Skip to main content

Advertisement

Log in

O death where is thy sting? Immunologic tolerance to apoptotic self

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In higher organisms, innate scavenging cells maintain physiologic homeostasis by removal of the billions of apoptotic cells generated on a daily basis. Apoptotic cell removal requires efficient recognition and uptake by professional and non-professional phagocytic cells, which are governed by an array of soluble and apoptotic cell-integral signals resulting in immunologically silent clearance. While apoptosis is associated with profound suppression of adaptive and innate inflammatory immunity, we have only begun to scratch the surface in understanding how immunologic tolerance to apoptotic self manifest at either the molecular or cellular level. In the last 10 years, data has emerged implicating professional phagocytes, most notably stromal macrophages and CD8α+CD103+ dendritic cells, as critical in initiation of the regulatory cascade that will ultimately lead to long-term whole-animal immune tolerance. Importantly, recent work by our lab and others has shown that alterations in apoptotic cell perception by the innate immune system either by removal of critical phagocytic sentinels in secondary lymphoid organs or blockage of immunosuppressive pathways leads to pronounced inflammation with a breakdown of tolerance towards self. This challenges the paradigm that apoptotic cells are inherently immunosuppressive, suggesting that apoptotic cell tolerance is a “context-dependent” event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  PubMed  CAS  Google Scholar 

  2. Elliott MR, Ravichandran KS (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189(7):1059–1070. doi:10.1083/jcb.201004096

    Article  PubMed  CAS  Google Scholar 

  3. Platt N, Suzuki H, Kodama T, Gordon S (2000) Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal. J Immunol 164(9):4861–4867

    PubMed  CAS  Google Scholar 

  4. Clancy RM, Neufing PJ, Zheng P, O’Mahony M, Nimmerjahn F, Gordon TP, Buyon JP (2006) Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J Clin Invest 116(9):2413–2422. doi:10.1172/JCI27803

    PubMed  CAS  Google Scholar 

  5. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N (1998) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188(7):1359–1368

    Article  PubMed  CAS  Google Scholar 

  6. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89. doi:10.1038/32183

    Article  PubMed  CAS  Google Scholar 

  7. Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G (2007) MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J Clin Invest 117(7):1902–1913. doi:10.1172/JCI30966

    Article  PubMed  CAS  Google Scholar 

  8. Eguchi M, Kikuchi Y (2010) Binding of Salmonella-specific antibody facilitates specific T cell responses via augmentation of bacterial uptake and induction of apoptosis in macrophages. J Infect Dis 201(1):62–70. doi:10.1086/648615

    Article  PubMed  CAS  Google Scholar 

  9. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12(Suppl 2):1463–1467. doi:10.1038/sj.cdd.4401724

    Article  PubMed  CAS  Google Scholar 

  10. Bratton DL, Henson PM (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32(8):350–357. doi:10.1016/j.it.2011.04.009

    Article  PubMed  CAS  Google Scholar 

  11. Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857–860

    Article  PubMed  CAS  Google Scholar 

  12. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730

    Article  PubMed  CAS  Google Scholar 

  13. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, Graham G, Combadiere C, Gregory CD (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026–5036. doi:10.1182/blood-2008-06-162404

    Article  PubMed  CAS  Google Scholar 

  14. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286. doi:10.1038/nature08296

    Article  PubMed  CAS  Google Scholar 

  15. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. Faseb J 22(8):2629–2638. doi:10.1096/fj.08-107169

    Article  PubMed  CAS  Google Scholar 

  16. Devitt A, Gregory CD (2004) Measurement of apoptotic cell clearance in vitro. Methods Mol Biol 282:207–221. doi:10.1385/1-59259-812-9:207

    PubMed  CAS  Google Scholar 

  17. Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207(9):1807–1817. doi:10.1084/jem.20101157

    Article  PubMed  CAS  Google Scholar 

  18. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187. doi:10.1038/417182a

    Article  PubMed  CAS  Google Scholar 

  19. Ziegenfuss JS, Biswas R, Avery MA, Hong K, Sheehan AE, Yeung YG, Stanley ER, Freeman MR (2008) Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453(7197):935–939. doi:10.1038/nature06901

    Article  PubMed  CAS  Google Scholar 

  20. McGaha TL, Chen Y, Ravishankar B, van Rooijen N, Karlsson MC (2011) Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 117(20):5403–5412. doi:10.1182/blood-2010-11-320028

    Article  PubMed  CAS  Google Scholar 

  21. Wermeling F, Karlsson MC, McGaha TL (2009) An anatomical view on macrophages in tolerance. Autoimmun Rev 9(1):49–52. doi:10.1016/j.autrev.2009.03.004

    Article  PubMed  CAS  Google Scholar 

  22. Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14(3):277–287

    Article  PubMed  CAS  Google Scholar 

  23. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216

    PubMed  CAS  Google Scholar 

  24. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405(6782):85–90. doi:10.1038/35011084

    Article  PubMed  CAS  Google Scholar 

  25. Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, Daleke DL, Ridley AJ, Fadok VA, Henson PM (2001) Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 155(4):649–659. doi:10.1083/jcb.200108080

    Article  PubMed  CAS  Google Scholar 

  26. Balasubramanian K, Schroit AJ (2003) Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65:701–734. doi:10.1146/annurev.physiol.65.092101.142459

