Skip to main content

Brain response to calorie restriction

Abstract

Calorie restriction extends longevity and delays ageing in model organisms and mammals, opposing the onset and progression of an array of age-related diseases. These beneficial effects also extend to the maintenance of brain cognitive functions at later age and to the prevention, at least in rodents, of brain senescence and associated neurodegenerative disorders. In recent years, the molecular mechanisms underlying brain response to calorie restriction have begun to be elucidated, revealing the unanticipated role of a number of key nutrient sensors and nutrient-triggered signaling cascades in the translation of metabolic cues into cellular and molecular events that ultimately lead to increased cell resistance to stress, enhanced synaptic plasticity, and improved cognitive performance. Of note, the brain’s role in CR also includes the activation of nutrient-sensitive hypothalamic circuitries and the implementation of neuroendocrine responses that impact the entire organism. The present review addresses emerging molecular themes in brain response to dietary restriction, and the implications of this knowledge for the understanding and the prevention of brain disorders associated with ageing and metabolic disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Fontana L (2009) The scientific basis of caloric restriction leading to longer life. Curr Opin Gastroenterol 25:144–150

    PubMed  CAS  Google Scholar 

  2. McCay CM, Crowel MF, Maynard LA (1935) The effect of retarded growth upon the length of the life span and upon the ultimate body size. J Nutr 10:63–79

    CAS  Google Scholar 

  3. Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C Thomas Publisher, Springfield

    Google Scholar 

  4. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    PubMed  CAS  Google Scholar 

  5. Weraarchakul N, Strong R, Wood WG, Richardson A (1989) Effect of aging and dietary restriction on DNA repair. Exp Cell Res 181:197–204

    PubMed  CAS  Google Scholar 

  6. Fontana L, Klein S, Holloszy JO (2010) Effects of long-term calorie restriction and endurance exercise on glucose tolerance, insulin action, and adipokine production. Age (Dordr) 32(1):97–108

    CAS  Google Scholar 

  7. Spaulding CC, Walford RL, Effros RB (1997) Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Ageing Dev 93(1–3):87–94

    PubMed  CAS  Google Scholar 

  8. Pani G (2010) P66SHC and ageing: ROS and TOR? Aging (Albany NY) 8:514–518

    Google Scholar 

  9. Redman LM, Ravussin E (2009) Endocrine alterations in response to calorie restriction in humans. Mol Cell Endocrinol 299(1):129–136

    PubMed  CAS  Google Scholar 

  10. Matsuzaki J, Kuwamura M, Yamaji R et al (2001) Inflammatory responses to lipopolysaccharide are suppressed in 40% energy-restricted mice. J Nutr 131:2139–2144

    PubMed  CAS  Google Scholar 

  11. Barzilai N, Banerjee S, Hawkins M et al (1998) Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 101:1353–1361

    PubMed  CAS  Google Scholar 

  12. Chen H, Luo L, Liu J et al (2005) Aging and caloric restriction: effects on Leydig cell steroidogenesis. Exp Gerontol 40:498–505

    PubMed  CAS  Google Scholar 

  13. Sabatino F, Masoro EJ, McMahan CA, Kuhn RW (1991) Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J Gerontol 46:B171–B179

    PubMed  CAS  Google Scholar 

  14. Masoro EJ (2007) The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol 35:1–17

    PubMed  CAS  Google Scholar 

  15. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285(5432):1390–1393

    PubMed  CAS  Google Scholar 

  16. Mattson MP (2008) Dietary factors, hormesis and health. Ageing Res Rev 7(1):43–48

    PubMed  Google Scholar 

  17. Hursting SD, Lavigne JA, Berrigan D et al (2003) Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 54:131–152

    PubMed  CAS  Google Scholar 

  18. Guo Z, Mitchell-Raymundo F, Yang H et al (2002) Dietary restriction reduces atherosclerosis and oxidative stress in the aorta of apolipoprotein E-deficient mice. Mech Ageing Dev 123:1121–1131

