Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 7, pp 1185–1206 | Cite as

Recent progress in intein research: from mechanism to directed evolution and applications

  • Gerrit Volkmann
  • Henning D. Mootz
Review

Abstract

Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.

Keywords

Post-translational modification Protein chemistry Protein splicing  Enzyme mechanism  Protein engineering  Protein semisynthesis 

Notes

Acknowledgments

We apologize to those researchers whose work could not be covered in detail due to space limitations and the special focus of this work. We thank all coworkers, past and present, for their contributions to the group’s research. Funding in the Mootz lab was provided by the DFG (grant DFG MO 1073/3-1) and the HFSP (Grant RGP0031/2010).

References

  1. 1.
    Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733PubMedGoogle Scholar
  2. 2.
    Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657PubMedCrossRefGoogle Scholar
  3. 3.
    Perler FB (1998) Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92:1–4PubMedCrossRefGoogle Scholar
  4. 4.
    Liu XQ (2000) Protein-splicing intein: genetic mobility, origin, and evolution. Annu Rev Genet 34:61–76PubMedCrossRefGoogle Scholar
  5. 5.
    Pietrokovski S (2001) Intein spread and extinction in evolution. Trends Genet 17:465–472PubMedCrossRefGoogle Scholar
  6. 6.
    Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Annu Rev Microbiol 56:263–287PubMedCrossRefGoogle Scholar
  7. 7.
    Perler FB (2002) InBase: the intein database. Nucleic Acids Res 30:383–384PubMedCrossRefGoogle Scholar
  8. 8.
    Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91:85–97PubMedCrossRefGoogle Scholar
  9. 9.
    Dassa B, Haviv H, Amitai G, Pietrokovski S (2004) Protein splicing and auto-cleavage of bacterial intein-like domains lacking a C′-flanking nucleophilic residue. J Biol Chem 279:32001–32007PubMedCrossRefGoogle Scholar
  10. 10.
    Dassa B, Yanai I, Pietrokovski S (2004) New type of polyubiquitin-like genes with intein-like autoprocessing domains. Trends Genet 20:538–542PubMedCrossRefGoogle Scholar
  11. 11.
    Perler FB, Olsen GJ, Adam E (1997) Compilation and analysis of intein sequences. Nucleic Acids Res 25:1087–1093PubMedCrossRefGoogle Scholar
  12. 12.
    Tori K, Dassa B, Johnson MA, Southworth MW, Brace LE, Ishino Y, Pietrokovski S, Perler FB (2010) Splicing of the mycobacteriophage Bethlehem DnaB intein: identification of a new mechanistic class of inteins that contain an obligate block F nucleophile. J Biol Chem 285:2515–2526PubMedCrossRefGoogle Scholar
  13. 13.
    Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chem Bio Chem 10:2579–2589PubMedCrossRefGoogle Scholar
  14. 14.
    Elleuche S, Poggeler S (2010) Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 87:479–489PubMedCrossRefGoogle Scholar
  15. 15.
    Vila-Perello M, Muir TW (2010) Biological applications of protein splicing. Cell 143:191–200PubMedCrossRefGoogle Scholar
  16. 16.
    Volkmann G, Iwaï H (2010) Protein trans-splicing and its use in structural biology: opportunities and limitations. Mol Biosys 6:2110–2121CrossRefGoogle Scholar
  17. 17.
    Aranko AS, Volkmann G (2011) Protein trans-splicing as a protein ligation tool to study protein structure and function. Biomol Concepts 2:183–198CrossRefGoogle Scholar
  18. 18.
    Shah NH, Muir TW (2011) Split inteins: nature’s protein ligases. Isr J Chem 51:854–861CrossRefGoogle Scholar
  19. 19.
    Cheriyan M, Perler FB (2009) Protein splicing: a versatile tool for drug discovery. Adv Drug Deliv Rev 61:899–907PubMedCrossRefGoogle Scholar
  20. 20.