    Article  PubMed  CAS  Google Scholar 

  27. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556

    Article  PubMed  CAS  Google Scholar 

  28. Borisenko GG, Matsura T, Liu SX, Tyurin VA, Jianfei J, Serinkan FB, Kagan VE (2003) Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells–existence of a threshold. Arch Biochem Biophys 413(1):41–52

    Article  PubMed  CAS  Google Scholar 

  29. Dillon SR, Constantinescu A, Schlissel MS (2001) Annexin V binds to positively selected B cells. J Immunol 166(1):58–71

    PubMed  CAS  Google Scholar 

  30. Dillon SR, Mancini M, Rosen A, Schlissel MS (2000) Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J Immunol 164(3):1322–1332

    PubMed  CAS  Google Scholar 

  31. Frasch SC, Berry KZ, Fernandez-Boyanapalli R, Jin HS, Leslie C, Henson PM, Murphy RC, Bratton DL (2008) NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A. J Biol Chem 283(48):33736–33749. doi:10.1074/jbc.M807047200

    Article  PubMed  CAS  Google Scholar 

  32. Frasch SC, Henson PM, Nagaosa K, Fessler MB, Borregaard N, Bratton DL (2004) Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils. J Biol Chem 279(17):17625–17633. doi:10.1074/jbc.M313414200

    Article  PubMed  CAS  Google Scholar 

  33. Wolf A, Schmitz C, Bottger A (2007) Changing story of the receptor for phosphatidylserine-dependent clearance of apoptotic cells. EMBO Rep 8(5):465–469. doi:10.1038/sj.embor.7400956

    Article  PubMed  CAS  Google Scholar 

  34. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439. doi:10.1038/nature06307

    Article  PubMed  CAS  Google Scholar 

  35. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430–434. doi:10.1038/nature06329

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez-Manzanet R, Sanjuan MA, Wu HY, Quintana FJ, Xiao S, Anderson AC, Weiner HL, Green DR, Kuchroo VK (2010) T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA 107(19):8706–8711. doi:10.1073/pnas.0910359107

    Article  PubMed  CAS  Google Scholar 

  37. Wong K, Valdez PA, Tan C, Yeh S, Hongo JA, Ouyang W (2010) Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci USA 107(19):8712–8717. doi:10.1073/pnas.0910929107

    Article  PubMed  CAS  Google Scholar 

  38. Park D, Hochreiter-Hufford A, Ravichandran KS (2009) The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol 19(4):346–351. doi:10.1016/j.cub.2009.01.042

    Article  PubMed  CAS  Google Scholar 

  39. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304(5674):1147–1150. doi:10.1126/science.1094359

    Article  PubMed  CAS  Google Scholar 

  40. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411(6834):207–211. doi:10.1038/35075603

    Article  PubMed  CAS  Google Scholar 

  41. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131(6):1124–1136. doi:10.1016/j.cell.2007.10.034

    Article  PubMed  CAS  Google Scholar 

  42. Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA, Earp HS, Matsushima G, Reap EA (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196(1):135–140

    Article  PubMed  CAS  Google Scholar 

  43. Segawa K, Suzuki J, Nagata S (2011) Constitutive exposure of phosphatidylserine on viable cells. Proc Natl Acad Sci USA 108(48):19246–19251. doi:10.1073/pnas.1114799108

    Article  PubMed  CAS  Google Scholar 

  44. Park YJ, Liu G, Lorne EF, Zhao X, Wang J, Tsuruta Y, Zmijewski J, Abraham E (2008) PAI-1 inhibits neutrophil efferocytosis. Proc Natl Acad Sci USA 105(33):11784–11789. doi:10.1073/pnas.0801394105

    Article  PubMed  CAS  Google Scholar 

  45. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321–334. doi:10.1016/j.cell.2005.08.032

    Article  PubMed  CAS  Google Scholar 

  46. Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J (2002) Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418(6894):200–203. doi:10.1038/nature00811

    Article  PubMed  CAS  Google Scholar 

  47. Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80(4):603–609

    Article  PubMed  CAS  Google Scholar 

  48. Wermeling F, Chen Y, Pikkarainen T, Scheynius A, Winqvist O, Izui S, Ravetch JV, Tryggvason K, Karlsson MC (2007) Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J Exp Med 204(10):2259–2265. doi:10.1084/jem.20070600

    Article  PubMed  CAS  Google Scholar 

  49. Boullier A, Friedman P, Harkewicz R, Hartvigsen K, Green SR, Almazan F, Dennis EA, Steinberg D, Witztum JL, Quehenberger O (2005) Phosphocholine as a pattern recognition ligand for CD36. J Lipid Res 46(5):969–976. doi:10.1194/jlr.M400496-JLR200

    Article  PubMed  CAS  Google Scholar 

  50. Toda S, Hanayama R, Nagata S (2012) Two-step engulfment of apoptotic cells. Mol Cell Biol 32(1):118–125. doi:10.1128/MCB.05993-11

    Article  PubMed  CAS  Google Scholar 

  51. Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, Schedl T, Qin Y, Van Aelst L, Hengartner MO, Ravichandran KS (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107(1):27–41

    Article  PubMed  CAS  Google Scholar 

  52. Krysko DV, Denecker G, Festjens N, Gabriels S, Parthoens E, D’Herde K, Vandenabeele P (2006) Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 13(12):2011–2022. doi:10.1038/sj.cdd.4401900

