Skip to main content

Advertisement

Log in

Immobile survival of motoneuron (SMN) protein stored in Cajal bodies can be mobilized by protein interactions

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Reduced levels of survival of motoneuron (SMN) protein lead to spinal muscular atrophy, but it is still unknown how SMN protects motoneurons in the spinal cord against degeneration. In the nucleus, SMN is associated with two types of nuclear bodies denoted as gems and Cajal bodies (CBs). The 23 kDa isoform of fibroblast growth factor-2 (FGF-223) is a nuclear protein that binds to SMN and destabilizes the SMN-Gemin2 complex. In the present study, we show that FGF-223 depletes SMN from CBs without affecting their general structure. FRAP analysis of SMN-EGFP in CBs demonstrated that the majority of SMN in CBs remained mobile and allowed quantification of fast, slow and immobile nuclear SMN populations. The potential for SMN release was confirmed by in vivo photoconversion of SMN-Dendra2, indicating that CBs concentrate immobile SMN that could have a specialized function in CBs. FGF-223 accelerated SMN release from CBs, accompanied by a conversion of immobile SMN into a mobile population. Furthermore, FGF-223 caused snRNP accumulation in CBs. We propose a model in which Cajal bodies store immobile SMN that can be mobilized by its nuclear interaction partner FGF-223, leading to U4 snRNP accumulation in CBs, indicating a role for immobile SMN in tri-snRNP assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CB:

Cajal body

FRAP:

Fluorescence recovery after photobleaching

SMN:

Survival of motoneuron protein

SMA:

Spinal muscular atrophy

FGF:

Fibroblast growth factor

SnRNP:

Small nuclear ribonucleoprotein particle

References

  1. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555–3565

    PubMed  CAS  Google Scholar 

  2. Matera AG, Frey MR (1998) Coiled bodies and gems: janus or gemini? Am J Hum Genet 63:317–321

    Article  PubMed  CAS  Google Scholar 

  3. Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12:472–478

    Article  PubMed  CAS  Google Scholar 

  4. Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305–312

    Article  PubMed  CAS  Google Scholar 

  5. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  6. Pearn J (1980) Classification of spinal muscular atrophies. Lancet 1:919–922

    Article  PubMed  CAS  Google Scholar 

  7. Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214

    Article  PubMed  CAS  Google Scholar 

  8. McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, Prior TW, Burghes AH (1997) Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 60:1411–1422

    Article  PubMed  CAS  Google Scholar 

  9. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70(2):358–368

    Article  PubMed  CAS  Google Scholar 

  10. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269

    Article  PubMed  CAS  Google Scholar 

  11. Young PJ, Le TT, Dunckley M, Nguyen TM, Burghes AH, Morris GE (2001) Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN. Exp Cell Res 265:252–261

    Article  PubMed  CAS  Google Scholar 

  12. Cajal Ry (1903) Un sencillo metodo de coloracion selectiva del reticulo protoplasmico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Lab Invest Biol Univ (Madrid) pp 129–143

  13. Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300

    Article  PubMed  CAS  Google Scholar 

  14. Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131

    Article  PubMed  CAS  Google Scholar 

  15. Sleeman JE, Trinkle-Mulcahy L, Prescott AR, Ogg SC, Lamond AI (2003) Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo. J Cell Sci 116:2039–2050

    Article  PubMed  CAS  Google Scholar 

  16. Sleeman JE, Ajuh P, Lamond AI (2001) snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci 114:4407–4419

    PubMed  CAS  Google Scholar 

  17. Morris GE (2008) The Cajal body. Biochim Biophys Acta 1783:2108–2115

    Article  PubMed  CAS  Google Scholar 

  18. Stanek D, Neugebauer KM (2006) The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 115:343–354

    Article  PubMed  CAS  Google Scholar 

  19. Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647

    Article  PubMed  CAS  Google Scholar 

  20. Hebert MD (2010) Phosphorylation and the Cajal body: modification in search of function. Arch Biochem Biophys 496:69–76

