Skip to main content

Advertisement

Log in

Hormonal control of Sertoli cell metabolism regulates spermatogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

[1-14C]glycine:

Glycine enriched with 14C in carbon 1

ABP:

Androgen-binding protein

AICAR:

5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside

AMH:

Anti-Müllerian hormone

cAMP:

Cyclic adenosine monophosphate

AMPK:

5′ Adenosine monophosphate-activated protein kinase

AR:

Androgen receptor

ARKO:

Androgen receptor knockout

ATP:

Adenosine triphosphate

bFGF:

Basic fibroblast growth factor

BTB:

Blood–testis barrier

DHT:

5α-Dihydrotestosterone

E2 :

17β-estradiol

ER:

Estrogen receptor

FSH:

Follicle-stimulating hormone

gGTP:

Guanosine triphosphate

GLUTs:

Glucose transporters

GnRH:

Gonadotropin-releasing hormone

IGF-I:

Insulin-like growth factor-I

IL-1:

Interleukin-1

LDH:

Lactate dehydrogenase

LH:

Luteinizing hormone

MCTs:

Monocarboxylate transporters

NADPH:

Nicotinamide adenine dinucleotide phosphate-oxidase

PI3K:

Phosphatidylinositol 3-kinase

PKB:

Protein kinase b

PTM:

Peritubular myoid cells

SCs:

Sertoli cells

T:

Testosterone

T3:

Triiodothyronine (T3)

TH:

Thyroid hormones

TNF:

Tumor necrosis factor

References

  1. Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125(6):769–784

    Article  PubMed  CAS  Google Scholar 

  2. Walker WH, Cheng J (2005) FSH and testosterone signaling in Sertoli cells. Reproduction 130(1):15–28

    Article  PubMed  CAS  Google Scholar 

  3. Rato L, Socorro S, Cavaco JE, Oliveira PF (2010) Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. J Membr Biol 236(2):215–224

    Article  PubMed  CAS  Google Scholar 

  4. Fritz IB, Rommerts FG, Louis BG, Dorrington JH (1976) Regulation by FSH and dibutyryl cyclic AMP of the formation of androgen-binding protein in Sertoli cell-enriched cultures. J Reprod Fertil 46(1):17–24

    Article  PubMed  CAS  Google Scholar 

  5. Skinner MK, Griswold MD (1980) Sertoli cells synthesize and secrete transferrin-like protein. J Biol Chem 255(20):9523–9525

    PubMed  CAS  Google Scholar 

  6. Marzowski J, Sylvester SR, Gilmont RR, Griswold MD (1985) Isolation and characterization of Sertoli cell plasma membranes and associated plasminogen activator activity. Biol Reprod 32(5):1237–1245

    Article  PubMed  CAS  Google Scholar 

  7. O’Brien DA, Gabel CA, Eddy EM (1993) Mouse Sertoli cells secrete mannose 6-phosphate containing glycoproteins that are endocytosed by spermatogenic cells. Biol Reprod 49(5):1055–1065

    Article  PubMed  Google Scholar 

  8. Elkington JS, Fritz IB (1980) Regulation of sulfoprotein synthesis by rat Sertoli cells in culture. Endocrinology 107(4):970–976

    Article  PubMed  CAS  Google Scholar 

  9. Robinson R, Fritz IB (1979) Myoinositol biosynthesis by Sertoli cells, and levels of myoinositol biosynthetic enzymes in testis and epididymis. Can J Biochem 57(6):962–967

    Article  PubMed  CAS  Google Scholar 

  10. Setchell BP, Scott TW, Voglmayr JK, Waites GM (1969) Characteristics of testicular spermatozoa and the fluid which transports them into the epididymis. Biol Reprod 1(Suppl 1):40–66

    Article  PubMed  Google Scholar 

  11. Oliveira PF, Sousa M, Barros A, Moura T, Rebelo da Costa A (2009) Intracellular pH regulation in human Sertoli cells: role of membrane transporters. Reproduction 137(2):353–359

    Article  PubMed  CAS  Google Scholar 

  12. Oliveira PF, Sousa M, Barros A, Moura T, Rebelo da Costa A (2009) Membrane transporters and cytoplasmatic pH regulation on bovine Sertoli cells. J Membr Biol 227(1):49–55

    Article  PubMed  CAS  Google Scholar 

  13. Leblond CP, Clermont Y (1952) Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat 90(2):167–215

    Article  PubMed  CAS  Google Scholar 

  14. Hess RA, Renato de Franca L (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    Article  PubMed  Google Scholar 

  15. Mruk DD, Cheng CY (2004) Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25(5):747–806

    Article  PubMed  CAS  Google Scholar 

  16. Griswold M (1998) The central role of Sertoli cells in spermatogenesis. Academic Press, London, pp 411–416

    Google Scholar 

  17. Griswold M, McLean D (2006) The Sertoli cell. In: Neill J (ed) Knobil and Neill’s physiology of reproduction, vol 1. Elsevier, San Diego, pp 949–975

    Chapter  Google Scholar 

  18. Riera MF, Meroni SB, Schteingart HF, Pellizzari EH, Cigorraga SB (2002) Regulation of lactate production and glucose transport as well as of glucose transporter 1 and lactate dehydrogenase A mRNA levels by basic fibroblast growth factor in rat Sertoli cells. J Endocrinol 173(2):335–343

    Article  PubMed  CAS  Google Scholar 

  19. Riera MF, Meroni SB, Gomez GE, Schteingart HF, Pellizzari EH, Cigorraga SB (2001) Regulation of lactate production by FSH, iL1beta, and TNFalpha in rat Sertoli cells. Gen Comp Endocrinol 122(1):88–97