    Article  PubMed  CAS  Google Scholar 

  53. Erwig LP, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci USA 103(34):12825–12830. doi:10.1073/pnas.0605331103

    Article  PubMed  CAS  Google Scholar 

  54. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304(5673):1014–1018. doi:10.1126/science.1096158

    Article  PubMed  CAS  Google Scholar 

  55. Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440(7085):808–812. doi:10.1038/nature04596

    Article  PubMed  CAS  Google Scholar 

  56. Peng Y, Elkon KB (2011) Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. J Clin Invest 121(6):2221–2241. doi:10.1172/JCI43254

    Article  PubMed  CAS  Google Scholar 

  57. Evans CJ, Aguilera RJ (2003) DNase II: genes, enzymes and function. Gene 322:1–15

    Article  PubMed  CAS  Google Scholar 

  58. Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y, Uchiyama Y, Nagata S (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292(5521):1546–1549. doi:10.1126/science.292.5521.1546

    Article  PubMed  CAS  Google Scholar 

  59. Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, Yoshioka Y, Yoshikawa H, Nagata S (2006) Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443(7114):998–1002. doi:10.1038/nature05245

    Article  PubMed  CAS  Google Scholar 

  60. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255. doi:10.1038/nature10992

    Article  PubMed  CAS  Google Scholar 

  61. Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S (2005) Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med 202(10):1333–1339. doi:10.1084/jem.20051654

    Article  PubMed  CAS  Google Scholar 

  62. Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr, Barber GN, Stetson DB (2012) Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36(1):120–131. doi:10.1016/j.immuni.2011.11.018

    Article  PubMed  CAS  Google Scholar 

  63. Waldmann H (2008) Tolerance can be infectious. Nat Immunol 9(9):1001–1003. doi:10.1038/ni0908-1001

    Article  PubMed  CAS  Google Scholar 

  64. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4):890–898. doi:10.1172/JCI1112

    Article  PubMed  CAS  Google Scholar 

  65. Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109(1):41–50. doi:10.1172/JCI11638

    PubMed  CAS  Google Scholar 

  66. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351. doi:10.1038/37022

    Article  PubMed  CAS  Google Scholar 

  67. Ravishankar B, Liu H, Shinde R, Chandler P, Baban B, Tanaka M, Munn DH, Mellor AL, Karlsson MC, McGaha TL (2012) Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci USA 109(10):3909–3914. doi:10.1073/pnas.1117736109

    Article  PubMed  CAS  Google Scholar 

  68. Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA (1996) CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5(1):7–16

    Article  PubMed  CAS  Google Scholar 

  69. Ferguson TA, Herndon J, Elzey B, Griffith TS, Schoenberger S, Green DR (2002) Uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-priming of CD8(+) T cells produce active immune unresponsiveness. J Immunol 168(11):5589–5595

    PubMed  CAS  Google Scholar 

  70. Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5(8):606–616. doi:10.1038/nri1669

    Article  PubMed  CAS  Google Scholar 

  71. Kraal G, Schornagel K, Streeter PR, Holzmann B, Butcher EC (1995) Expression of the mucosal vascular addressin, MAdCAM-1, on sinus-lining cells in the spleen. Am J Pathol 147(3):763–771

    PubMed  CAS  Google Scholar 

  72. Tanaka H, Hataba Y, Saito S, Fukushima O, Miyasaka M (1996) Phenotypic characteristics and significance of reticular meshwork surrounding splenic white pulp of mice. J Electron Microsc (Tokyo) 45(5):407–416

    Article  CAS  Google Scholar 

  73. Girkontaite I, Sakk V, Wagner M, Borggrefe T, Tedford K, Chun J, Fischer KD (2004) The sphingosine-1-phosphate (S1P) lysophospholipid receptor S1P3 regulates MAdCAM-1+ endothelial cells in splenic marginal sinus organization. J Exp Med 200(11):1491–1501. doi:10.1084/jem.20041483

    Article  PubMed  CAS  Google Scholar 

  74. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159. doi:10.1146/annurev.immunol.23.021704.115628

    Article  PubMed  CAS  Google Scholar 

  75. Kraal G, Mebius R (2006) New insights into the cell biology of the marginal zone of the spleen. Int Rev Cytol 250:175–215. doi:10.1016/S0074-7696(06)50005-1

    Article  PubMed  CAS  Google Scholar 

  76. Geijtenbeek TB, Groot PC, Nolte MA, van Vliet SJ, Gangaram-Panday ST, van Duijnhoven GC, Kraal G, van Oosterhout AJ, van Kooyk Y (2002) Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100(8):2908–2916. doi:10.1182/blood-2002-04-1044

    Article  PubMed  CAS  Google Scholar 

  77. Hughes DA, Fraser IP, Gordon S (1995) Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur J Immunol 25(2):466–473. doi:10.1002/eji.1830250224

    Article  PubMed  CAS  Google Scholar 

  78. Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2(3):313–316

    Article  PubMed  CAS  Google Scholar 

  79. Kraal G, Janse M (1986) Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology 58(4):665–669

    PubMed  CAS  Google Scholar 

  80. Miyake Y, Asano K, Kaise H, Uemura M, Nakayama M, Tanaka M (2007) Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J Clin Invest 117(8):2268–2278. doi:10.1172/JCI31990