    PubMed  CAS  Google Scholar 

  19. Piccio L, Stark JL, Cross AH (2008) Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol 84:940–948

    PubMed  CAS  Google Scholar 

  20. Jordan SD, Konner AC, Bruning JC (2010) Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 67:3255–3273

    PubMed  CAS  Google Scholar 

  21. Banks WA (2006) Blood–brain barrier and energy balance. Obesity (Silver Spring) 14(Suppl 5):234S–237S

    CAS  Google Scholar 

  22. Oomura Y, Yoshimatsu H (1984) Neural network of glucose monitoring system. J Auton Nerv Syst 10:359–372

    PubMed  CAS  Google Scholar 

  23. Mayer J (1953) Glucostatic mechanism of regulation of food intake. N Engl J Med 249:13–16

    PubMed  CAS  Google Scholar 

  24. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168

    PubMed  CAS  Google Scholar 

  25. Lee YS, Challis BG, Thompson DA, Yeo GS, Keogh JM, Madonna ME, Wraight V, Sims M, Vatin V, Meyre D, Shield J, Burren C, Ibrahim Z, Cheetham T, Swift P, Blackwood A, Hung CC, Wareham NJ, Froguel P, Millhauser GL, O’Rahilly S, Farooqi IS (2006) A POMC variant implicates beta-melanocyte stimulating hormone in the control of human energy balance. Cell Metab 3:135–140

    PubMed  Google Scholar 

  26. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Bruning JC (2005) Agouti-related peptide expressing neurons are mandatory for feeding. Nat Neurosci 8:1289–1291

    PubMed  CAS  Google Scholar 

  27. Davis JD, Wirtshafter D, Asin KE, Brief D (1981) Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science 212:81–83

    PubMed  CAS  Google Scholar 

  28. Berthoud HR, Mogenson GJ (1977) Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-d-glucose. Am J Physiol 233:R127–R133

    PubMed  CAS  Google Scholar 

  29. Miselis RR, Epstein AN (1975) Feeding induced by intracerebroventricular 2-deoxy-d-glucose in the rat. Am J Physiol 229:1438–1447

    PubMed  CAS  Google Scholar 

  30. Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3:207–218

    PubMed  CAS  Google Scholar 

  31. Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L (2005) Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309:943–947

    PubMed  CAS  Google Scholar 

  32. Sakaguchi T, Bray GA (1987) The effect of intrahypothalamic injections of glucose on sympathetic efferent firing rate. Brain Res Bull 18:591–595

    PubMed  CAS  Google Scholar 

  33. Lam TK, Schwartz GJ, Rossetti L (2005) Hypothalamic sensing of fatty acids. Nat Neurosci 8(5):579–584

    PubMed  CAS  Google Scholar 

  34. Wolfgang MJ, Cha SH, Sidhaye A, Chohnan S, Cline G, Shulman GI, Lane MD (2007) Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proc Natl Acad Sci USA 104(49):19285–19290

    PubMed  CAS  Google Scholar 

  35. Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574(Pt 1):73–83

    PubMed  CAS  Google Scholar 

  36. Belgardt BF, Okamura T, Bruning JC (2009) Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 587:5305–5314

    PubMed  CAS  Google Scholar 

  37. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, Seeley RJ, Schwartz MW (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52:227–231

    PubMed  CAS  Google Scholar 

  38. Woods SC, Lotter EC, McKay LD, Porte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282:503–505

    PubMed  CAS  Google Scholar 

  39. Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B, Barsh GS, Kahn CR, Cowley MA, Ashcroft FM, Bruning JC (2007) Insulin action in AgRP expressing neurons is required for suppression of hepatic glucose production. Cell Metab 5:438–449

    PubMed  Google Scholar 

  40. Ashcroft FM, Gribble FM (1999) ATP-sensitive K? Channels and insulin secretion: their role in health and disease. Diabetologia 42:903–919

    PubMed  CAS  Google Scholar 

  41. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG (1996) Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98:1101–1106

    PubMed  CAS  Google Scholar 

  42. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574

    PubMed  CAS  Google Scholar 

  43. Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117:2325–2336

    PubMed  CAS  Google Scholar 

  44. Cantó C, Auwerx J (2011) Calorie restriction: is AMPK a key sensor and effector? Physiology (Bethesda) 26(4):214–224

    Google Scholar 

  45. Garelick MG, Kennedy BK (2011) TOR on the brain. Exp Gerontol 46(2–3):155–163

    PubMed  CAS  Google Scholar 

  46. Fusco S, Maulucci G, Pani G (2012) Sirt1: def-eating senescence? Cell Cycle 11(22). [Epub ahead of print]

  47. Dietrich MO, Antunes C, Geliang G, Liu ZW, Borok E, Nie Y, Xu AW, Souza DO, Gao Q, Diano S, Gao XB, Horvath TL (2010) Agrp neurons mediate Sirt1′s action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J Neurosci 30(35):11815–11825