    Sancheti H, Camarero JA (2009) “Splicing up” drug discovery. Cell-based expression and screening of genetically encoded libraries of backbone-cyclized polypeptides. Adv Drug Deliv Rev 61:908–917PubMedCrossRefGoogle Scholar
  21. 21.
    Xu MQ, Perler FB (1996) The mechanism of protein splicing and its modulation by mutation. EMBO J 15:5146–5153PubMedGoogle Scholar
  22. 22.
    Southworth MW, Benner J, Perler FB (2000) An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. EMBO J 19:5019–5026PubMedCrossRefGoogle Scholar
  23. 23.
    Saleh L, Southworth MW, Considine N, O’Neill C, Benner J, Bollinger JM Jr, Perler FB (2012) Branched intermediate formation is the slowest step in the protein splicing reaction of the Ala1 KlbA intein from Methanococcus jannaschii. Biochemistry 50:10576–10589CrossRefGoogle Scholar
  24. 24.
    Johnson MA, Southworth MW, Herrmann T, Brace L, Perler FB, Wuthrich K (2007) NMR structure of a KlbA intein precursor from Methanococcus jannaschii. Protein Sci 16:1316–1328PubMedCrossRefGoogle Scholar
  25. 25.
    Brace LE, Southworth MW, Tori K, Cushing ML, Perler F (2010) The Deinococcus radiodurans Snf2 intein caught in the act: detection of the class 3 intein signature block F branched intermediate. Protein Sci 19:1525–1533PubMedCrossRefGoogle Scholar
  26. 26.
    Reitter JN, Mills KV (2011) Canonical protein splicing of a class one intein that has a class three non-canonical sequence motif. J Bacteriol 193:994–997PubMedCrossRefGoogle Scholar
  27. 27.
    Tori K, Perler FB (2011) Expanding the definition of class 3 inteins and their proposed phage origin. J Bacteriol 193:2035–2041PubMedCrossRefGoogle Scholar
  28. 28.
    Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496PubMedCrossRefGoogle Scholar
  29. 29.
    Johansson DG, Wallin G, Sandberg A, Macao B, Aqvist J, Hard T (2009) Protein autoproteolysis: conformational strain linked to the rate of peptide cleavage by the pH dependence of the N → O acyl shift reaction. J Am Chem Soc 131:9475–9477PubMedCrossRefGoogle Scholar
  30. 30.
    Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378:416–419PubMedCrossRefGoogle Scholar
  31. 31.
    Ditzel L, Huber R, Mann K, Heinemeyer W, Wolf DH, Groll M (1998) Conformational constraints for protein self-cleavage in the proteasome. J Mol Biol 279:1187–1191PubMedCrossRefGoogle Scholar
  32. 32.
    Kawasaki M, Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Identification of three core regions essential for protein splicing of the yeast Vma1 protozyme. A random mutagenesis study of the entire Vma1-derived endonuclease sequence. J Biol Chem 272:15668–15674PubMedCrossRefGoogle Scholar
  33. 33.
    Ghosh I, Sun L, Xu MQ (2001) Zinc inhibition of protein trans-splicing and identification of regions essential for splicing and association of a split intein. J Biol Chem 276:24051–24058PubMedCrossRefGoogle Scholar
  34. 34.
    Klabunde T, Sharma S, Telenti A, Jacobs WR Jr, Sacchettini JC (1998) Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol 5:31–36PubMedCrossRefGoogle Scholar
  35. 35.
    Poland BW, Xu MQ, Quiocho FA (2000) Structural insights into the protein splicing mechanism of PI-SceI. J Biol Chem 275:16408–16413PubMedCrossRefGoogle Scholar
  36. 36.
    Ding Y, Xu MQ, Ghosh I, Chen X, Ferrandon S, Lesage G, Rao Z (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. J Biol Chem 278:39133–39142PubMedCrossRefGoogle Scholar
  37. 37.