    Article  PubMed  CAS  Google Scholar 

  81. Karlsson MC, Guinamard R, Bolland S, Sankala M, Steinman RM, Ravetch JV (2003) Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 198(2):333–340. doi:10.1084/jem.20030684

    Article  PubMed  CAS  Google Scholar 

  82. Uderhardt S, Herrmann M, Oskolkova OV, Aschermann S, Bicker W, Ipseiz N, Sarter K, Frey B, Rothe T, Voll R, Nimmerjahn F, Bochkov VN, Schett G, Kronke G (2012) 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36(5):834–846. doi:10.1016/j.immuni.2012.03.010

    Article  PubMed  CAS  Google Scholar 

  83. Kim S, Elkon KB, Ma X (2004) Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21(5):643–653. doi:10.1016/j.immuni.2004.09.009

    Article  PubMed  CAS  Google Scholar 

  84. Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8(5):327–336. doi:10.1038/nri2303

    Article  PubMed  CAS  Google Scholar 

  85. Sen P, Wallet MA, Yi Z, Huang Y, Henderson M, Mathews CE, Earp HS, Matsushima G, Baldwin AS Jr, Tisch RM (2007) Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells. Blood 109(2):653–660. doi:10.1182/blood-2006-04-017368

    Article  PubMed  CAS  Google Scholar 

  86. Lu Q, Lemke G (2001) Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293(5528):306–311. doi:10.1126/science.1061663

    Article  PubMed  CAS  Google Scholar 

  87. Popovic PJ, Zeh HJ 3rd, Ochoa JB (2007) Arginine and immunity. J Nutr 137(6 Suppl 2):1681S–1686S

    PubMed  CAS  Google Scholar 

  88. Johann AM, Barra V, Kuhn AM, Weigert A, von Knethen A, Brune B (2007) Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. Faseb J 21(11):2704–2712. doi:10.1096/fj.06-7815com

    Article  PubMed  CAS  Google Scholar 

  89. Barra V, Kuhn AM, von Knethen A, Weigert A, Brune B (2011) Apoptotic cell-derived factors induce arginase II expression in murine macrophages by activating ERK5/CREB. Cell Mol Life Sci 68(10):1815–1827. doi:10.1007/s00018-010-0537-x

    Article  PubMed  CAS  Google Scholar 

  90. McGaha TL, Huang L, Lemos H, Metz R, Mautino M, Prendergast GC, Mellor AL (2012) Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev 249(1):135–157. doi:10.1111/j.1600-065X.2012.01149.x

    Article  PubMed  CAS  Google Scholar 

  91. Williams CA, Harry RA, McLeod JD (2008) Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology 124(1):89–101. doi:10.1111/j.1365-2567.2007.02743.x

    Article  PubMed  CAS  Google Scholar 

  92. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642. doi:10.1016/j.immuni.2005.03.013

    Article  PubMed  CAS  Google Scholar 

  93. Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P, Mellor AL, He Y, Munn DH (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111. doi:10.1182/blood-2008-12-195354

    Article  PubMed  CAS  Google Scholar 

  94. Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117(9):2570–2582. doi:10.1172/JCI31911

    Article  PubMed  CAS  Google Scholar 

  95. Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith A, Lefebvre RE, Unutmaz D, Mazitschek R, Waldner H, Whitman M, Keller T, Rao A (2009) Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324(5932):1334–1338. doi:10.1126/science.1172638

    Article  PubMed  CAS  Google Scholar 

  96. McGaha T, Kodera T, Phelps R, Spiera H, Pines M, Bona C (2002) Effect of halofuginone on the development of tight skin (TSK) syndrome. Autoimmunity 35(4):277–282

    Article  PubMed  CAS  Google Scholar 

  97. Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH, Lee J, Raz E (2007) 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 104(47):18619–18624. doi:10.1073/pnas.0709261104

    Article  PubMed  CAS  Google Scholar 

  98. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 107(46):19961–19966. doi:10.1073/pnas.1014465107

    Article  PubMed  CAS  Google Scholar 

  99. Esser C, Rannug A, Stockinger B (2009) The aryl hydrocarbon receptor in immunity. Trends Immunol 30(9):447–454. doi:10.1016/j.it.2009.06.005

    Article  PubMed  CAS  Google Scholar 

  100. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198. doi:10.4049/jimmunol.0903670

    Article  PubMed  CAS  Google Scholar 

  101. Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F (2008) Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 375(3):331–335. doi:10.1016/j.bbrc.2008.07.156

    Article  PubMed  CAS  Google Scholar 

  102. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, Steinman RM, Nussenzweig MC (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315(5808):107–111. doi:10.1126/science.1136080

    Article  PubMed  CAS  Google Scholar 

  103. den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192(12):1685–1696

    Article  Google Scholar 

  104. Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, Voehringer D (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206(3):549–559. doi:10.1084/jem.20082394

    Article  PubMed  CAS  Google Scholar 

  105. Iyoda T, Shimoyama S, Liu K, Omatsu Y, Akiyama Y, Maeda Y, Takahara K, Steinman RM, Inaba K (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195(10):1289–1302

    Article  PubMed  CAS  Google Scholar 

  106. Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196(8):1091–1097

    Article  PubMed  CAS  Google Scholar 

  107. Qiu CH, Miyake Y, Kaise H, Kitamura H, Ohara O, Tanaka M (2009) Novel subset of CD8{alpha}+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol 182(7):4127–4136. doi:10.4049/jimmunol.0803364

