Skip to main content

Advertisement

Log in

The Akt-associated microRNAs

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

As master gene regulators, microRNAs are involved in diverse cellular pathways. It is well known that microRNAs are often dysregulated in many types of cancer and other human diseases. In cancer, microRNAs may function as oncogenes or tumor suppressors. Interestingly, recent evidence suggests that microRNA-mediated gene regulation interconnects with the Akt pathway, forming an Akt–microRNA regulatory network. MicroRNAs and Akt in this network work together to exert their cellular functions. Thus, a better understanding of this Akt–microRNA regulatory network is critical to successful targeting of the PI3K/Akt pathway for cancer therapy. We review recent advances in the understanding of how microRNAs affect Akt activity as well as how microRNAs are regulated through the Akt pathway. We also briefly discuss the clinical implication of gene regulation mediated through Akt-associated microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    PubMed  CAS  Google Scholar 

  2. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85

    PubMed  Google Scholar 

  3. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    PubMed  CAS  Google Scholar 

  4. Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319(5871):1785–1786

    PubMed  CAS  Google Scholar 

  5. Hobert O (2007) miRNAs play a tune. Cell 131(1):22–24

    PubMed  CAS  Google Scholar 

  6. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353(17):1768–1771

    PubMed  CAS  Google Scholar 

  7. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    PubMed  CAS  Google Scholar 

  8. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    PubMed  CAS  Google Scholar 

  9. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843

    PubMed  Google Scholar 

  10. Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J (2006) Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 12(7 Pt 1):2014–2024

    PubMed  CAS  Google Scholar 

  11. He X, He L, Hannon GJ (2007) The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67(23):11099–11101

    PubMed  CAS  Google Scholar 

  12. Sachdeva M, Zhu S, Wu F et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Nat Acad Sci U S A 106(9):3207–3212

    CAS  Google Scholar 

  13. Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453(7192):223–227

    PubMed  CAS  Google Scholar 

  14. Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    PubMed  CAS  Google Scholar 

  15. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281

    PubMed  CAS  Google Scholar 

  16. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549

    PubMed  CAS  Google Scholar 

  17. Piskounova E, Viswanathan SR, Janas M et al (2008) Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 283(31):21310–21314

    PubMed  CAS  Google Scholar 

  18. Rybak A, Fuchs H, Smirnova L et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993

    PubMed  CAS  Google Scholar 

  19. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100

    PubMed  CAS  Google Scholar 

  20. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102(34):12135–12140

    PubMed  CAS  Google Scholar 

  21. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132(5):875–886

    PubMed  CAS  Google Scholar 

  22. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    PubMed  CAS  Google Scholar 

  23. Kasashima K, Nakamura Y, Kozu T (2004) Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 322(2):403–410

    PubMed  CAS  Google Scholar 

  24. Esau C, Kang X, Peralta E et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365

    PubMed  CAS  Google Scholar 

  25. Nguyen HT, Frasch M (2006) MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Curr Opin Genet Dev 16(5):533–539

    PubMed  CAS  Google Scholar 

  26. Hackl H, Burkard TR, Sturn A et al (2005) Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol 6(13):R108

    PubMed  Google Scholar 

  27. Boutz PL, Chawla G, Stoilov P, Black DL (2007) MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 21(1):71–84

    PubMed  CAS  Google Scholar 

  28. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    PubMed  CAS  Google Scholar 

  29. Chang TC, Wentzel EA, Kent OA et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    PubMed  CAS  Google Scholar 

  30. Raver-Shapira N, Marciano E, Meiri E et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743

    PubMed  CAS  Google Scholar 

  31. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    PubMed  CAS  Google Scholar 

  32. Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130(7):2113–2129

    PubMed  CAS  Google Scholar 

  33. Zhang B, Pan X, Anderson TA (2006) MicroRNA: a new player in stem cells. J Cell Physiol 209(2):266–269

    PubMed  CAS  Google Scholar 

  34. Hatfield SD, Shcherbata HR, Fischer KA et al (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978

    PubMed  CAS  Google Scholar 

  35. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific microRNAs. Dev Cell 5(2):351–358

    PubMed  CAS  Google Scholar 

  36. Suh MR, Lee Y, Kim JY et al (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270(2):488–498

    PubMed  CAS  Google Scholar 

  37. Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9(2):180–186

    PubMed  CAS  Google Scholar 

  38. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776–780

    PubMed  CAS  Google Scholar 

  39. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122(1):6–7

    PubMed  CAS  Google Scholar 

  40. Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16(1):4–9

    PubMed  CAS  Google Scholar 

  41. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    PubMed  CAS  Google Scholar 

  42. Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65(9):3509–3512

    PubMed  CAS  Google Scholar 

  43. Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101(32):11755–11760

    PubMed  CAS  Google Scholar 

  44. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    PubMed  CAS  Google Scholar 

  45. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    PubMed  CAS  Google Scholar 

  46. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    PubMed  CAS  Google Scholar 

  47. Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    PubMed  CAS  Google Scholar 

  48. Voorhoeve PM, le Sage C, Schrier M et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    PubMed  CAS  Google Scholar 