    Article  PubMed  CAS  Google Scholar 

  20. Erkkila K, Aito H, Aalto K, Pentikainen V, Dunkel L (2002) Lactate inhibits germ cell apoptosis in the human testis. Mol Hum Reprod 8(2):109

    Article  PubMed  CAS  Google Scholar 

  21. Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N (2008) Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol 109(3–5):323–330

    Article  PubMed  CAS  Google Scholar 

  22. Cheng CY, Mruk DD (2010) A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol 6(7):380–395

    Article  PubMed  CAS  Google Scholar 

  23. Sokol RZ (2009) Endocrinology of male infertility: evaluation and treatment. Semin Reprod Med 27(2):149–158

    Article  PubMed  Google Scholar 

  24. Flier JS, Underhill LH, Marshall JC, Kelch RP (1986) Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med 315(23):1459–1468

    Article  Google Scholar 

  25. Tilbrook A, Clarke I (2001) Negative feedback regulation of the secretion and actions of gonadotropin-releasing hormone in males. Biol Reprod 64(3):735

    Article  PubMed  CAS  Google Scholar 

  26. Weber JE, Russell LD, Wong V, Peterson RN (1983) Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli–Sertoli and Sertoli–germ-cell relationships. Am J Anat 167(2):163–179

    Article  PubMed  CAS  Google Scholar 

  27. Orth JM (1982) Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec 203(4):485–492

    Article  PubMed  CAS  Google Scholar 

  28. Nistal M, Abaurrea MA, Paniagua R (1982) Morphological and histometric study on the human Sertoli cell from birth to the onset of puberty. J Anat 134(Pt 2):351–363

    PubMed  CAS  Google Scholar 

  29. Cortes D, Muller J, Skakkebaek NE (1987) Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl 10(4):589–596

    Article  PubMed  CAS  Google Scholar 

  30. Sinha Hikim AP, Swerdloff RS (1999) Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod 4(1):38–47

    Article  PubMed  CAS  Google Scholar 

  31. Tripathi R, Mishra DP, Shaha C (2009) Male germ cell development: turning on the apoptotic pathways. J Reprod Immunol 83(1–2):31–35

    Article  PubMed  CAS  Google Scholar 

  32. Mancine RE, Penhos JC, Izquierdo IA, Heinrich JJ (1960) Effects of acute hypoglycemia on rat testis. Proc Soc Exp Biol Med 104:699–702

    PubMed  CAS  Google Scholar 

  33. Zysk JR, Bushway AA, Whistler RL, Carlton WW (1975) Temporary sterility produced in male mice by 5-thio-d-glucose. J Reprod Fertil 45(1):69–72

    Article  PubMed  CAS  Google Scholar 

  34. Robinson R, Fritz IB (1981) Metabolism of glucose by Sertoli cells in culture. Biol Reprod 24(5):1032–1041

    Article  PubMed  CAS  Google Scholar 

  35. Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9:330–338

    Article  PubMed  CAS  Google Scholar 

  36. Jutte NH, Grootegoed JA, Rommerts FF, van der Molen HJ (1981) Exogenous lactate is essential for metabolic activities in isolated rat spermatocytes and spermatids. J Reprod Fertil 62(2):399–405

    Article  PubMed  CAS  Google Scholar 

  37. Oliveira PF, Alves MG, Rato L, Silva J, Sa R, Barros A, Sousa M, Carvalho RA, Cavaco JE, Socorro S (2011) Influence of 5α-dihydrotestosterone and 17β-estradiol on human Sertoli cells metabolism. Int J Androl 34(6pt2):e612–e620

    Article  PubMed  CAS  Google Scholar 

  38. Rato L, Alves MG, Socorro S, Carvalho RA, Cavaco JE, Oliveira PF (2012) Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro. Biosci Rep 32(1):61–69

    Article  PubMed  CAS  Google Scholar 

  39. Mita M, Hall PF (1982) Metabolism of round spermatids from rats: lactate as the preferred substrate. Biol Reprod 26(3):445–455

    Article  PubMed  CAS  Google Scholar 

  40. Nakamura M, Okinaga S, Arai K (1984) Metabolism of round spermatids: evidence that lactate is preferred substrate. Am J Physiol 247(2 Pt 1):E234–E242

    PubMed  CAS  Google Scholar 

  41. Jutte NH, Jansen R, Grootegoed JA, Rommerts FF, Clausen OP, van der Molen HJ (1982) Regulation of survival of rat pachytene spermatocytes by lactate supply from Sertoli cells. J Reprod Fertil 65(2):431–438

    Article  PubMed  CAS  Google Scholar 

  42. Jutte NH, Jansen R, Grootegoed JA, Rommerts FF, van der Molen HJ (1983) FSH stimulation of the production of pyruvate and lactate by rat Sertoli cells may be involved in hormonal regulation of spermatogenesis. J Reprod Fertil 68(1):219–226

    Article  PubMed  CAS  Google Scholar 

  43. Nakamura M, Hino A, Yasumasu I, Kato J (1981) Stimulation of protein synthesis in round spermatids from rat testes by lactate. J Biochem 89(4):1309–1315

    PubMed  CAS  Google Scholar 

  44. Grootegoed JA, Oonk RB, Jansen R, van der Molen HJ (1986) Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells. J Reprod Fertil 77(1):109–118

    Article  PubMed  CAS  Google Scholar 

  45. Courtens JL, Ploen L (1999) Improvement of spermatogenesis in adult cryptorchid rat testis by intratesticular infusion of lactate. Biol Reprod 61(1):154–161

