDA) receptors contribute extensively to normal postnatal brain development in efficiently generated chimaeric NMDA R1 −/− → +/+ mice. Dev Biol 262(1):119–136

    Article  PubMed  CAS  Google Scholar 

  71. Espinosa JS et al (2009) Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62(2):205–217

    Article  PubMed  CAS  Google Scholar 

  72. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  PubMed  CAS  Google Scholar 

  73. Giachino C et al (2005) cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci 25(44):10105–10118

    Article  PubMed  CAS  Google Scholar 

  74. Herold S et al (2011) CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci 46(1):79–88

    Article  PubMed  CAS  Google Scholar 

  75. Marin-Burgin A et al (2012) Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335(6073):1238–1242

    Article  PubMed  CAS  Google Scholar 

  76. Gray JA et al (2011) Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 71(6):1085–1101

    Article  PubMed  CAS  Google Scholar 

  77. Hall BJ, Ripley B, Ghosh A (2007) NR2B signaling regulates the development of synaptic AMPA receptor current. J Neurosci 27(49):13446–13456

    Article  PubMed  CAS  Google Scholar 

  78. Adesnik H et al (2008) NMDA receptors inhibit synapse unsilencing during brain development. Proc Natl Acad Sci USA 105(14):5597–5602

    Article  PubMed  CAS  Google Scholar 

  79. Wang CC et al (2011) A critical role for GluN2B-containing NMDA receptors in cortical development and function. Neuron 72(5):789–805

    Article  PubMed  CAS  Google Scholar 

  80. Kirkwood A, Rioult MC, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381(6582):526–528

    Article  PubMed  CAS  Google Scholar 

  81. Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55(7):1081–1094

    Article  PubMed  CAS  Google Scholar 

  82. Magavi SS et al (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci 25(46):10729–10739

    Article  PubMed  CAS  Google Scholar 

  83. Mouret A, Murray K, Lledo PM (2009) Centrifugal drive onto local inhibitory interneurons of the olfactory bulb. Ann N Y Acad Sci 1170:239–254

    Article  PubMed  CAS  Google Scholar 

  84. Manabe H et al (2011) Olfactory cortex generates synchronized top-down inputs to the olfactory bulb during slow-wave sleep. J Neurosci 31(22):8123–8133

    Article  PubMed  CAS  Google Scholar 

  85. Yokoyama TK et al (2011) Elimination of adult-born neurons in the olfactory bulb is promoted during the postprandial period. Neuron 71(5):883–897

    Article  PubMed  CAS  Google Scholar 

  86. Egger V, Svoboda K, Mainen ZF (2005) Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J Neurosci 25(14):3521–3530

    Article  PubMed  CAS  Google Scholar 

  87. Balu R, Pressler RT, Strowbridge BW (2007) Multiple modes of synaptic excitation of olfactory bulb granule cells. J Neurosci 27(21):5621–5632

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Claude Platel or Wolfgang Kelsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platel, JC., Kelsch, W. Role of NMDA receptors in adult neurogenesis: an ontogenetic (re)view on activity-dependent development. Cell. Mol. Life Sci. 70, 3591–3601 (2013). https://doi.org/10.1007/s00018-013-1262-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1262-z

Keywords

Navigation