  49. Si ML, Zhu S, Wu H et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    PubMed  CAS  Google Scholar 

  50. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336

    PubMed  CAS  Google Scholar 

  51. Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359

    PubMed  CAS  Google Scholar 

  52. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    PubMed  CAS  Google Scholar 

  53. Tavazoie SF, Alarcón C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    PubMed  CAS  Google Scholar 

  54. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    PubMed  CAS  Google Scholar 

  55. Calin GA, Ferracin M, Cimmino A et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801

    PubMed  CAS  Google Scholar 

  56. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    PubMed  CAS  Google Scholar 

  57. Bottoni A, Zatelli MC, Ferracin M et al (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210(2):370–377

    PubMed  CAS  Google Scholar 

  58. Wang T, Zhang X, Obijuru L et al (2007) A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer 46(4):336–347

    PubMed  CAS  Google Scholar 

  59. Debernardi S, Skoulakis S, Molloy G et al (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21(5):912–916

    PubMed  CAS  Google Scholar 

  60. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120(5):1046–1054

    PubMed  CAS  Google Scholar 

  61. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    PubMed  CAS  Google Scholar 

  62. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    PubMed  CAS  Google Scholar 

  63. Engelman JA (2009) Targeting PI3K signaling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562

    PubMed  CAS  Google Scholar 

  64. Beaulieu JM, Sotnikova TD, Marion S et al (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122(2):261–273

    PubMed  CAS  Google Scholar 

  65. Maira SM, Galetic I, Brazil DP et al (2001) Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294(5541):374–380

    PubMed  CAS  Google Scholar 

  66. Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120(Pt 15):2479–2487

    PubMed  CAS  Google Scholar 

  67. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98(20):11598–11603

    PubMed  CAS  Google Scholar 

  68. Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3(11):973–982

    PubMed  CAS  Google Scholar 

  69. Segura MF, Hanniford D, Menendez S et al (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106(6):1814–1819

    PubMed  CAS  Google Scholar 

  70. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563

    PubMed  CAS  Google Scholar 

  71. Lin H, Dai T, Xiong H et al (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS ONE 5(12):e15797

    PubMed  CAS  Google Scholar 

  72. Wang K, Li PF (2010) Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem 285(22):16958–16966

    PubMed  CAS  Google Scholar 

  73. Gan B, Lim C, Chu G et al (2010) FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell 18(5):472–484

    PubMed  CAS  Google Scholar 

  74. de Zhuo X, Niu XH, Chen YC et al (2010) Vitamin D3 up-regulated protein 1 (VDUP1) is regulated by FOXO3A and miR-17-5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 285(41):31491–31501

    CAS  Google Scholar 

  75. Meek DW, Knippschild U (2003) Posttranslational modification of MDM2. Mol Cancer Res 1(14):1017–1026

    PubMed  CAS  Google Scholar 

  76. Suzuki HI, Yamagata K, Sugimoto K et al (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533

    PubMed  CAS  Google Scholar 

  77. He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    PubMed  CAS  Google Scholar 

  78. Bommer GT, Gerin I, Feng Y et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    PubMed  CAS  Google Scholar 

  79. Xiao J, Lin H, Luo X, Wang Z (2011) miR-605 joins p53 network to form a p53:miR-605:mdm2 positive feedback loop in response to stress. EMBO J 30(24):5021

    PubMed  CAS  Google Scholar 

  80. Yan HL, Xue G, Mei Q et al (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732

    PubMed  CAS  Google Scholar 

  81. Saleh AD, Savage JE, Cao L et al (2011) Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS ONE 6(10):e24429

    PubMed  CAS  Google Scholar 

  82. Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    PubMed  CAS  Google Scholar 

  83. Sempere LF, Christensen M, Silahtaroglu A et al (2007) Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67(24):11612–11620

    PubMed  CAS  Google Scholar 

  84. Bandres E, Cubedo E, Agirre X et al (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5(1):29

    PubMed  CAS  Google Scholar 

  85. Izzotti A, Calin GA, Arrigo P et al (2009) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23(3):806–812

    PubMed  CAS  Google Scholar 

  86. La Rocca G, Badin M, Shi B, Xu SQ, Deangelis T, Sepp-Lorenzinoi L, Baserga R (2009) Mechanism of growth inhibition by microRNA 145: the role of the IGF-I receptor signaling pathway. J Cell Physiol 220(2):485–491

    PubMed  Google Scholar 

  87. Shi B, Sepp-Lorenzino L, Prisco M et al (2007) Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282(45):32582–32590

    PubMed  CAS  Google Scholar 

  88. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98(12):1914–1920

    PubMed  CAS  Google Scholar 

  89. Wang S, Bian C, Yang Z, et al (2009) miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 34(5):1461–1466

    PubMed  CAS  Google Scholar 

  90. Spizzo R, Nicoloso MS, Lupini L et al (2009) miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ 17(2):246–254

    PubMed  Google Scholar 

  91. Cho WC, Chow AS, Au JS (2009) Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 45(12):2197–2206

    PubMed  CAS  Google Scholar 

  92. Zhong M, Ma X, Sun C, Chen L (2010) MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem Biol Interact 184(3):431–438