    Article  PubMed  CAS  Google Scholar 

  46. Miki K (2007) Energy metabolism and sperm function. Soc Reprod Fertil Suppl 65:309–325

    PubMed  CAS  Google Scholar 

  47. Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD, Eddy EM, O’Brien DA (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA 101(47):16501–16506

    Article  PubMed  CAS  Google Scholar 

  48. Williams AC, Ford WC (2001) The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl 22(4):680–695

    PubMed  CAS  Google Scholar 

  49. Travis AJ, Jorgez CJ, Merdiushev T, Jones BH, Dess DM, Diaz-Cueto L, Storey BT, Kopf GS, Moss SB (2001) Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. J Biol Chem 276(10):7630–7636

    Article  PubMed  CAS  Google Scholar 

  50. Urner F, Leppens-Luisier G, Sakkas D (2001) Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biol Reprod 64(5):1350–1357

    Article  PubMed  CAS  Google Scholar 

  51. Mukai C, Okuno M (2004) Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 71(2):540–547

    Article  PubMed  CAS  Google Scholar 

  52. Urner F, Sakkas D (1996) Glucose participates in sperm–oocyte fusion in the mouse. Biol Reprod 55(4):917–922

    Article  PubMed  CAS  Google Scholar 

  53. Bone W, Jones NG, Kamp G, Yeung CH, Cooper TG (2000) Effect of ornidazole on fertility of male rats: inhibition of a glycolysis-related motility pattern and zona binding required for fertilization in vitro. J Reprod Fertil 118(1):127–135

    Article  PubMed  CAS  Google Scholar 

  54. Kreisberg RA (1980) Lactate homeostasis and lactic acidosis. Ann Intern Med 92(2 Part 1):227

    PubMed  CAS  Google Scholar 

  55. Coonrod S, Vitale A, Duan C, Bristol-Gould S, Herr J, Goldberg E (2006) Testis-specific lactate dehydrogenase (LDH-C4; Ldh3) in murine oocytes and preimplantation embryos. J Androl 27(4):502–509

    Article  PubMed  CAS  Google Scholar 

  56. Goldberg E (1985) Reproductive implications of LDH-C4 and other testis-specific isozymes. Exp Clin Immunogenet 2(2):120–124

    PubMed  CAS  Google Scholar 

  57. Li SS, O’Brien DA, Hou EW, Versola J, Rockett DL, Eddy EM (1989) Differential activity and synthesis of lactate dehydrogenase isozymes A (muscle), B (heart), and C (testis) in mouse spermatogenic cells. Biol Reprod 40(1):173–180

    Article  PubMed  CAS  Google Scholar 

  58. Odet F, Duan C, Willis WD, Goulding EH, Kung A, Eddy EM, Goldberg E (2008) Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biol Reprod 79(1):26–34

    Article  PubMed  CAS  Google Scholar 

  59. Odet F, Gabel SA, Williams J, London RE, Goldberg E, Eddy EM (2011) Lactate dehydrogenase C and energy metabolism in mouse sperm. Biol Reprod 85(3):556–564

    Article  PubMed  CAS  Google Scholar 

  60. Klip A, Tsakiridis T, Marette A, Ortiz PA (1994) Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 8(1):43–53

    PubMed  CAS  Google Scholar 

  61. Carosa E, Radico C, Giansante N, Rossi S, D’Adamo F, Di Stasi SM, Lenzi A, Jannini EA (2005) Ontogenetic profile and thyroid hormone regulation of type-1 and type-8 glucose transporters in rat Sertoli cells. Int J Androl 28(2):99–106

    Article  PubMed  CAS  Google Scholar 

  62. Galardo MN, Riera MF, Pellizzari EH, Chemes HE, Venara MC, Cigorraga SB, Meroni SB (2008) Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different time-points in pubertal development. Cell Tissue Res 334(2):295–304

    Article  PubMed  CAS  Google Scholar 

  63. Ulisse S, Jannini EA, Pepe M, De Matteis S, D’Armiento M (1992) Thyroid hormone stimulates glucose transport and GLUT1 mRNA in rat Sertoli cells. Mol Cell Endocrinol 87(1–3):131–137

    Article  PubMed  CAS  Google Scholar 

  64. Piroli GG, Grillo CA, Hoskin EK, Znamensky V, Katz EB, Milner TA, McEwen BS, Charron MJ, Reagan LP (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J Comp Neurol 452(2):103–114

    Article  PubMed  CAS  Google Scholar 

  65. Reagan LP, Gorovits N, Hoskin EK, Alves SE, Katz EB, Grillo CA, Piroli GG, McEwen BS, Charron MJ (2001) Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats. Proc Natl Acad Sci USA 98(5):2820–2825

    Article  PubMed  CAS  Google Scholar 

  66. Riera MF, Galardo MN, Pellizzari EH, Meroni SB, Cigorraga SB (2009) Molecular mechanisms involved in Sertoli cell adaptation to glucose deprivation. Am J Physiol Endocrinol Metab 297(4):E907–E914

    Article  PubMed  CAS  Google Scholar 

  67. Leiderman B, Mancini RE (1969) Glycogen content in the rat testis from postnatal to adult ages. Endocrinology 85(3):607–609

    Article  PubMed  CAS  Google Scholar 

  68. Slaughter GR, Means AR (1983) Follicle-stimulating hormone activation of glycogen phosphorylase in the Sertoli cell-enriched rat testis. Endocrinology 113(4):1476–1485

    Article  PubMed  CAS  Google Scholar 

  69. Aaronson DS, Iman R, Walsh TJ, Kurhanewicz J, Turek PJ (2010) A novel application of 1H magnetic resonance spectroscopy: non-invasive identification of spermatogenesis in men with non-obstructive azoospermia. Hum Reprod 25(4):847–852