    Mizutani R, Nogami S, Kawasaki M, Ohya Y, Anraku Y, Satow Y (2002) Protein-splicing reaction via a thiazolidine intermediate: crystal structure of the VMA1-derived endonuclease bearing the N and C-terminal propeptides. J Mol Biol 316:919–929PubMedCrossRefGoogle Scholar
  38. 38.
    Sun P, Ye S, Ferrandon S, Evans TC, Xu MQ, Rao Z (2005) Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing. J Mol Biol 353:1093–1105PubMedCrossRefGoogle Scholar
  39. 39.
    Van Roey P, Pereira B, Li Z, Hiraga K, Belfort M, Derbyshire V (2007) Crystallographic and mutational studies of Mycobacterium tuberculosis recA mini-inteins suggest a pivotal role for a highly conserved aspartate residue. J Mol Biol 367:162–173PubMedCrossRefGoogle Scholar
  40. 40.
    Du Z, Shemella PT, Liu Y, McCallum SA, Pereira B, Nayak SK, Belfort G, Belfort M, Wang C (2009) Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism. J Am Chem Soc 131:11581–11589PubMedCrossRefGoogle Scholar
  41. 41.
    Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein–intein junction. Proc Natl Acad Sci USA 101:6397–6402PubMedCrossRefGoogle Scholar
  42. 42.
    Pearl EJ, Tyndall JD, Poulter RT, Wilbanks SM (2007) Sequence requirements for splicing by the Cne PRP8 intein. FEBS Lett 581:3000–3004PubMedCrossRefGoogle Scholar
  43. 43.
    Du Z, Liu J, Albracht CD, Hsu A, Chen W, Marieni MD, Colelli KM, Williams JE, Reitter JN, Mills KV, Wang C (2011) Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. J Biol Chem 286:38638–38648PubMedCrossRefGoogle Scholar
  44. 44.
    Pietrokovski S (1998) Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci 7:64–71PubMedCrossRefGoogle Scholar
  45. 45.
    Tori K, Cheriyan M, Pedamallu CS, Contreras MA, Perler FB (2012) The Thermococcus kodakaraensis Tko CDC21-1 intein activates its N-terminal splice junction in the absence of a conserved histidine by a compensatory mechanism. Biochemistry 51:2496–2505PubMedCrossRefGoogle Scholar
  46. 46.
    Du Z, Zheng Y, Patterson M, Liu Y, Wang C (2011) pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. J Am Chem Soc 133:10275–10282PubMedCrossRefGoogle Scholar
  47. 47.
    Schwarzer D, Ludwig C, Thiel IV, Mootz HD (2012) Probing intein-catalyzed thioester formation by unnatural amino acid substitutions in the active site. Biochemistry 51:233–242PubMedCrossRefGoogle Scholar
  48. 48.
    Appleby JH, Zhou K, Volkmann G, Liu XQ (2009) Novel Split Intein for trans-splicing synthetic peptide onto C-terminus of protein. J Biol Chem 284:6194–6199PubMedCrossRefGoogle Scholar
  49. 49.
    Volkmann G, Liu XQ (2011) Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity. FEBS J 278:3431–3446PubMedCrossRefGoogle Scholar
  50. 50.
    Ludwig C, Schwarzer D, Mootz HD (2008) Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from an intermediate of the protein splicing reaction. J Biol Chem 283:25264–25272PubMedCrossRefGoogle Scholar
  51. 51.
    Kang J, Richardson JP, Macmillan D (2009) 3-Mercaptopropionic acid-mediated synthesis of peptide and protein thioesters. Chem Commun (Camb) 407–409Google Scholar
  52. 52.
    Kang J, Macmillan D (2010) Peptide and protein thioester synthesis via N → S acyl transfer. Org Biomol Chem 8:1993–2002PubMedCrossRefGoogle Scholar
  53. 53.
    Kawakami T, Aimoto S (2007) Sequential peptide ligation by using a controlled cysteinyl prolyl ester (CPE) autoactivating unit. Tetrahedron Lett 48:1903–1905CrossRefGoogle Scholar
  54. 54.