    Article  PubMed  CAS  Google Scholar 

  21. Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356:297–310

    Article  PubMed  CAS  Google Scholar 

  22. Sleeman JE, Lamond AI (1999) Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9:1065–1074

    Article  PubMed  CAS  Google Scholar 

  23. Will CL, Luhrmann R (1997) Protein functions in pre-mRNA splicing. Curr Opin Cell Biol 9:320–328

    Article  PubMed  CAS  Google Scholar 

  24. Buhler D, Raker V, Luhrmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8:2351–2357

    Article  PubMed  CAS  Google Scholar 

  25. Mattaj IW, Boelens W, Izaurralde E, Jarmolowski A, Kambach C (1993) Nucleocytoplasmic transport and snRNP assembly. Mol Biol Rep 18:79–83

    Article  PubMed  CAS  Google Scholar 

  26. Tucker KE, Berciano MT, Jacobs EY, LePage DF, Shpargel KB, Rossire JJ, Chan EK, Lafarga M, Conlon RA, Matera AG (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154:293–307

    Article  PubMed  CAS  Google Scholar 

  27. Hebert MD, Szymczyk PW, Shpargel KB, Matera AG (2001) Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 15:2720–2729

    Article  PubMed  CAS  Google Scholar 

  28. Andrade LE, Chan EK, Raska I, Peebles CL, Roos G, Tan EM (1991) Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 173:1407–1419

    Article  PubMed  CAS  Google Scholar 

  29. Bruns AF, van Bergeijk J, Lorbeer C, Nolle A, Jungnickel J, Grothe C, Claus P (2009) Fibroblast growth factor-2 regulates the stability of nuclear bodies. Proc Natl Acad Sci USA 106:12747–12752

    Article  PubMed  Google Scholar 

  30. Claus P, Bruns AF, Grothe C (2004) Fibroblast growth factor-2(23) binds directly to the survival of motoneuron protein and is associated with small nuclear RNAs. Biochem J 384:559–565

    Article  PubMed  CAS  Google Scholar 

  31. Claus P, Doring F, Gringel S, Muller-Ostermeyer F, Fuhlrott J, Kraft T, Grothe C (2003) Differential intranuclear localization of fibroblast growth factor-2 isoforms and specific interaction with the survival of motoneuron protein. J Biol Chem 278:479–485

    Article  PubMed  CAS  Google Scholar 

  32. Sorensen V, Nilsen T, Wiedlocha A (2006) Functional diversity of FGF-2 isoforms by intracellular sorting. BioEssays 28:504–514

    Article  PubMed  Google Scholar 

  33. Reilly JF, Maher PA (2001) Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152:1307–1312

    Article  PubMed  CAS  Google Scholar 

  34. Peng H, Myers J, Fang X, Stachowiak EK, Maher PA, Martins GG, Popescu G, Berezney R, Stachowiak MK (2002) Integrative nuclear FGFR1 signaling (INFS) pathway mediates activation of the tyrosine hydroxylase gene by angiotensin II, depolarization and protein kinase C. J Neurochem 81:506–524

    Article  PubMed  CAS  Google Scholar 

  35. Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, Stachowiak EK (2003) Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J Cell Biochem 90:662–691

    Article  PubMed  CAS  Google Scholar 

  36. Stachowiak MK, Maher PA, Stachowiak EK (2007) Integrative nuclear signaling in cell development—a role for FGF receptor-1. DNA Cell Biol 26:811–826

    Article  PubMed  CAS  Google Scholar 

  37. Grothe C, Meisinger C, Holzschuh J, Wewetzer K, Cattini P (1998) Over-expression of the 18 kD and 21/23 kD fibroblast growth factor-2 isoforms in PC12 cells and Schwann cells results in altered cell morphology and growth. Brain Res Mol Brain Res 57:97–105

    Article  PubMed  CAS  Google Scholar 

  38. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42:553, 555, 557 passim

  39. Huber K, Meisinger C, Grothe C (1997) Expression of fibroblast growth factor-2 in hypoglossal motoneurons is stimulated by peripheral nerve injury. J Comp Neurol 382:189–198