    Article  PubMed  Google Scholar 

  70. Hurtado de Catalfo GE, De Gomez Dumm INT (1998) Lipid dismetabolism in Leydig and Sertoli cells isolated from streptozotocin-diabetic rats. Int J Biochem Cell Biol 30(9):1001–1010

    Article  PubMed  CAS  Google Scholar 

  71. Xiong W, Wang H, Wu H, Chen Y, Han D (2009) Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction 137(3):469–479

    Article  PubMed  CAS  Google Scholar 

  72. Chung S, Wang SP, Pan L, Mitchell G, Trasler J, Hermo L (2001) Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 142(10):4272–4281

    Article  PubMed  CAS  Google Scholar 

  73. Jutte NH, Eikvar L, Levy FO, Hansson V (1985) Metabolism of palmitate in cultured rat Sertoli cells. J Reprod Fertil 73(2):497–503

    Article  PubMed  CAS  Google Scholar 

  74. Coniglio JG, Sharp J (1989) Biosynthesis of [14C]arachidonic acid from [14C]linoleate in primary cultures of rat Sertoli cells. Lipids 24(1):84–85

    Article  PubMed  CAS  Google Scholar 

  75. Huynh S, Oulhaj H, Bocquet J, Nouvelot A (1991) Metabolic utilization of linoleate and alpha-linolenate in cultured Sertoli cells. Comp Biochem Physiol B 99(2):265–270

    PubMed  CAS  Google Scholar 

  76. Oulhaj H, Huynh S, Nouvelot A (1992) The biosynthesis of polyunsaturated fatty acids by rat Sertoli cells. Comp Biochem Physiol B 102(4):897–904

    PubMed  CAS  Google Scholar 

  77. Yount EA, Harris RA (1982) Ketone body and acetate formation from oleate by isolated rat testicular cells. Arch Biochem Biophys 217(2):503–511

    Article  PubMed  CAS  Google Scholar 

  78. Alves MG, Socorro S, Silva J, Barros A, Sousa M, Cavaco JE, Oliveira PF (2012) In vitro cultured human Sertoli cells secrete high amounts of acetate that is stimulated by 17β-estradiol and suppressed by insulin deprivation. Biochim Biophys Acta. 1823(8):1389–1394

    Article  PubMed  CAS  Google Scholar 

  79. Kaiser GR, Monteiro SC, Gelain DP, Souza LF, Perry ML, Bernard EA (2005) Metabolism of amino acids by cultured rat Sertoli cells. Metabolism 54(4):515–521

    Article  PubMed  CAS  Google Scholar 

  80. Roberts KP, Zirkin BR (1991) Androgen regulation of spermatogenesis in the rat. Ann N Y Acad Sci 637:90–106

    Article  PubMed  CAS  Google Scholar 

  81. Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE (2005) Androgens regulate the permeability of the blood–testis barrier. Proc Natl Acad Sci USA 102(46):16696–16700

    Article  PubMed  CAS  Google Scholar 

  82. Wang RS, Yeh S, Chen LM, Lin HY, Zhang C, Ni J, Wu CC, di Sant’Agnese PA, deMesy-Bentley KL, Tzeng CR, Chang C (2006) Androgen receptor in Sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology 147(12):5624–5633

    Article  PubMed  CAS  Google Scholar 

  83. Robaire B, Viger RS (1995) Regulation of epididymal epithelial cell functions. Biol Reprod 52(2):226–236

    Article  PubMed  CAS  Google Scholar 

  84. Lindzey J, Kumar MV, Grossman M, Young C, Tindall DJ (1994) Molecular mechanisms of androgen action. Vitam Horm 49:383–432

    Article  PubMed  CAS  Google Scholar 

  85. Deslypere JP, Young M, Wilson JD, McPhaul MJ (1992) Testosterone and 5 alpha-dihydrotestosterone interact differently with the androgen receptor to enhance transcription of the MMTV-CAT reporter gene. Mol Cell Endocrinol 88(1–3):15–22

    Article  PubMed  CAS  Google Scholar 

  86. Singh J, O’Neill C, Handelsman DJ (1995) Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 136(12):5311–5321

    Article  PubMed  CAS  Google Scholar 

  87. O’Shaughnessy PJ, Verhoeven G, De Gendt K, Monteiro A, Abel MH (2010) Direct action through the Sertoli cells is essential for androgen stimulation of spermatogenesis. Endocrinology 151(5):2343–2348

    Article  PubMed  CAS  Google Scholar 

  88. Amory JK, Bremner W (2001) Endocrine regulation of testicular function in men: implications for contraceptive development. Mol Cell Endocrinol 182(2):175–179

    Article  PubMed  CAS  Google Scholar 

  89. Zhou Q, Nie R, Prins GS, Saunders PT, Katzenellenbogen BS, Hess RA (2002) Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl 23(6):870–881

    PubMed  CAS  Google Scholar 

  90. Lyon MF, Glenister PH, Lamoreux ML (1975) Normal spermatozoa from androgen-resistant germ cells of chimaeric mice and the role of androgen in spermatogenesis. Nature 258(5536):620–622

    Article  PubMed  CAS  Google Scholar 

  91. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lecureuil C, Heyns W, Carmeliet P, Guillou F, Sharpe RM, Verhoeven G (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA 101(5):1327–1332

    Article  PubMed  CAS  Google Scholar 

  92. Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S (2004) Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci USA 101(18):6876–6881

    Article  PubMed  CAS  Google Scholar 

  93. Holdcraft RW, Braun RE (2004) Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131(2):459–467

    Article  PubMed  CAS  Google Scholar 

  94. Tsai MY, Yeh SD, Wang RS, Yeh S, Zhang C, Lin HY, Tzeng CR, Chang C (2006) Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci USA 103(50):18975–18980