    PubMed  CAS  Google Scholar 

  48. Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R, Stuart RC, Perello M, Vianna CR, Nillni EA, Rahmouni K, Coppari R (2010) SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab 12(1):78–87

    PubMed  CAS  Google Scholar 

  49. Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michán S, Vianna CR, Sinclair DA, Elias CF, Coppari R (2011) SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 14(3):301–312

    PubMed  CAS  Google Scholar 

  50. Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP (2009) Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 23(24):2812–2817

    PubMed  CAS  Google Scholar 

  51. Michán S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30(29):9695–9707

    PubMed  Google Scholar 

  52. Gallagher M, Stocker AM, Koh MT (2011) Mindspan: lessons from rat models of neurocognitive aging. ILAR J 52(1):32–40 (Review)

    PubMed  CAS  Google Scholar 

  53. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713

    PubMed  CAS  Google Scholar 

  54. Inoue K, Zorrilla EP, Tabarin A, Valdez GR, Iwasaki S, Kiriike N, Koob GF (2004) Reduction of anxiety after restricted feeding in the rat: implication for eating disorders. Biol Psychiatry 55:1075–1081

    PubMed  Google Scholar 

  55. Lutter M, Krishnan V, Russo SJ, Jung S, McClung CA, Nestler EJ (2008) Orexin signaling mediates the antidepressant-like effect of calorie restriction. J Neurosci 28(12):3071–3075

    PubMed  CAS  Google Scholar 

  56. Hashimoto T, Watanabe S (2005) Chronic food restriction enhances memory in mice–analysis with matched drive levels. NeuroReport 16(10):1129–1133

    PubMed  Google Scholar 

  57. Mattson MP (2010) The impact of dietary energy intake on cognitive aging. Front Aging Neurosci 2:5

    PubMed  Google Scholar 

  58. Wu P, Shen Q, Dong S, Xu Z, Tsien JZ, Hu Y (2008) Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging 29(10):1502–1511

    PubMed  CAS  Google Scholar 

  59. Qin W, Zhao W, Ho L, Wang J, Walsh K, Gandy S, Pasinetti GM (2008) Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann NY Acad Sci 1147:335–347

    PubMed  CAS  Google Scholar 

  60. Rich NJ, Van Landingham JW, Figueiroa S, Seth R, Corniola RS, Levenson CW (2010) Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury. J Neurosci Res 88(13):2933–2939

    PubMed  CAS  Google Scholar 

  61. Martin B, Pearson M, Kebejian L, Golden E, Keselman A, Bender M, Carlson O, Egan J, Ladenheim B, Cadet JL, Becker KG, Wood W, Duffy K, Vinayakumar P, Maudsley S, Mattson MP (2007) Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology 148(9):4318–4333

    PubMed  CAS  Google Scholar 

  62. Minor RK, Villarreal J, McGraw M, Percival SS, Ingram DK, de Cabo R (2008) Calorie restriction alters physical performance but not cognition in two models of altered neuroendocrine signaling. Behav Brain Res 189(1):202–211

    PubMed  CAS  Google Scholar 

  63. Fontán-Lozano A, Sáez-Cassanelli JL, Inda MC, de los Santos-Arteaga M, Sierra-Domínguez SA, López-Lluch G, Delgado-García JM, Carrión AM (2007) Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J Neurosci 27(38):10185–10195

    PubMed  Google Scholar 

  64. Newton IG, Forbes ME, Linville MC, Pang H, Tucker EW, Riddle DR, Brunso-Bechtold JK (2008) Effects of aging and caloric restriction on dentate gyrus synapses and glutamate receptor subunits. Neurobiol Aging 29(9):1308–1318

    PubMed  CAS  Google Scholar 

  65. Eckles-Smith K, Clayton D, Bickford P, Browning MD (2000) Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res 78(1–2):154–162