    Article  PubMed  CAS  Google Scholar 

  108. Pooley JL, Heath WR, Shortman K (2001) Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 166(9):5327–5330

    PubMed  CAS  Google Scholar 

  109. Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MC, Steinman RM (2008) CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 181(10):6923–6933

    PubMed  CAS  Google Scholar 

  110. Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, Pack M, Subklewe M, Sauter B, Sheff D, Albert M, Bhardwaj N, Mellman I, Steinman RM (1998) Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 188(11):2163–2173

    Article  PubMed  CAS  Google Scholar 

  111. Griffith TS, Kazama H, VanOosten RL, Earle JK Jr, Herndon JM, Green DR, Ferguson TA (2007) Apoptotic cells induce tolerance by generating helpless CD8+ T cells that produce TRAIL. J Immunol 178(5):2679–2687

    PubMed  CAS  Google Scholar 

  112. Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP (2005) CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434(7029):88–93. doi:10.1038/nature03337

    Article  PubMed  CAS  Google Scholar 

  113. Kranich J, Krautler NJ, Heinen E, Polymenidou M, Bridel C, Schildknecht A, Huber C, Kosco-Vilbois MH, Zinkernagel R, Miele G, Aguzzi A (2008) Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J Exp Med 205(6):1293–1302. doi:10.1084/jem.20071019

    Article  PubMed  CAS  Google Scholar 

  114. Rahman ZS, Shao WH, Khan TN, Zhen Y, Cohen PL (2010) Impaired apoptotic cell clearance in the germinal center by Mer-deficient tingible body macrophages leads to enhanced antibody-forming cell and germinal center responses. J Immunol 185(10):5859–5868. doi:10.4049/jimmunol.1001187

    Article  PubMed  CAS  Google Scholar 

  115. Shao WH, Zhen Y, Eisenberg RA, Cohen PL (2009) The Mer receptor tyrosine kinase is expressed on discrete macrophage subpopulations and mainly uses Gas6 as its ligand for uptake of apoptotic cells. Clin Immunol 133(1):138–144. doi:10.1016/j.clim.2009.06.002

    Article  PubMed  CAS  Google Scholar 

  116. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900. doi:10.1146/annurev.immunol.23.021704.115742

    Article  PubMed  CAS  Google Scholar 

  117. Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562. doi:10.1146/annurev.immunol.15.1.535

    Article  PubMed  CAS  Google Scholar 

  118. Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M, Kistowska M, Forss-Petter S, Ni G, Colone A, Singhal A, Berger J, Xia C, Mori L, De Libero G (2012) Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol 13(5):474–480. doi:10.1038/ni.2245

    Article  PubMed  CAS  Google Scholar 

  119. Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG (2003) Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 171(6):2873–2878

    PubMed  CAS  Google Scholar 

  120. Wither J, Cai YC, Lim S, McKenzie T, Roslin N, Claudio JO, Cooper GS, Hudson TJ, Paterson AD, Greenwood CM, Gladman D, Pope J, Pineau CA, Smith CD, Hanly JG, Peschken C, Boire G, Fortin PR (2008) Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity. Arthritis Res Ther 10(5):R108. doi:10.1186/ar2505

    Article  PubMed  CAS  Google Scholar 

  121. Wu L, Van Kaer L (2009) Natural killer T cells and autoimmune disease. Curr Mol Med 9(1):4–14

    Article  PubMed  CAS  Google Scholar 

  122. Yang JQ, Wen X, Liu H, Folayan G, Dong X, Zhou M, Van Kaer L, Singh RR (2007) Examining the role of CD1d and natural killer T cells in the development of nephritis in a genetically susceptible lupus model. Arthritis Rheum 56(4):1219–1233. doi:10.1002/art.22490

    Article  PubMed  CAS  Google Scholar 

  123. Caielli S, Sorini C, Falcone M (2011) The dangerous liaison between iNKT cells and dendritic cells: does it prevent or promote autoimmune diseases? Autoimmunity 44(1):11–22. doi:10.3109/08916931003782130

    Article  PubMed  CAS  Google Scholar 

  124. Roelofs-Haarhuis K, Wu X, Gleichmann E (2004) Oral tolerance to nickel requires CD4+ invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells. J Immunol 173(2):1043–1050

    PubMed  CAS  Google Scholar 

  125. Caielli S, Conforti-Andreoni C, Di Pietro C, Usuelli V, Badami E, Malosio ML, Falcone M (2010) On/off TLR signaling decides proinflammatory or tolerogenic dendritic cell maturation upon CD1d-mediated interaction with invariant NKT cells. J Immunol 185(12):7317–7329. doi:10.4049/jimmunol.1000400

    Article  PubMed  CAS  Google Scholar 

  126. Pillai AB, George TI, Dutt S, Strober S (2009) Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+ CD25+ Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113(18):4458–4467. doi:10.1182/blood-2008-06-165506

    Article  PubMed  CAS  Google Scholar 

  127. Hua J, Liang S, Ma X, Webb TJ, Potter JP, Li Z (2011) The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity. PLoS ONE 6(11):e27038. doi:10.1371/journal.pone.0027038