    Article  PubMed  CAS  Google Scholar 

  95. Zhang C, Yeh S, Chen YT, Wu CC, Chuang KH, Lin HY, Wang RS, Chang YJ, Mendis-Handagama C, Hu L, Lardy H, Chang C (2006) Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc Natl Acad Sci USA 103(47):17718–17723

    Article  PubMed  CAS  Google Scholar 

  96. Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB (2009) Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 23(12):4218–4230

    Article  PubMed  CAS  Google Scholar 

  97. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM (2000) The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141(5):1795–1803

    Article  PubMed  CAS  Google Scholar 

  98. Krishnamurthy H, Danilovich N, Morales CR, Sairam MR (2000) Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knockout (FORKO) mouse. Biol Reprod 62(5):1146–1159

    Article  PubMed  CAS  Google Scholar 

  99. O’Shaughnessy PJ, Monteiro A, Verhoeven G, De Gendt K, Abel MH (2010) Effect of FSH on testicular morphology and spermatogenesis in gonadotropin-deficient hypogonadal mice lacking androgen receptors. Reproduction 139(1):177–184

    Article  PubMed  CAS  Google Scholar 

  100. Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, Guillou F, O’Shaughnessy PJ (2008) Spermatogenesis and Sertoli cell activity in mice lacking Sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 149(7):3279–3285

    Article  PubMed  CAS  Google Scholar 

  101. Gorczynska E, Handelsman DJ (1995) Androgens rapidly increase the cytosolic calcium concentration in Sertoli cells. Endocrinology 136(5):2052–2059

    Article  PubMed  CAS  Google Scholar 

  102. Hurtado de Catalfo GE, de Gomez Dumm IN (2005) Influence of testosterone on polyunsaturated fatty acid biosynthesis in Sertoli cells in culture. Cell Biochem Funct 23(3):175–180

    Article  PubMed  CAS  Google Scholar 

  103. Guma FC, Wagner M, Martini LH, Bernard EA (1997) Effect of FSH and insulin on lipogenesis in cultures of Sertoli cells from immature rats. Braz J Med Biol Res 30(5):591–597

    Article  PubMed  CAS  Google Scholar 

  104. Hess RA (2003) Estrogen in the adult male reproductive tract: a review. Reprod Biol Endocrinol 1:52

    Article  PubMed  Google Scholar 

  105. Goddard I, Florin A, Mauduit C, Tabone E, Contard P, Bars R, Chuzel F, Benahmed M (2003) Alteration of lactate production and transport in the adult rat testis exposed in utero to flutamide. Mol Cell Endocrinol 206(1–2):137–146

    Article  PubMed  CAS  Google Scholar 

  106. Fix C, Jordan C, Cano P, Walker WH (2004) Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells. Proc Natl Acad Sci USA 101(30):10919–10924

    Article  PubMed  CAS  Google Scholar 

  107. Baum MJ, Kingsbury PA, Erskine MS (1987) Failure of the synthetic androgen 17 beta-hydroxy-17 alpha-methyl-estra-4,9,11-triene-3-one (methyltrienolone, R1881) to duplicate the activational effect of testosterone on mating in castrated male rats. J Endocrinol 113(1):15–20

    Article  PubMed  CAS  Google Scholar 

  108. Takeda AN, Pinon GM, Bens M, Fagart J, Rafestin-Oblin ME, Vandewalle A (2007) The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Mol Pharmacol 71(2):473–482

    Article  PubMed  CAS  Google Scholar 

  109. Gupta G, Srivastava A, Setty BS (1991) Androgen–estrogen synergy in the regulation of energy metabolism in epididymis and vas deferens of rhesus monkey. Endocr Res 17(3–4):383–394

    PubMed  CAS  Google Scholar 

  110. Barbulescu K, Geserick C, Schuttke I, Schleuning WD, Haendler B (2001) New androgen response elements in the murine pem promoter mediate selective transactivation. Mol Endocrinol 15(10):1803–1816

    Article  PubMed  CAS  Google Scholar 

  111. Sutton KA, Maiti S, Tribley WA, Lindsey JS, Meistrich ML, Bucana CD, Sanborn BM, Joseph DR, Griswold MD, Cornwall GA, Wilkinson MF (1998) Androgen regulation of the Pem homeodomain gene in mice and rat Sertoli and epididymal cells. J Androl 19(1):21–30

    PubMed  CAS  Google Scholar 

  112. Bremner WJ, Millar MR, Sharpe RM, Saunders PT (1994) Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology 135(3):1227–1234

    Article  PubMed  CAS  Google Scholar 

  113. Denolet E, Gendt KD, Swinnen JV, Verrijdt G, Deboel L, Roskams T, Verhoeven G (2006) Transfection with steroid-responsive reporter constructs shows glucocorticoid rather than androgen responsiveness in cultured Sertoli cells. J Steroid Biochem Mol Biol 98(2–3):164–173

    Article  PubMed  CAS  Google Scholar 

  114. Free MJ, Jaffe RA (1979) Collection of rete testis fluid from rats without previous efferent duct ligation. Biol Reprod 20(2):269–278

    Article  PubMed  CAS  Google Scholar 

  115. Kumari GL, Allag IS, Das RP, Datta JK (1980) Regional differences in steroidogenesis and hormone levels in the epididymis and vas deferens of adult rats. Int J Androl 3(3):267–281

    Article  PubMed  CAS  Google Scholar 

  116. Hess RA (2000) Oestrogen in fluid transport in efferent ducts of the male reproductive tract. Rev Reprod 5(2):84–92

    Article  PubMed  CAS  Google Scholar 

  117. Carreau S, Delalande C, Galeraud-Denis I (2009) Mammalian sperm quality and aromatase expression. Microsc Res Tech 72(8):552–557