    Article  PubMed  CAS  Google Scholar 

  40. Jungnickel J, Claus P, Gransalke K, Timmer M, Grothe C (2004) Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury. Mol Cell Neurosci 25:444–452

    Article  PubMed  CAS  Google Scholar 

  41. Jungnickel J, Haastert K, Grzybek M, Thau N, Lipokatic-Takacs E, Ratzka A, Nolle A, Claus P, Grothe C (2010) Mice lacking basic fibroblast growth factor showed faster sensory recovery. Exp Neurol 223:166–172

    Article  PubMed  CAS  Google Scholar 

  42. Handwerger KE, Murphy C, Gall JG (2003) Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J Cell Biol 160:495–504

    Article  PubMed  CAS  Google Scholar 

  43. Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164:831–842

    Article  PubMed  CAS  Google Scholar 

  44. Toyota CG, Davis MD, Cosman AM, Hebert MD (2010) Coilin phosphorylation mediates interaction with SMN and SmB’. Chromosoma 119:205–215

    Article  PubMed  CAS  Google Scholar 

  45. Hebert MD, Shpargel KB, Ospina JK, Tucker KE, Matera AG (2002) Coilin methylation regulates nuclear body formation. Dev Cell 3:329–337

    Article  PubMed  CAS  Google Scholar 

  46. Tapia O, Bengoechea R, Berciano MT, Lafarga M (2010) Nucleolar targeting of coilin is regulated by its hypomethylation state. Chromosoma 119:527–540

    Article  PubMed  CAS  Google Scholar 

  47. Schaffert N, Hossbach M, Heintzmann R, Achsel T, Luhrmann R (2004) RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J 23:3000–3009

    Article  PubMed  CAS  Google Scholar 

  48. Gangwani L, Mikrut M, Theroux S, Sharma M, Davis RJ (2001) Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat Cell Biol 3:376–383

    Article  PubMed  CAS  Google Scholar 

  49. Gangwani L, Flavell RA, Davis RJ (2005) ZPR1 is essential for survival and is required for localization of the survival motor neurons (SMN) protein to Cajal bodies. Mol Cell Biol 25:2744–2756

    Article  PubMed  CAS  Google Scholar 

  50. Ahmad S, Wang Y, Shaik GM, Burghes AH, Gangwani L (2012) The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy. Hum Mol Genet 21(12):2745–2758

    Article  PubMed  CAS  Google Scholar 

  51. Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Soderberg O, Stromblad S, Wiman KG, Farnebo M (2010) WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol 8:e1000521

    Article  PubMed  Google Scholar 

  52. Takata H, Nishijima H, Maeshima K, Shibahara K (2012) The integrator complex is required for integrity of Cajal bodies. J Cell Sci 125:166–175

    Article  PubMed  CAS  Google Scholar 

  53. Bachand F, Boisvert FM, Cote J, Richard S, Autexier C (2002) The product of the survival of motor neuron (SMN) gene is a human telomerase-associated protein. Mol Biol Cell 13:3192–3202

    Article  PubMed  CAS  Google Scholar 

  54. Zou J, Barahmand-pour F, Blackburn ML, Matsui Y, Chansky HA, Yang L (2004) Survival motor neuron (SMN) protein interacts with transcription corepressor mSin3A. J Biol Chem 279:14922–14928

    Article  PubMed  CAS  Google Scholar 

  55. Strasswimmer J, Lorson CL, Breiding DE, Chen JJ, Le T, Burghes AH, Androphy EJ (1999) Identification of survival motor neuron as a transcriptional activator-binding protein. Hum Mol Genet 8:1219–1226

    Article  PubMed  CAS  Google Scholar 

  56. Young PJ, Francis JW, Lince D, Coon K, Androphy EJ, Lorson CL (2003) The Ewing’s sarcoma protein interacts with the tudor domain of the survival motor neuron protein. Brain Res Mol Brain Res 119:37–49