    Pereira B, Shemella PT, Amitai G, Belfort G, Nayak SK, Belfort M (2011) Spontaneous proton transfer to a conserved intein residue determines on-pathway protein splicing. J Mol Biol 406:430–442PubMedCrossRefGoogle Scholar
  55. 55.
    Chong S, Williams KS, Wotkowicz C, Xu MQ (1998) Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem 273:10567–10577PubMedCrossRefGoogle Scholar
  56. 56.
    Martin DD, Xu MQ, Evans TC Jr (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40:1393–1402PubMedCrossRefGoogle Scholar
  57. 57.
    Zettler J, Schutz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583:909–914PubMedCrossRefGoogle Scholar
  58. 58.
    Frutos S, Goger M, Giovani B, Cowburn D, Muir TW (2010) Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Nat Chem Biol 6:527–533PubMedCrossRefGoogle Scholar
  59. 59.
    Xu MQ, Comb DG, Paulus H, Noren CJ, Shao Y, Perler FB (1994) Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J 13:5517–5522PubMedGoogle Scholar
  60. 60.
    Shao Y, Xu MQ, Paulus H (1995) Protein splicing: characterization of the aminosuccinimide residue at the carboxyl terminus of the excised intervening sequence. Biochemistry 34:10844–10850PubMedCrossRefGoogle Scholar
  61. 61.
    Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264:6164–6170PubMedGoogle Scholar
  62. 62.
    Shemella P, Pereira B, Zhang Y, Van Roey P, Belfort G, Garde S, Nayak SK (2007) Mechanism for intein C-terminal cleavage: a proposal from quantum mechanical calculations. Biophys J 92:847–853PubMedCrossRefGoogle Scholar
  63. 63.
    Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M (1999) A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol 17:889–892PubMedCrossRefGoogle Scholar
  64. 64.
    Mathys S, Evans TC, Chute IC, Wu H, Chong S, Benner J, Liu XQ, Xu MQ (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231:1–13PubMedCrossRefGoogle Scholar
  65. 65.
    Wood DW, Derbyshire V, Wu W, Chartrain M, Belfort M, Belfort G (2000) Optimized single-step affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor. Biotechnol Prog 16:1055–1063PubMedCrossRefGoogle Scholar
  66. 66.
    Mujika JI, Lopez X, Mulholland AJ (2009) Modeling protein splicing: reaction pathway for C-terminal splice and intein scission. J Phys Chem B 113:5607–5616PubMedCrossRefGoogle Scholar
  67. 67.
    Kurpiers T, Mootz HD (2008) Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein. ChemBioChem 9:2317–2325PubMedCrossRefGoogle Scholar
  68. 68.
    Shao Y, Paulus H (1997) Protein splicing: estimation of the rate of O–N and S–N acyl rearrangements, the last step of the splicing process. J Pept Res 50:193–198PubMedCrossRefGoogle Scholar
  69. 69.
    Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M (2009) Modulation of intein activity by its neighboring extein substrates. Proc Natl Acad Sci USA 106:11005–11010PubMedCrossRefGoogle Scholar
  70. 70.
    Ellila S, Jurvansuu JM, Iwai H (2011) Evaluation and comparison of protein splicing by exogenous inteins with foreign exteins in Escherichia coli. FEBS Lett 585:3471–3477PubMedCrossRefGoogle Scholar
  71. 71.
    Shah NH, Dann GP, Vila-Perello M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134(28):11338–11341PubMedCrossRefGoogle Scholar
  72. 72.
    Øemig JS, Zhou D, Kajander T, Wlodawer A, Iwai H (2012) NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J Mol Biol 421(1):85–99CrossRefGoogle Scholar
  73. 73.
    Adam E, Perler FB (2002) Development of a positive genetic selection system for inhibition of protein splicing using mycobacterial inteins in Escherichia coli DNA gyrase subunit A. J Mol Microbiol Biotechnol 4:479–487PubMedGoogle Scholar
  74. 74.