    PubMed  CAS  Google Scholar 

  66. Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14(2):275–287

    PubMed  CAS  Google Scholar 

  67. Cheatham RA, Roberts SB, Das SK, Gilhooly CH, Golden JK, Hyatt R, Lerner D, Saltzman E, Lieberman HR (2009) Long-term effects of provided low and high glycemic load low energy diets on mood and cognition. Physiol Behav 98(3):374–379

    PubMed  CAS  Google Scholar 

  68. Witte AV, Fobker M, Gellner R, Knecht S, Flöel A (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci USA 106(4):1255–1260

    PubMed  CAS  Google Scholar 

  69. Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Aging Res Rev 3:431–443

    CAS  Google Scholar 

  70. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the aging human brain. Nature 429:883–891

    PubMed  CAS  Google Scholar 

  71. Trojanowski JQ, Mattson MP (2003) Overview of protein aggregation in single, double, and triple neurodegenerative brain amyloidoses. Neuromol Med 4:1–6

    CAS  Google Scholar 

  72. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    PubMed  CAS  Google Scholar 

  73. Sieradzan KA, Mann DM (2001) The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol Appl Neurobiol 27:1–21

    PubMed  CAS  Google Scholar 

  74. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S36

    PubMed  CAS  Google Scholar 

  75. Balietti M, Tamagnini F, Fattoretti P, Burattini C, Casoli T, Platano D, Lattanzio F, Aicardi G (2012) Impairments of synaptic plasticity in aged animals and in animal models of Alzheimer’s disease. Rejuvenation Res 15(2):235–238

    PubMed  Google Scholar 

  76. Park SK, Prolla TA (2005) Lessons learned from gene expression profile of aging and caloric restriction. Aging Res Rev 4:55–65

    CAS  Google Scholar 

  77. Levenson CW, Rich NJ (2007) Eat less, live longer? New insights into the role of caloric restriction in the brain. Nutr Rev 65:412–415

    PubMed  Google Scholar 

  78. Wang J, Ho L, Qin W et al (2005) Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 19:659–661

    PubMed  Google Scholar 

  79. Morgan TE, Wong AM, Finch CE (2007) Anti-inflammatory mechanisms of dietary restriction in slowing aging processes. Interdiscip Top Gerontol 35:83–97

    PubMed  CAS  Google Scholar 

  80. Hyun DH, Emerson SS, Jo DG et al (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci USA 103:19908–19912

    PubMed  CAS  Google Scholar 

  81. Bruce-Keller AJ, Umberger G, McFall R, Mattson MP (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45(1):8–15

    PubMed  CAS  Google Scholar 

  82. Manzanero S, Gelderblom M, Magnus T, Arumugam TV (2011) Calorie restriction and stroke. Exp Transl Stroke Med 12(3):8

    Google Scholar 

  83. Fontán-Lozano A, López-Lluch G, Delgado-García JM, Navas P, Carrión AM (2008) Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. Mol Neurobiol 38(2):167–177

    PubMed  Google Scholar 

  84. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    PubMed  Google Scholar 

  85. Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 85(6):2423–2431

    PubMed  CAS  Google Scholar 

  86. Dash PK, Mach SA, Moore AN (2001) Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res 63(4):313–319

    PubMed  CAS  Google Scholar 

  87. Lee J, Seroogy KB, Mattson MP (2002) Dietary restriction enhances neurotrophin -expression and neurogenesis in the hippocampus of adult mice. J Neurochem 80:539–547

    PubMed  CAS  Google Scholar 

  88. Bondolfi L, Ermini F, Long JM et al (2004) Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 25:333–340

    PubMed  CAS  Google Scholar 

  89. Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, Grondin R, Roth GS, Mattison J, Lane MA, Carson RE, Cohen RM, Mouton PR, Quigley C, Mattson MP, Ingram DK (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci USA 101:18171–18176

    PubMed  CAS  Google Scholar 

  90. Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448(7155):767–774

    PubMed  CAS  Google Scholar 

  91. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063

    PubMed  CAS  Google Scholar 

  92. Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408

    PubMed  CAS  Google Scholar 

  93. Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75

    PubMed  Google Scholar 

  94. Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5(3):279–289

    PubMed  CAS  Google Scholar 

  95. Wood KC, Sabatini DM (2009) Growth signaling at the nexus of stem cell life and death. Cell Stem Cell 5(3):232–234

    PubMed  CAS  Google Scholar 

  96. Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S et al (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486(7404):490–495