    Article  PubMed  CAS  Google Scholar 

  57. Jungnickel J, Haase K, Konitzer J, Timmer M, Grothe C (2006) Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor. J Neurobiol 66:940–948

    Article  PubMed  CAS  Google Scholar 

  58. Grothe C, Nikkhah G (2001) The role of basic fibroblast growth factor in peripheral nerve regeneration. Anat Embryol (Berl) 204:171–177

    Article  CAS  Google Scholar 

  59. Grothe C, Meisinger C, Claus P (2001) In vivo expression and localization of the fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia. J Comp Neurol 434:342–357

    Article  PubMed  CAS  Google Scholar 

  60. van Bergeijk J, Rydel-Konecke K, Grothe C, Claus P (2007) The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB J 21(7):1492–1502

    Article  PubMed  Google Scholar 

  61. Baron O, Forthmann B, Lee YW, Terranova C, Ratzka A, Stachowiak EK, Grothe C, Claus P, Stachowiak MK (2012) Cooperation of nuclear fibroblast growth factor receptor 1 and Nurr1 offers new interactive mechanism in postmitotic development of mesencephalic dopaminergic neurons. J Biol Chem 287:19827–19840

    Article  PubMed  CAS  Google Scholar 

  62. Farias GG, Valles AS, Colombres M, Godoy JA, Toledo EM, Lukas RJ, Barrantes FJ, Inestrosa NC (2007) Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J Neurosci 27:5313–5325

    Article  PubMed  CAS  Google Scholar 

  63. Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF (2004) A syntaxin 1, G alpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24:4070–4081

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kerstin Kuhlemann and Hildegard Streich for expert technical help. We are grateful to Dr. R. Bauerfeind and W. Posselt (Central Laser Microscopy Facility, Hannover Medical School) for expert technical advice on laser confocal microscopy. M.K.S. was supported by grants NYSTEM, contracts C026415 and C026714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Claus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2012_1242_MOESM1_ESM.jpg

Supplemental Fig. 1 The velocities of CBs after overexpression of FGF-2 are not altered For live cell imaging, single CBs of pSMN-EGFP and pFGF-223-DsRed2 or (control) pFGF-218-DsRed2 transfected HEK293T cells were measured every minute up to 20 minutes unless the focused nuclear body left the volume as defined by z-sections. The total distance per minute for each CB was measured. All distances per minute were plotted as a velocity distribution (FGF-223-DsRed2 n = 149 single distances, FGF-218-DsRed2 n = 163 single distances). The overexpression of FGF-223 showed no influence on the distribution of CB velocities compared to FGF-218 overexpressing cells (χ2 -test, n.s., non-significant) (JPEG 529 kb)

18_2012_1242_MOESM2_ESM.jpg

Supplemental Fig. 2 Accumulation of U4 snRNPs at CBs after reduction of immobile SMN by FGF-223 HEK293T cells were transfected with pECFP (A, D, G, H, I) or pFGF-218-ECFP (B, E, K, L, M) or pFGF-223-ECFP (C, F, N, O, P) 24 hours before fixation. Cells were examined after fluorescence in situ hybridization (FISH, A3-P3) with probes for U4, U5 and U6 snRNAs and immunostainings with anti-coilin (A2-P2). Arrows point to the CBs in the merged images (A4-P4) that were enlarged in the inserted PDM images. Here, Intensity Correlation Analyses are demonstrated (LUT; orange, positive PDM; blue, negative PDM). Colocalized pixels (both channels vary synchronically from the mean pixel intensity) are represented by positive PDM (yellow). Scale bar, 2 μm (A1-L4), 0.2 μm (insets). For FGF-223 transfected cells and also controls probed against U4 snRNA, three individual cells have been shown each. Supplemental Fig. 2 (JPEG 7747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förthmann, B., Brinkmann, H., Ratzka, A. et al. Immobile survival of motoneuron (SMN) protein stored in Cajal bodies can be mobilized by protein interactions. Cell. Mol. Life Sci. 70, 2555–2568 (2013). https://doi.org/10.1007/s00018-012-1242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1242-8

Keywords

Navigation