    Cann IK, Amaya KR, Southworth MW, Perler FB (2004) Bacteriophage-based genetic system for selection of nonsplicing inteins. Appl Environ Microbiol 70:3158–3162PubMedCrossRefGoogle Scholar
  75. 75.
    Zeidler MP, Tan C, Bellaiche Y, Cherry S, Hader S, Gayko U, Perrimon N (2004) Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol 22:871–876PubMedCrossRefGoogle Scholar
  76. 76.
    Tan G, Chen M, Foote C, Tan C (2009) Temperature-sensitive mutations made easy: generating conditional mutations by using temperature-sensitive inteins that function within different temperature ranges. Genetics 183:13–22PubMedCrossRefGoogle Scholar
  77. 77.
    Hiraga K, Soga I, Dansereau JT, Pereira B, Derbyshire V, Du Z, Wang C, Van Roey P, Belfort G, Belfort M (2009) Selection and structure of hyperactive inteins: peripheral changes relayed to the catalytic center. J Mol Biol 393:1106–1117PubMedCrossRefGoogle Scholar
  78. 78.
    Hiraga K, Derbyshire V, Dansereau JT, Van Roey P, Belfort M (2005) Minimization and stabilization of the Mycobacterium tuberculosis recA intein. J Mol Biol 354:916–926PubMedCrossRefGoogle Scholar
  79. 79.
    Lockless SW, Muir TW (2009) Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci USA 106:10999–11004PubMedCrossRefGoogle Scholar
  80. 80.
    Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci USA 101:10505–10510PubMedCrossRefGoogle Scholar
  81. 81.
    Wu H, Xu MQ, Liu XQ (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta 1387:422–432PubMedCrossRefGoogle Scholar
  82. 82.
    Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286:34440–34447PubMedCrossRefGoogle Scholar
  83. 83.
    Du Z, Liu Y, Ban D, Lopez MM, Belfort M, Wang C (2010) Backbone dynamics and global effects of an activating mutation in minimized Mtu RecA inteins. J Mol Biol 400:755–767PubMedCrossRefGoogle Scholar
  84. 84.
    Caspi J, Amitai G, Belenkiy O, Pietrokovski S (2003) Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol 50:1569–1577PubMedCrossRefGoogle Scholar
  85. 85.
    Iwai H, Züger S, Jin J, Tam PH (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858PubMedCrossRefGoogle Scholar
  86. 86.
    Dassa B, Amitai G, Caspi J, Schueler-Furman O, Pietrokovski S (2007) Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry 46:322–330PubMedCrossRefGoogle Scholar
  87. 87.
    Peck SH, Chen I, Liu DR (2011) Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol 18:619–630PubMedCrossRefGoogle Scholar
  88. 88.
    Skretas G, Wood DW (2005) Regulation of protein activity with small-molecule-controlled inteins. Protein Sci 14:523–532PubMedCrossRefGoogle Scholar
  89. 89.
    Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710PubMedCrossRefGoogle Scholar
  90. 90.
    Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289PubMedCrossRefGoogle Scholar
  91. 91.
    Evans TC Jr, Benner J, Xu MQ (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264PubMedCrossRefGoogle Scholar
  92. 92.
    Xu MQ, Evans TC Jr (2003) Purification of recombinant proteins from E. coli by engineered inteins. Methods Mol Biol 205:43–68PubMedGoogle Scholar
  93. 93.
    Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438PubMedCrossRefGoogle Scholar
  94. 94.
    Shi J, Muir TW (2005) Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc 127:6198–6206PubMedCrossRefGoogle Scholar
  95. 95.
    Lu W, Sun Z, Tang Y, Chen J, Tang F, Zhang J, Liu JN (2011) Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage. J Chromatogr A 1218:2553–2560PubMedCrossRefGoogle Scholar
  96. 96.
    Kurpiers T, Mootz HD (2007) Regioselective cysteine bioconjugation by appending a labeled cystein tag to a protein by using protein splicing in trans. Angew Chem Int Ed Engl 46:5234–5237PubMedCrossRefGoogle Scholar
  97. 97.