    PubMed  CAS  Google Scholar 

  93. Ostenfeld MS, Bramsen JB, Lamy P et al (2009) miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29(7):1073–1084

    PubMed  Google Scholar 

  94. Gregersen LH, Jacobsen AB, Frankel LB et al (2010) MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS ONE 5(1):e8836

    PubMed  Google Scholar 

  95. Shi M, Du L, Liu D et al (2012) Glucocorticoid regulation of a novel HPV E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol. doi: 10.1002/path.3997

  96. Sachdeva M, Liu Q, Cao J, Lu Z, Mo YY (2012) Negative regulation of miR-145 by C/EBP-beta through the Akt pathway in cancer cells. Nucleic Acids Res 40(14):6683–6692

    PubMed  CAS  Google Scholar 

  97. Zhang J, Sun Q, Zhang Z et al (2012) Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene. doi: 10.1038/onc.2012.28

  98. Kent OA, Chivukula RR, Mullendore M et al (2010) Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 24(24):2754–2759

    PubMed  CAS  Google Scholar 

  99. Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    PubMed  CAS  Google Scholar 

  100. Ma X, Kumar M, Choudhury SN et al (2011) Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci U S A 108(25):10144–10149

    PubMed  CAS  Google Scholar 

  101. Garofalo M, Di Leva G, Romano G et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6):498–509

    PubMed  CAS  Google Scholar 

  102. Bar N, Dikstein R (2010) miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS ONE 5(5):e10859

    PubMed  Google Scholar 

  103. Small EM, O'Rourke JR, Moresi V et al (2010) Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci U S A 107(9):4218–4223

    PubMed  CAS  Google Scholar 

  104. Poliseno L, Salmena L, Riccardi L et al (2010) Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3(117):ra29

    PubMed  Google Scholar 

  105. Beezhold K, Liu J, Kan H et al (2011) miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 123(2):411–420

    PubMed  CAS  Google Scholar 

  106. Wong QW, Ching AK, Chan AW et al (2010) MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 16(3):867–875

    PubMed  CAS  Google Scholar 

  107. Hamano R, Miyata H, Yamasaki M et al (2011) Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res 17(9):3029–3038

    PubMed  CAS  Google Scholar 

  108. Varambally S, Cao Q, Mani RS et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699

    PubMed  CAS  Google Scholar 

  109. Friedman JM, Liang G, Liu CC et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69(6):2623–2629

    PubMed  CAS  Google Scholar 

  110. Su H, Yang JR, Xu T et al (2009) MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69(3):1135–1142

    PubMed  CAS  Google Scholar 

  111. Kottakis F, Polytarchou C, Foltopoulou P et al (2011) FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 43(2):285–298

    PubMed  CAS  Google Scholar 

  112. Yan D, Ng WL, Zhang X et al (2010) Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS ONE 5(7):e11397

    PubMed  Google Scholar 

  113. Sachdeva M, Wu H, Ru P et al (2011) MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30(7):822–831

    PubMed  CAS  Google Scholar 

  114. Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248(17):6251–6253

    PubMed  CAS  Google Scholar 

  115. Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H (2008) miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 68(13):5004–5008

    PubMed  CAS  Google Scholar 

  116. Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21(5):1132–1147

    PubMed  CAS  Google Scholar 

  117. Miller TE, Ghoshal K, Ramaswamy B et al (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903

    PubMed  CAS  Google Scholar 

  118. Zhao JJ, Lin J, Yang H et al (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086

    PubMed  CAS  Google Scholar 

  119. Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29(13):3783–3790

    PubMed  CAS  Google Scholar 

  120. Anderson JM (1996) Cell signaling: mAGUK magic. Curr Biol 6(4):382–384

    PubMed  CAS  Google Scholar 

  121. Wu X, Hepner K, Castelino-Prabhu S et al (2000) Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A 97(8):4233–4238

    PubMed  CAS  Google Scholar 

  122. Los M, Maddika S, Erb B, Schulze-Osthoff K (2009) Switching Akt: from survival signaling to deadly response. Bioessays 31(5):492–495

    PubMed  CAS  Google Scholar 

  123. Ragimov N, Krauskopf A, Navot N et al (1993) Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene 8(5):1183–1193

    PubMed  CAS  Google Scholar 

  124. Ho JS, Ma W, Mao DY, Benchimol S (2005) p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25(17):7423–7431

    PubMed  CAS  Google Scholar 

  125. Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13(1):77–83

    PubMed  CAS  Google Scholar 

  126. Sachdeva M, Mo YY (2009) p53 and c-myc: how does the cell balance “yin” and “yang”? Cell Cycle 8(9):1303

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KG100027 from Susan G. Komen for the Cure and R01CA154989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Yuan Mo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Mo, YY. The Akt-associated microRNAs. Cell. Mol. Life Sci. 69, 3601–3612 (2012). https://doi.org/10.1007/s00018-012-1129-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1129-8

Keywords

Navigation