    PubMed  CAS  Google Scholar 

  97. Magri L, Cambiaghi M, Cominelli M, Alfaro-Cervello C, Cursi M, Pala M, Bulfone A, Garcìa-Verdugo JM, Leocani L, Minicucci F, Poliani PL, Galli R (2011) Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9(5):447–462

    PubMed  CAS  Google Scholar 

  98. van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8(6):440–450 (Review)

    PubMed  Google Scholar 

  99. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5(5):527–539

    PubMed  CAS  Google Scholar 

  100. Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93(2):182–203 (Review)

    PubMed  CAS  Google Scholar 

  101. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, Sato M, Horio Y (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 105(40):15599–15604

    PubMed  CAS  Google Scholar 

  102. Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, Siegert E, Bendix I, Brüstle O, Nitsch R, Zipp F, Aktas O (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10(4):385–394

    PubMed  CAS  Google Scholar 

  103. Martin-Montalvo A, de Cabo R (2012) Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid Redox Signal [Epub ahead of print]

  104. Sanz A, Scialo F, Mallikarjun V, Stefanatos R (2012) Regulation of lifespan by the mitochondrial electron transport chain: ROS-dependent and ROS-independent mechanisms. Antioxid Redox Signal [Epub ahead of print]

  105. Nakamura T, Cho DH, Lipton SA (2012) Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 238(1):12–21

    PubMed  CAS  Google Scholar 

  106. Chung HY, Kim HJ, Kim JW, Yu BP (2001) The inflammation hypothesis of aging: molecular modulation by calorie restriction. Ann NY Acad Sci 928:327–335 (Review)

    PubMed  CAS  Google Scholar 

  107. López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103(6):1768–1773

    PubMed  Google Scholar 

  108. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    PubMed  CAS  Google Scholar 

  109. Cerqueira FM, Cunha FM, Laurindo FR, Kowaltoswski AJ (2012) Calorie restriction increase cerebral mithocondrial respiratory capacity in a NO·-mediated mechanism: impact on neuronal survival. Free Radic Biol Med 52(7):1236–1241

    PubMed  CAS  Google Scholar 

  110. Rasouri S, Lagouge M, Auwerx J (2007) SIRT1/PGC-1: a neuroprotective axis? Med Sci (Paris) 23(10):840–844 (Review French)

    Google Scholar 

  111. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    PubMed  CAS  Google Scholar 

  112. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408

    PubMed  CAS  Google Scholar 

  113. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    PubMed  CAS  Google Scholar 

  114. Bedogni B, Pani G, Colavitti R, Riccio A, Borrello S, Murphy M, Smith R, Eboli ML, Galeotti T (2003) Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. J Biol Chem 278(19):16510–16519

    PubMed  CAS  Google Scholar 

  115. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498

    PubMed  CAS  Google Scholar 

  116. Martin B, Mattson MP, Maudsley S (2006) Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5:332–353

    PubMed  CAS  Google Scholar 

  117. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J (2011) Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 95(3):373–395 (Review)

    PubMed  CAS  Google Scholar 

  118. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745–21754

    PubMed  CAS  Google Scholar 

  119. Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142(2):320–332

    PubMed  CAS  Google Scholar 

  120. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179

    PubMed  CAS  Google Scholar 

  121. Pallàs M, Casadesús G, Smith MA, Coto-Montes A, Pelegri C, Vilaplana J, Camins A (2009) Resveratrol and neurodegenerative diseases: activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res 6(1):70–81 (Review)

    PubMed  Google Scholar 

  122. Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H, Seredenina T, Arbez N, Zhu S, Sommers K, Qian J, Zhang J, Mori S, Yang XW, Tamashiro KL, Aja S, Moran TH, Luthi-Carter R, Martin B, Maudsley S, Mattson MP, Cichewicz RH, Ross CA, Holtzman DM, Krainc D, Duan W (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18(1):153–158

    PubMed  Google Scholar 

  123. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR 3rd, Bordone L, Guarente L, Krainc D (2011) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18(1):159–165