    Brenzel S, Cebi M, Reiss P, Koert U, Mootz HD (2009) Expanding the scope of protein trans-splicing to fragment ligation of an integral membrane protein: towards modulation of porin-based ion channels by chemical modification. ChemBioChem 10:983–986PubMedCrossRefGoogle Scholar
  98. 98.
    Ludwig C, Pfeiff M, Linne U, Mootz HD (2006) Ligation of a synthetic peptide to the N-terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew Chem Int Ed Engl 45:5218–5221PubMedCrossRefGoogle Scholar
  99. 99.
    Volkmann G, Liu XQ (2009) Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein. PLoS ONE 4:e8381PubMedCrossRefGoogle Scholar
  100. 100.
    Yang JY, Yang WY (2009) Site-specific two-color protein labeling for FRET studies using split inteins. J Am Chem Soc 131:11644–11645PubMedCrossRefGoogle Scholar
  101. 101.
    Ando T, Tsukiji S, Tanaka T, Nagamune T (2007) Construction of a small-molecule-integrated semisynthetic split intein for in vivo protein ligation. Chem Commun (Camb) 4995–4997Google Scholar
  102. 102.
    Charalambous A, Andreou M, Skourides PA (2009) Intein-mediated site-specific conjugation of quantum dots to proteins in vivo. J Nanobiotechnol 7:9CrossRefGoogle Scholar
  103. 103.
    Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2007) Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into cellular membranes. Chem Biol 14:994–1006PubMedCrossRefGoogle Scholar
  104. 104.
    Chu NK, Olschewski D, Seidel R, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2010) Protein immobilization on liposomes and lipid-coated nanoparticles by protein trans-splicing. J Pept Sci 16:582–588PubMedCrossRefGoogle Scholar
  105. 105.
    Kwon Y, Coleman MA, Camarero JA (2006) Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed Engl 45:1726–1729PubMedCrossRefGoogle Scholar
  106. 106.
    Lew BM, Mills KV, Paulus H (1999) Characteristics of protein splicing in trans-mediated by a semisynthetic split intein. Biopolymers 51:355–362PubMedCrossRefGoogle Scholar
  107. 107.
    Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094PubMedCrossRefGoogle Scholar
  108. 108.
    Øemig JS, Aranko AS, Djupsjöbacka J, Heinämäki K, Iwai H (2009) Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett 583:1451–1456CrossRefGoogle Scholar
  109. 109.
    Aranko AS, Züger S, Buchinger E, Iwai H (2009) In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS ONE 4:e5185PubMedCrossRefGoogle Scholar
  110. 110.
    Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125:7180–7181PubMedCrossRefGoogle Scholar
  111. 111.
    Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA (2012) In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 134:6344–6353PubMedCrossRefGoogle Scholar
  112. 112.
    Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444PubMedCrossRefGoogle Scholar
  113. 113.
    Kanno A, Ozawa T, Umezawa Y (2009) Bioluminescent imaging of MAPK function with intein-mediated reporter gene assay. Methods Mol Biol 574:185–192PubMedCrossRefGoogle Scholar
  114. 114.
    Kanno A, Umezawa Y, Ozawa T (2009) Detection of apoptosis using cyclic luciferase in living mammals. Methods Mol Biol 574:105–114PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang Y, Yang W, Chen L, Shi Y, Li G, Zhou N (2011) Development of a novel DnaE intein-based assay for quantitative analysis of G-protein-coupled receptor internalization. Anal Biochem 417:65–72PubMedCrossRefGoogle Scholar
  116. 116.
    Wong SS, Kotera I, Mills E, Suzuki H, Truong K (2012) Split-intein-mediated re-assembly of genetically encoded Ca(2+) indicators. Cell Calcium 51:57–64PubMedCrossRefGoogle Scholar
  117. 117.