    Article  PubMed  CAS  Google Scholar 

  128. Hegde S, Lockridge JL, Becker YA, Ma S, Kenney SC, Gumperz JE (2011) Human NKT cells direct the differentiation of myeloid APCs that regulate T cell responses via expression of programmed cell death ligands. J Autoimmun 37(1):28–38. doi:10.1016/j.jaut.2011.03.001

    Article  PubMed  CAS  Google Scholar 

  129. Wermeling F, Lind SM, Jordo ED, Cardell SL, Karlsson MC (2010) Invariant NKT cells limit activation of autoreactive CD1d-positive B cells. J Exp Med 207(5):943–952. doi:10.1084/jem.20091314

    Article  PubMed  CAS  Google Scholar 

  130. Brennan PJ, Tatituri RV, Brigl M, Kim EY, Tuli A, Sanderson JP, Gadola SD, Hsu FF, Besra GS, Brenner MB (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol 12(12):1202–1211. doi:10.1038/ni.2143

    Article  PubMed  CAS  Google Scholar 

  131. Miles K, Heaney J, Sibinska Z, Salter D, Savill J, Gray D, Gray M (2012) A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc Natl Acad Sci USA 109(3):887–892. doi:10.1073/pnas.1109173109

    Article  PubMed  CAS  Google Scholar 

  132. Qian Y, Wang H, Clarke SH (2004) Impaired clearance of apoptotic cells induces the activation of autoreactive anti-Sm marginal zone and B-1 B cells. J Immunol 172(1):625–635

    PubMed  CAS  Google Scholar 

  133. Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10(11):778–786. doi:10.1038/nri2849

    Article  PubMed  CAS  Google Scholar 

  134. Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M (2005) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35(1):252–260. doi:10.1002/eji.200425497

    Article  PubMed  CAS  Google Scholar 

  135. Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38(4):259–264

    Article  PubMed  CAS  Google Scholar 

  136. Lumsden AB, Henderson JM, Kutner MH (1988) Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 8(2):232–236

    Article  PubMed  CAS  Google Scholar 

  137. Catala M, Anton A, Portoles MT (1999) Characterization of the simultaneous binding of Escherichia coli endotoxin to Kupffer and endothelial liver cells by flow cytometry. Cytometry 36(2):123–130

    Article  PubMed  CAS  Google Scholar 

  138. Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163. doi:10.1146/annurev.immunol.021908.132629

    Article  PubMed  CAS  Google Scholar 

  139. O’Connell PJ, Morelli AE, Logar AJ, Thomson AW (2000) Phenotypic and functional characterization of mouse hepatic CD8 alpha+ lymphoid-related dendritic cells. J Immunol 165(2):795–803

    PubMed  Google Scholar 

  140. Pillarisetty VG, Katz SC, Bleier JI, Shah AB, Dematteo RP (2005) Natural killer dendritic cells have both antigen presenting and lytic function and in response to CpG produce IFN-gamma via autocrine IL-12. J Immunol 174(5):2612–2618

    PubMed  CAS  Google Scholar 

  141. Abe M, Tokita D, Raimondi G, Thomson AW (2006) Endotoxin modulates the capacity of CpG-activated liver myeloid DC to direct Th1-type responses. Eur J Immunol 36(9):2483–2493. doi:10.1002/eji.200535767

    Article  PubMed  CAS  Google Scholar 

  142. Averill L, Lee WM, Karandikar NJ (2007) Differential dysfunction in dendritic cell subsets during chronic HCV infection. Clin Immunol 123(1):40–49. doi:10.1016/j.clim.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  143. De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW (2005) Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol 174(4):2037–2045

    PubMed  Google Scholar 

  144. Callery MP, Mangino MJ, Flye MW (1991) Arginine-specific suppression of mixed lymphocyte culture reactivity by Kupffer cells–a basis of portal venous tolerance. Transplantation 51(5):1076–1080

    Article  PubMed  CAS  Google Scholar 

  145. Terpstra V, van Berkel TJ (2000) Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 95(6):2157–2163

    PubMed  CAS  Google Scholar 

  146. Shi J, Gilbert GE, Kokubo Y, Ohashi T (2001) Role of the liver in regulating numbers of circulating neutrophils. Blood 98(4):1226–1230

    Article  PubMed  CAS  Google Scholar 

  147. Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP (2000) The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev 174:47–62

    Article  PubMed  CAS  Google Scholar 

  148. John B, Crispe IN (2004) Passive and active mechanisms trap activated CD8+ T cells in the liver. J Immunol 172(9):5222–5229

    PubMed  CAS  Google Scholar 

  149. Wang Y, Gao Y, Yuan X, Xia W, Luo Y, Sun E, Chen ZK (2008) The liver mediates apoptotic cell-induced immune regulation. Scand J Immunol 68(3):297–305. doi:10.1111/j.1365-3083.2008.02141.x

    Article  PubMed  CAS  Google Scholar 

  150. Zhang M, Xu S, Han Y, Cao X (2011) Apoptotic cells attenuate fulminant hepatitis by priming Kupffer cells to produce interleukin-10 through membrane-bound TGF-beta. Hepatology 53(1):306–316. doi:10.1002/hep.24029