    Article  PubMed  CAS  Google Scholar 

  118. O’Donnell L, Robertson KM, Jones ME, Simpson ER (2001) Estrogen and spermatogenesis. Endocr Rev 22(3):289–318

    Article  PubMed  Google Scholar 

  119. Li H, Papadopoulos V, Vidic B, Dym M, Culty M (1997) Regulation of rat testis gonocyte proliferation by platelet-derived growth factor and estradiol: identification of signaling mechanisms involved. Endocrinology 138(3):1289–1298

    Article  PubMed  CAS  Google Scholar 

  120. Miura T, Higuchi M, Ozaki Y, Ohta T, Miura C (2006) Progestin is an essential factor for the initiation of the meiosis in spermatogenetic cells of the eel. Proc Natl Acad Sci USA 103(19):7333–7338

    Article  PubMed  CAS  Google Scholar 

  121. Aschim EL, Giwercman A, Stahl O, Eberhard J, Cwikiel M, Nordenskjold A, Haugen TB, Grotmol T, Giwercman YL (2005) The RsaI polymorphism in the estrogen receptor-beta gene is associated with male infertility. J Clin Endocrinol Metab 90(9):5343–5348

    Article  PubMed  CAS  Google Scholar 

  122. Aschim EL, Saether T, Wiger R, Grotmol T, Haugen TB (2004) Differential distribution of splice variants of estrogen receptor beta in human testicular cells suggests specific functions in spermatogenesis. J Steroid Biochem Mol Biol 92(1–2):97–106

    Article  PubMed  CAS  Google Scholar 

  123. Cavaco JE, Laurentino SS, Barros A, Sousa M, Socorro S (2009) Estrogen receptors alpha and beta in human testis: both isoforms are expressed. Syst Biol Reprod Med 55(4):137–144

    PubMed  CAS  Google Scholar 

  124. Pelletier G, El-Alfy M (2000) Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab 85(12):4835–4840

    Article  PubMed  CAS  Google Scholar 

  125. Taylor AH, Al-Azzawi F (2000) Immunolocalisation of oestrogen receptor beta in human tissues. J Mol Endocrinol 24(1):145–155

    Article  PubMed  CAS  Google Scholar 

  126. Makinen S, Makela S, Weihua Z, Warner M, Rosenlund B, Salmi S, Hovatta O, Gustafsson JA (2001) Localization of oestrogen receptors alpha and beta in human testis. Mol Hum Reprod 7(6):497–503

    Article  PubMed  CAS  Google Scholar 

  127. Lambard S, Galeraud-Denis I, Saunders PT, Carreau S (2004) Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. J Mol Endocrinol 32(1):279–289

    Article  PubMed  CAS  Google Scholar 

  128. Staub C, Rauch M, Ferriere F, Trepos M, Dorval-Coiffec I, Saunders PT, Cobellis G, Flouriot G, Saligaut C, Jegou B (2005) Expression of estrogen receptor ESR1 and its 46-kDa variant in the gubernaculum testis. Biol Reprod 73(4):703–712

    Article  PubMed  CAS  Google Scholar 

  129. Picciarelli-Lima P, Oliveira AG, Reis AM, Kalapothakis E, Mahecha GA, Hess RA, Oliveira CA (2006) Effects of 3-beta-diol, an androgen metabolite with intrinsic estrogen-like effects, in modulating the aquaporin-9 expression in the rat efferent ductules. Reprod Biol Endocrinol 4:51

    Article  PubMed  CAS  Google Scholar 

  130. Cederroth CR, Schaad O, Descombes P, Chambon P, Vassalli JD, Nef S (2007) Estrogen receptor alpha is a major contributor to estrogen-mediated fetal testis dysgenesis and cryptorchidism. Endocrinology 148(11):5507–5519

    Article  PubMed  CAS  Google Scholar 

  131. Allan CM, Couse JF, Simanainen U, Spaliviero J, Jimenez M, Rodriguez K, Korach KS, Handelsman DJ (2010) Estradiol induction of spermatogenesis is mediated via an estrogen receptor-{alpha} mechanism involving neuroendocrine activation of follicle-stimulating hormone secretion. Endocrinology 151(6):2800–2810

    Article  PubMed  CAS  Google Scholar 

  132. Schleicher G, Khan S, Nieschlag E (1989) Differentiation between androgen and estrogen receptor mediated effects of testosterone on FSH using androgen receptor deficient (Tfm) and normal mice. J Steroid Biochem 33(1):49–51

    Article  PubMed  CAS  Google Scholar 

  133. Cheng CY, Boettcher B (1979) The effect of steroids on the in vitro migration of washed human spermatozoa in modified Tyrode’s solution or in fasting human blood serum. Fertil Steril 32(5):566–570

    PubMed  CAS  Google Scholar 

  134. Revelli A, Massobrio M, Tesarik J (1998) Nongenomic actions of steroid hormones in reproductive tissues. Endocr Rev 19(1):3–17

    Article  PubMed  CAS  Google Scholar 

  135. Hicks JJ, Pedron N, Rosado A (1972) Modifications of human spermatozoa glycolysis by cyclic adenosine monophosphate (cAMP), estrogens, and follicular fluid. Fertil Steril 23(12):886–893

    PubMed  CAS  Google Scholar 

  136. Mishra DP, Shaha C (2005) Estrogen-induced spermatogenic cell apoptosis occurs via the mitochondrial pathway: role of superoxide and nitric oxide. J Biol Chem 280(7):6181–6196