    PubMed  Google Scholar 

  124. Mudò G, Mäkelä J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci 69(7):1153–1165

    PubMed  Google Scholar 

  125. Fusco S, Ripoli C, Podda MV, Ranieri SC, Leone L, Toietta G, McBurney MW, Schütz G, Riccio A, Grassi C, Galeotti T, Pani G (2012) A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci USA 109(2):621–626

    PubMed  CAS  Google Scholar 

  126. Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23(6):744–755

    PubMed  CAS  Google Scholar 

  127. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    PubMed  CAS  Google Scholar 

  128. Oddo S (2012) The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed) 4:941–952

    Google Scholar 

  129. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395

    PubMed  CAS  Google Scholar 

  130. Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57:192–195

    Google Scholar 

  131. Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP (1999) 2-Deoxy-d-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 57:48–61

    PubMed  CAS  Google Scholar 

  132. Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-b toxicity through inhibiting NF-kB signaling. J Biol Chem 280:40364–40374

    PubMed  CAS  Google Scholar 

  133. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 104:7217–7222

    PubMed  CAS  Google Scholar 

  134. Foti Cuzzola V, Ciurleo R, Giacoppo S, Marino S, Bramanti P (2011) Role of resveratrol and its analogues in the treatment of neurodegenerative diseases: focus on recent discoveries. CNS Neurol Disord Drug Targets 10(7):849–862

    PubMed  CAS  Google Scholar 

  135. Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465

    PubMed  Google Scholar 

  136. Gruart A, Muñoz MD, Delgado-García JM (2006) Involvement of the CA3–CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26:1077–1087

    PubMed  CAS  Google Scholar 

  137. Mattson MP, Duan W, Guo Z (2003) Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J Neurochem 84:417–431

    PubMed  CAS  Google Scholar 

  138. Adams MM, Shi L, Linville MC et al (2008) Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability. Exp Neurol 211:141–149

    PubMed  CAS  Google Scholar 

  139. Mockett BG, Hulme SR (2008) Metaplasticity: new insights through electrophysiological investigations. J Integr Neurosci 7(2):315–336 (Review)

    PubMed  Google Scholar 

  140. Liu T, Kong D, Shah BP, Ye C, Koda S, Saunders A, Ding JB, Yang Z, Sabatini BL, Lowell BB (2012) Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73(3):511–522

    PubMed  Google Scholar 

  141. Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657

    PubMed  CAS  Google Scholar 

  142. Tong JJ (2007) Mitochondrial delivery is essential for synaptic potentiation. Biol Bull 212:169–175

    PubMed  CAS  Google Scholar 

  143. Levy M, Faas GC, Saggau F, Craigen W, Sweatt JD (2003) Mitochondrial regulation of synaptic plasticity in the hippocampus. J Biol Chem 278:17727–17738

    PubMed  CAS  Google Scholar 

  144. Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA 91(10):4214–4218

    PubMed  CAS  Google Scholar 

  145. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2(8):599–609 (Review)

    PubMed  CAS  Google Scholar 

  146. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16(11):1211–1227 (Review)

    PubMed  CAS  Google Scholar 

  147. Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12(3):141–151

    PubMed  CAS  Google Scholar 

  148. Noriega LG, Feige JN, Canto C, Yamamoto H, Yu J, Herman MA, Mataki C, Kahn BB, Auwerx J (2011) CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep 12(10):1069–1076

    PubMed  CAS  Google Scholar 

  149. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623

    PubMed  CAS  Google Scholar 

  150. Morikawa Y, Ueyama E, Senba E (2004) Fasting-induced activation of mitogen-activated protein kinases (ERK/p38) in the mouse hypothalamus. J Neuroendocrinol 16(2):105–112

    PubMed  CAS  Google Scholar 

  151. Hahm S, Fekete C, Mizuno TM, Windsor J, Yan H, Boozer CN, Lee C, Elmquist JK, Lechan RM, Mobbs CV, Salton SR (2002) VGF is required for obesity induced by diet, gold thioglucose treatment, and agouti and is differentially regulated in pro-opiomelanocortin- and neuropeptide Y-containing arcuate neurons in response to fasting. J Neurosci 22(16):6929–6938

    PubMed  CAS  Google Scholar 

  152. Shimizu-Albergine M, Ippolito DL, Beavo JA (2001) Downregulation of fasting induced cAMP response element-mediated gene induction by leptin in neuropeptide Y neurons of the arcuate nucleus. J Neurosci 21(4):1238–1246