    Article  PubMed  CAS  Google Scholar 

  151. Forouhar F, Anderson JL, Mowat CG, Vorobiev SM, Hussain A, Abashidze M, Bruckmann C, Thackray SJ, Seetharaman J, Tucker T, Xiao R, Ma LC, Zhao L, Acton TB, Montelione GT, Chapman SK, Tong L (2007) Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 104(2):473–478. doi:10.1073/pnas.0610007104

    Article  PubMed  CAS  Google Scholar 

  152. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478(7368):197–203. doi:10.1038/nature10491

    Article  PubMed  CAS  Google Scholar 

  153. Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frederick R, De Plaen E, Uyttenhove C, Wouters J, Masereel B, Van den Eynde BJ (2012) Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 109(7):2497–2502. doi:10.1073/pnas.1113873109

    Article  PubMed  CAS  Google Scholar 

  154. Sumpter TL, Dangi A, Matta BM, Huang C, Stolz DB, Vodovotz Y, Thomson AW, Gandhi CR (2012) Hepatic Stellate Cells Undermine the Allostimulatory Function of Liver Myeloid Dendritic Cells via STAT3-Dependent Induction of IDO. J Immunol 189(8):3848–3858. doi:10.4049/jimmunol.1200819

    Article  PubMed  CAS  Google Scholar 

  155. Yang HR, Chou HS, Gu X, Wang L, Brown KE, Fung JJ, Lu L, Qian S (2009) Mechanistic insights into immunomodulation by hepatic stellate cells in mice: a critical role of interferon-gamma signaling. Hepatology 50(6):1981–1991. doi:10.1002/hep.23202

    Article  PubMed  CAS  Google Scholar 

  156. Dangi A, Sumpter TL, Kimura S, Stolz DB, Murase N, Raimondi G, Vodovotz Y, Huang C, Thomson AW, Gandhi CR (2012) Selective expansion of allogeneic regulatory T cells by hepatic stellate cells: role of endotoxin and implications for allograft tolerance. J Immunol 188(8):3667–3677. doi:10.4049/jimmunol.1102460

    Article  PubMed  CAS  Google Scholar 

  157. Miller SD, Wetzig RP, Claman HN (1979) The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J Exp Med 149(3):758–773

    Article  PubMed  CAS  Google Scholar 

  158. Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, Xia G, He J, Zhang X, Kaufman DB, Miller SD (2008) ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci USA 105(38):14527–14532. doi:10.1073/pnas.0805204105

    Article  PubMed  CAS  Google Scholar 

  159. Turley DM, Miller SD (2007) Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 178(4):2212–2220

    PubMed  CAS  Google Scholar 

  160. Getts DR, Turley DM, Smith CE, Harp CT, McCarthy D, Feeney EM, Getts MT, Martin AJ, Luo X, Terry RL, King NJ, Miller SD (2011) Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. J Immunol 187(5):2405–2417. doi:10.4049/jimmunol.1004175

    Article  PubMed  CAS  Google Scholar 

  161. Song PS, Tapley KJ Jr (1979) Photochemistry and photobiology of psoralens. Photochem Photobiol 29(6):1177–1197

    Article  PubMed  CAS  Google Scholar 

  162. Edelson R, Berger C, Gasparro F, Jegasothy B, Heald P, Wintroub B, Vonderheid E, Knobler R, Wolff K, Plewig G et al (1987) Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med 316(6):297–303. doi:10.1056/NEJM198702053160603

    Article  PubMed  CAS  Google Scholar 

  163. Peritt D (2006) Potential mechanisms of photopheresis in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 12(1 Suppl 2):7–12. doi:10.1016/j.bbmt.2005.11.005

    Article  PubMed  CAS  Google Scholar 

  164. Sanford KW, Balogun RA (2012) Extracorporeal photopheresis: clinical use so far. J Clin Apher 27(3):126–131. doi:10.1002/jca.21217

    Article  PubMed  Google Scholar 

  165. Scarisbrick JJ, Taylor P, Holtick U, Makar Y, Douglas K, Berlin G, Juvonen E, Marshall S (2008) U.K. consensus statement on the use of extracorporeal photopheresis for treatment of cutaneous T-cell lymphoma and chronic graft-versus-host disease. Br J Dermatol 158(4):659–678. doi:10.1111/j.1365-2133.2007.08415.x

    Google Scholar 

  166. Jonson CO, Pihl M, Nyholm C, Cilio CM, Ludvigsson J, Faresjo M (2008) Regulatory T cell-associated activity in photopheresis-induced immune tolerance in recent onset type 1 diabetes children. Clin Exp Immunol 153(2):174–181. doi:10.1111/j.1365-2249.2008.03625.x

    Article  PubMed  CAS  Google Scholar 

  167. Reinisch W, Nahavandi H, Santella R, Zhang Y, Gasche C, Moser G, Waldhor T, Gangl A, Vogelsang H, Knobler R (2001) Extracorporeal photochemotherapy in patients with steroid-dependent Crohn’s disease: a prospective pilot study. Aliment Pharmacol Ther 15(9):1313–1322

    Article  PubMed  CAS  Google Scholar 

  168. Knobler RM, French LE, Kim Y, Bisaccia E, Graninger W, Nahavandi H, Strobl FJ, Keystone E, Mehlmauer M, Rook AH, Braverman I (2006) A randomized, double-blind, placebo-controlled trial of photopheresis in systemic sclerosis. J Am Acad Dermatol 54(5):793–799. doi:10.1016/j.jaad.2005.11.1091