    Article  PubMed  CAS  Google Scholar 

  137. McLachlan RI, O’Donnell L, Meachem SJ, Stanton PG, de Kretser DM, Pratis K, Robertson DM (2002) Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res 57:149–179

    Article  PubMed  CAS  Google Scholar 

  138. Meroni SB, Riera MF, Pellizzari EH, Cigorraga SB (2002) Regulation of rat Sertoli cell function by FSH: possible role of phosphatidylinositol 3-kinase/protein kinase B pathway. J Endocrinol 174(2):195–204

    Article  PubMed  CAS  Google Scholar 

  139. Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274(13):8347–8350

    Article  PubMed  CAS  Google Scholar 

  140. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS (2000) Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 14(8):1283–1300

    Article  PubMed  CAS  Google Scholar 

  141. Wassermann GF, Bloch LM, Grillo ML, Silva FR, Loss ES, McConnell LL (1992) Biochemical factors involved in the FSH action on amino acid transport in immature rat testes. Horm Metab Res 24(6):276–279

    Article  PubMed  CAS  Google Scholar 

  142. Oonk RB, Grootegoed JA, van der Molen HJ (1985) Comparison of the effects of insulin and follitropin on glucose metabolism by Sertoli cells from immature rats. Mol Cell Endocrinol 42(1):39–48

    Article  PubMed  CAS  Google Scholar 

  143. Oonk RB, Grootegoed JA (1987) Identification of insulin receptors on rat Sertoli cells. Mol Cell Endocrinol 49(1):51–62

    Article  PubMed  CAS  Google Scholar 

  144. Borland K, Mita M, Oppenheimer CL, Blinderman LA, Massague J, Hall PF, Czech MP (1984) The actions of insulin-like growth factors I and II on cultured Sertoli cells. Endocrinology 114(1):240–246

    Article  PubMed  CAS  Google Scholar 

  145. Oliveira PF, Alves MG, Rato L, Laurentino S, Silva J, Sa R, Barros A, Sousa M, Carvalho RA, Cavaco JE, Socorro S (2012) Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. Biochim Biophys Acta 1820(2):84–89

    Article  PubMed  CAS  Google Scholar 

  146. Medina RA, Meneses AM, Vera JC, Guzman C, Nualart F, Rodriguez F, de los Angeles Garcia M, Kato S, Espinoza N, Monso C, Carvajal A, Pinto M, Owen GI (2004) Differential regulation of glucose transporter expression by estrogen and progesterone in Ishikawa endometrial cancer cells. J Endocrinol 182(3):467–478

    Article  PubMed  CAS  Google Scholar 

  147. Kol S, Ben-Shlomo I, Ruutiainen K, Ando M, Davies-Hill TM, Rohan RM, Simpson IA, Adashi EY (1997) The midcycle increase in ovarian glucose uptake is associated with enhanced expression of glucose transporter 3. Possible role for interleukin-1, a putative intermediary in the ovulatory process. J Clin Invest 99(9):2274–2283

    Article  PubMed  CAS  Google Scholar 

  148. Sakai Y, Yamashina S, Furudate S (2004) Developmental delay and unstable state of the testes in the rdw rat with congenital hypothyroidism. Dev Growth Differ 46(4):327–334

    Article  PubMed  Google Scholar 

  149. Clyde HR, Walsh PC, English RW (1976) Elevated plasma testosterone and gonadotropin levels in infertile males with hyperthyroidism. Fertil Steril 27(6):662–666

    PubMed  CAS  Google Scholar 

  150. Wagner MS, Wajner SM, Maia AL (2008) The role of thyroid hormone in testicular development and function. J Endocrinol 199(3):351–365

    Article  PubMed  CAS  Google Scholar 

  151. Krassas GE, Tziomalos K, Papadopoulou F, Pontikides N, Perros P (2008) Erectile dysfunction in patients with hyper- and hypothyroidism: how common and should we treat? J Clin Endocrinol Metab 93(5):1815–1819

    Article  PubMed  CAS  Google Scholar 

  152. Palmero S, Maggiani S, Fugassa E (1988) Nuclear triiodothyronine receptors in rat Sertoli cells. Mol Cell Endocrinol 58(2–3):253–256

    Article  PubMed  CAS  Google Scholar 

  153. van Haaster LH, de Jong FH, Docter R, de Rooij DG (1993) High neonatal triiodothyronine levels reduce the period of Sertoli cell proliferation and accelerate tubular lumen formation in the rat testis, and increase serum inhibin levels. Endocrinology 133(2):755–760

    Article  PubMed  Google Scholar 

  154. Ando S, Sirianni R, Forastieri P, Casaburi I, Lanzino M, Rago V, Giordano F, Giordano C, Carpino A, Pezzi V (2001) Aromatase expression in prepuberal Sertoli cells: effect of thyroid hormone. Mol Cell Endocrinol 178(1–2):11–21

    Article  PubMed  CAS  Google Scholar 

  155. Holsberger DR, Cooke PS (2005) Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res 322(1):133–140

    Article  PubMed  CAS  Google Scholar 

  156. Panno ML, Sisci D, Salerno M, Lanzino M, Mauro L, Morrone EG, Pezzi V, Palmero S, Fugassa E, Ando S (1996) Effect of triiodothyronine administration on estrogen receptor contents in peripuberal Sertoli cells. Eur J Endocrinol 134(5):633–638

    Article  PubMed  CAS  Google Scholar 

  157. Palmero S, Prati M, Barreca A, Minuto F, Giordano G, Fugassa E (1990) Thyroid hormone stimulates the production of insulin-like growth factor I (IGF-I) by immature rat Sertoli cells. Mol Cell Endocrinol 68(1):61–65