    PubMed  CAS  Google Scholar 

  153. Watson E, Hahm S, Mizuno TM, Windsor J, Montgomery C, Scherer PE, Mobbs CV, Salton SR (2005) VGF ablation blocks the development of hyperinsulinemia and hyperglycemia in several mouse models of obesity. Endocrinology 146(12):5151–5163

    PubMed  CAS  Google Scholar 

  154. Hahm S, Mizuno TM, Wu TJ, Wisor JP, Priest CA, Kozak CA, Boozer CN, Peng B, McEvoy RC, Good P, Kelley KA, Takahashi JS, Pintar JE, Roberts JL, Mobbs CV, Salton SR (1999) Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 23(3):537–548

    PubMed  CAS  Google Scholar 

  155. Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers DJ, Cole P, Yates J 3rd, Olefsky J, Guarente L, Montminy M (2008) A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456(7219):269–273

    PubMed  CAS  Google Scholar 

  156. Altarejos JY, Goebel N, Conkright MD, Inoue H, Xie J, Arias CM, Sawchenko PE, Montminy M (2008) The Creb1 coactivator is required for energy balance and fertility. Nat Med 14(10):1112–1117

    PubMed  CAS  Google Scholar 

  157. Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16(1):89–101

    PubMed  CAS  Google Scholar 

  158. Pittenger C, Kandel E (1998) A genetic switch for long-term memory. CR Acad Sci III 321(2–3):91–96 (Review)

    CAS  Google Scholar 

  159. Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22(2):153–169 (Review)

    PubMed  Google Scholar 

  160. Wang B, Goode J, Best J, Meltzer J, Schilman PE, Chen J, Garza D, Thomas JB, Montminy M (2008) The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab 7(5):434–444

    PubMed  CAS  Google Scholar 

  161. Kauffman AL, Ashraf JM, Corces-Zimmerman MR, Landis JN, Murphy CT (2010) Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol 8(5):e1000372

    PubMed  Google Scholar 

  162. Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408

    PubMed  CAS  Google Scholar 

  163. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28(2):139–145

    PubMed  CAS  Google Scholar 

  164. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR 3rd, Bordone L, Guarente L, Krainc D (2011) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18(1):159–165

    PubMed  Google Scholar 

  165. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13(2):125–137

    PubMed  CAS  Google Scholar 

  166. Challet E, Caldelas I, Graff C, Pevet P (2003) Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 384:711–719

    PubMed  CAS  Google Scholar 

  167. Mendoza J, Graff C, Dardente H, Pevet P, Challet E (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25:1514–1522

    PubMed  CAS  Google Scholar 

  168. Sakai T, Tamura T, Kitamoto T, Kidokoro Y (2004) A clock gene, period, plays a key role in long-term memory formation in Drosophila. Proc Natl Acad Sci USA 101(45):16058–16063

    PubMed  CAS  Google Scholar 

  169. Hampp G, Albrecht U (2008) The circadian clock and mood-related behaviour. Commun Integr Biol 1(1):1–3

    PubMed  CAS  Google Scholar 

  170. Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307(5708):375–379

    PubMed  CAS  Google Scholar 

  171. Yau PL, Castro Bs MG, Tagani A, Tsui WH, Convit A (2012) Obesity and Metabolic Syndrome and Functional and Structural Brain Impairments in Adolescence. Pediatrics [Epub ahead of print]

Download references

Acknowledgments

The authors apologize to all the colleagues whose important work could not be properly cited in this review due to space constraints. The authors are indebted to professors Claudio Grassi (Institute of Human Physiology, Catholic University Medical School), and Achille Cittadini (Institute of General Pathology, Catholic University Medical School) and to members of the laboratory for their helpful comments and suggestions. Original work from the authors’ laboratory was funded by Catholic University Intramural Grants (linea D1 and linea D3.2) and by the Italian Ministry of University and Research (MIUR, ex 60 %).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovambattista Pani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fusco, S., Pani, G. Brain response to calorie restriction. Cell. Mol. Life Sci. 70, 3157–3170 (2013). https://doi.org/10.1007/s00018-012-1223-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1223-y

Keywords