    Article  PubMed  Google Scholar 

  169. Mathur K, Morris S, Deighan C, Green R, Douglas KW (2008) Extracorporeal photopheresis improves nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: three case reports and review of literature. J Clin Apher 23(4):144–150. doi:10.1002/jca.20170

    Article  PubMed  Google Scholar 

  170. Ward DM (2011) Extracorporeal photopheresis: how, when, and why. J Clin Apher 26(5):276–285. doi:10.1002/jca.20300

    Article  PubMed  Google Scholar 

  171. Gatza E, Rogers CE, Clouthier SG, Lowler KP, Tawara I, Liu C, Reddy P, Ferrara JL (2008) Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood 112(4):1515–1521. doi:10.1182/blood-2007-11-125542

    Article  PubMed  CAS  Google Scholar 

  172. Maeda A, Schwarz A, Bullinger A, Morita A, Peritt D, Schwarz T (2008) Experimental extracorporeal photopheresis inhibits the sensitization and effector phases of contact hypersensitivity via two mechanisms: generation of IL-10 and induction of regulatory T cells. J Immunol 181(9):5956–5962

    PubMed  CAS  Google Scholar 

  173. Rao V, Saunes M, Jorstad S, Moen T (2009) Cutaneous T cell lymphoma and graft-versus-host disease: a comparison of in vivo effects of extracorporeal photochemotherapy on Foxp3+ regulatory T cells. Clin Immunol 133(3):303–313. doi:10.1016/j.clim.2009.08.016

    Article  PubMed  CAS  Google Scholar 

  174. Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL, Ryder LP, Ralfkiaer E (2007) FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 21(12):2512–2518. doi:10.1038/sj.leu.2404913

    Article  PubMed  CAS  Google Scholar 

  175. Huang L, Lemos HP, Li L, Li M, Chandler PR, Baban B, McGaha TL, Ravishankar B, Lee JR, Munn DH, Mellor AL (2012) Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J Immunol 188(10):4913–4920. doi:10.4049/jimmunol.1103668

    Article  PubMed  CAS  Google Scholar 

  176. Zhong D, Jiao Y, Zhang Y, Zhang W, Li N, Zuo Q, Wang Q, Xue W, Liu Z (2012) Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials. doi:10.1016/j.biomaterials.2012.09.060

    Google Scholar 

  177. Nimesh S (2012) Polyethylenimine as a promising vector for targeted siRNA delivery. Curr Clin Pharmacol 7(2):121–130

    Article  PubMed  CAS  Google Scholar 

  178. Tiera MJ, Shi Q, Winnik FM, Fernandes JC (2011) Polycation-based gene therapy: current knowledge and new perspectives. Curr Gene Ther 11(4):288–306

    Article  PubMed  CAS  Google Scholar 

  179. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi:10.1038/nn1715

    Article  PubMed  CAS  Google Scholar 

  180. Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7):1009–1016

    Article  PubMed  CAS  Google Scholar 

  181. Shao WH, Zhen Y, Rosenbaum J, Eisenberg RA, McGaha TL, Birkenbach M, Cohen PL (2010) A protective role of Mer receptor tyrosine kinase in nephrotoxic serum-induced nephritis. Clin Immunol 136(2):236–244. doi:10.1016/j.clim.2010.04.002

    Article  PubMed  CAS  Google Scholar 

  182. Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol 28(8):1421–1428. doi:10.1161/ATVBAHA.108.167197

    Article  PubMed  CAS  Google Scholar 

  183. Nandrot EF, Anand M, Almeida D, Atabai K, Sheppard D, Finnemann SC (2007) Essential role for MFG-E8 as ligand for alphavbeta5 integrin in diurnal retinal phagocytosis. Proc Natl Acad Sci USA 104(29):12005–12010. doi:10.1073/pnas.0704756104

    Article  PubMed  CAS  Google Scholar 

  184. Fuller AD, Van Eldik LJ (2008) MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J Neuroimmune Pharmacol 3(4):246–256. doi:10.1007/s11481-008-9118-2

    Article  PubMed  Google Scholar 

  185. Ekman C, Jonsen A, Sturfelt G, Bengtsson AA, Dahlback B (2011) Plasma concentrations of Gas6 and sAxl correlate with disease activity in systemic lupus erythematosus. Rheumatology (Oxford) 50(6):1064–1069. doi:10.1093/rheumatology/keq459

    Article  CAS  Google Scholar 

  186. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19(1):56–59. doi:10.1038/ng0598-56

    Article  PubMed  CAS  Google Scholar 

  187. Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai K, Iiizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M, Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakajima M, Nakamura Y, Maeda S (2005) Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 54(4):1171–1178

    Article  PubMed  CAS  Google Scholar 

  188. Ag N, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31(2):245–258. doi:10.1016/j.immuni.2009.06.018

    Article  CAS  Google Scholar 

  189. Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YP, Eagle AR, Dunn SE, Awakuni JU, Nguyen KD, Steinman L, Michie SA, Chawla A (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15(11):1266–1272. doi:10.1038/nm.2048

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy L. McGaha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravishankar, B., McGaha, T.L. O death where is thy sting? Immunologic tolerance to apoptotic self. Cell. Mol. Life Sci. 70, 3571–3589 (2013). https://doi.org/10.1007/s00018-013-1261-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1261-0

Keywords

Navigation