    Gils M, Marillonnet S, Werner S, Grutzner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y (2008) A novel hybrid seed system for plants. Plant Biotechnol J 6:226–235PubMedCrossRefGoogle Scholar
  118. 118.
    Kempe K, Rubtsova M, Gils M (2009) Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. Plant Biotechnol J 7:283–297PubMedCrossRefGoogle Scholar
  119. 119.
    Chin HG, Kim GD, Marin I, Mersha F, Evans TC Jr, Chen L, Xu MQ, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA 100:4510–4515PubMedCrossRefGoogle Scholar
  120. 120.
    Yuen CM, Rodda SJ, Vokes SA, McMahon AP, Liu DR (2006) Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc 128:8939–8946PubMedCrossRefGoogle Scholar
  121. 121.
    Mootz HD, Muir TW (2002) Protein splicing triggered by a small molecule. J Am Chem Soc 124:9044–9045PubMedCrossRefGoogle Scholar
  122. 122.
    Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW (2003) Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 125:10561–10569PubMedCrossRefGoogle Scholar
  123. 123.
    Mootz HD, Blum ES, Muir TW (2004) Activation of an autoregulated protein kinase by conditional protein splicing. Angew Chem Int Ed Engl 43:5189–5192PubMedCrossRefGoogle Scholar
  124. 124.
    Schwartz EC, Saez L, Young MW, Muir TW (2007) Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol 3:50–54PubMedCrossRefGoogle Scholar
  125. 125.
    Tyszkiewicz AB, Muir TW (2008) Activation of protein splicing with light in yeast. Nat Methods 5:303–305PubMedGoogle Scholar
  126. 126.
    Sonntag T, Mootz HD (2011) An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing. Mol BioSyst 7:2031–2039PubMedCrossRefGoogle Scholar
  127. 127.
    Berrade L, Kwon Y, Camarero JA (2010) Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. Chem Bio Chem 11:1368–1372PubMedCrossRefGoogle Scholar
  128. 128.
    Vila-Perello M, Hori Y, Ribo M, Muir TW (2008) Activation of protein splicing by protease- or light-triggered O to N acyl migration. Angew Chem Int Ed Engl 47:7764–7767PubMedCrossRefGoogle Scholar
  129. 129.
    Binschik J, Zettler J, Mootz HD (2011) Photocontrol of protein activity mediated by the cleavage reaction of a split intein. Angew Chem Int Ed Engl 50:3249–3252PubMedCrossRefGoogle Scholar
  130. 130.
    Otomo T, Ito N, Kyogoku Y, Yamazaki T (1999) NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38:16040–16044PubMedCrossRefGoogle Scholar
  131. 131.
    Brenzel S, Kurpiers T, Mootz HD (2006) Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry 45:1571–1578PubMedCrossRefGoogle Scholar
  132. 132.
    Busche AE, Aranko AS, Talebzadeh-Farooji M, Bernhard F, Dötsch V, Iwai H (2009) Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew Chem Int Ed Engl 48:6128–6131PubMedCrossRefGoogle Scholar
  133. 133.
    Shah NH, Vila-Perello M, Muir TW (2011) Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl 50:6511–6515PubMedCrossRefGoogle Scholar
  134. 134.
    Callahan BP, Topilina NI, Stanger MJ, Van Roey P, Belfort M (2011) Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nat Struct Mol Biol 18:630–633PubMedCrossRefGoogle Scholar
  135. 135.
    Perler FB (2005) Protein splicing mechanisms and applications. IUBMB Life 57:469–476PubMedCrossRefGoogle Scholar
  136. 136.
    Mills KV, Dorval DM, Lewandowski KT (2005) Kinetic analysis of the individual steps of protein splicing for the Pyrococcus abyssi PolII intein. J Biol Chem 280:2714–2720PubMedCrossRefGoogle Scholar
  137. 137.
    Saleh L, Perler FB (2006) Protein splicing in cis and in trans. Chem Rec 6:183–193PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institute of BiochemistryUniversity of MünsterMünsterGermany

Personalised recommendations