    Article  PubMed  CAS  Google Scholar 

  158. Fugassa E, Palmero S, Gallo G (1987) Triiodothyronine decreases the production of androgen-binding protein by rat Sertoli cells. Biochem Biophys Res Commun 143(1):241–247

    Article  PubMed  CAS  Google Scholar 

  159. Palmero S, Prati M, Bolla F, Fugassa E (1995) Tri-iodothyronine directly affects rat Sertoli cell proliferation and differentiation. J Endocrinol 145(2):355–362

    Article  PubMed  CAS  Google Scholar 

  160. Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22(4):451–476

    Article  PubMed  CAS  Google Scholar 

  161. Visser WE, Friesema EC, Jansen J, Visser TJ (2008) Thyroid hormone transport in and out of cells. Trends Endocrinol Metab 19(2):50–56

    Article  PubMed  CAS  Google Scholar 

  162. Silva FR, Leite LD, Barreto KP, D’Agostini C, Zamoner A (2001) Effect of 3,5,3′-triiodo-l-thyronine on amino acid accumulation and membrane potential in Sertoli cells of the rat testis. Life Sci 69(8):977–986

    Article  PubMed  CAS  Google Scholar 

  163. Schteingart HF, Meroni SB, Canepa DF, Pellizzari EH, Cigorraga SB (1999) Effects of basic fibroblast growth factor and nerve growth factor on lactate production, gamma-glutamyl transpeptidase and aromatase activities in cultured Sertoli cells. Eur J Endocrinol Oslo 141(5):539–545

    Article  CAS  Google Scholar 

  164. Mullaney BP, Skinner MK (1992) Basic fibroblast growth factor (bFGF) gene expression and protein production during pubertal development of the seminiferous tubule: follicle-stimulating hormone-induced Sertoli cell bFGF expression. Endocrinology 131(6):2928–2934

    Article  PubMed  CAS  Google Scholar 

  165. Han IS, Sylvester SR, Kim KH, Schelling ME, Venkateswaran S, Blanckaert VD, McGuinness MP, Griswold MD (1993) Basic fibroblast growth factor is a testicular germ cell product which may regulate Sertoli cell function. Mol Endocrinol 7(7):889–897

    Article  PubMed  CAS  Google Scholar 

  166. Le Magueresse-Battistoni B, Wolff J, Morera AM, Benahmed M (1994) Fibroblast growth factor receptor type 1 expression during rat testicular development and its regulation in cultured Sertoli cells. Endocrinology 135(6):2404–2411

    Article  PubMed  Google Scholar 

  167. Jaillard C, Chatelain PG, Saez JM (1987) In vitro regulation of pig Sertoli cell growth and function: effects of fibroblast growth factor and somatomedin-C. Biol Reprod 37(3):665–674

    Article  PubMed  CAS  Google Scholar 

  168. Riera MF, Meroni SB, Pellizzari EH, Cigorraga SB (2003) Assessment of the roles of mitogen-activated protein kinase and phosphatidyl inositol 3-kinase/protein kinase B pathways in the basic fibroblast growth factor regulation of Sertoli cell function. J Mol Endocrinol 31(2):279–289

    Article  PubMed  CAS  Google Scholar 

  169. Eisenberg SP, Brewer MT, Verderber E, Heimdal P, Brandhuber BJ, Thompson RC (1991) Interleukin 1 receptor antagonist is a member of the interleukin 1 gene family: evolution of a cytokine control mechanism. Proc Natl Acad Sci USA 88(12):5232–5236

    Article  PubMed  CAS  Google Scholar 

  170. Khan SA, Nieschlag E (1991) Interleukin-1 inhibits follitropin-induced aromatase activity in immature rat Sertoli cells in vitro. Mol Cell Endocrinol 75(1):1–7

    Article  PubMed  CAS  Google Scholar 

  171. Karzai AW, Wright WW (1992) Regulation of the synthesis and secretion of transferrin and cyclic protein-2/cathepsin L by mature rat Sertoli cells in culture. Biol Reprod 47(5):823–831

    Article  PubMed  CAS  Google Scholar 

  172. Syed V, Stephan JP, Gerard N, Legrand A, Parvinen M, Bardin CW, Jegou B (1995) Residual bodies activate Sertoli cell interleukin-1 alpha (IL-1 alpha) release, which triggers IL-6 production by an autocrine mechanism, through the lipoxygenase pathway. Endocrinology 136(7):3070–3078

    Article  PubMed  CAS  Google Scholar 

  173. Pollanen P, Soder O, Parvinen M (1989) Interleukin-1 alpha stimulation of spermatogonial proliferation in vivo. Reprod Fertil Dev 1(1):85–87

    Article  PubMed  CAS  Google Scholar 

  174. Parvinen M, Soder O, Mali P, Froysa B, Ritzen EM (1991) In vitro stimulation of stage-specific deoxyribonucleic acid synthesis in rat seminiferous tubule segments by interleukin-1 alpha. Endocrinology 129(3):1614–1620

    Article  PubMed  CAS  Google Scholar 

  175. Gomez E, Morel G, Cavalier A, Lienard MO, Haour F, Courtens JL, Jegou B (1997) Type I and type II interleukin-1 receptor expression in rat, mouse, and human testes. Biol Reprod 56(6):1513–1526

    Article  PubMed  CAS  Google Scholar 

  176. Nehar D, Mauduit C, Boussouar F, Benahmed M (1998) Interleukin 1alpha stimulates lactate dehydrogenase A expression and lactate production in cultured porcine Sertoli cells. Biol Reprod 59(6):1425–1432

    Article  PubMed  CAS  Google Scholar 

  177. Gerard N, Syed V, Bardin W, Genetet N, Jegou B (1991) Sertoli cells are the site of interleukin-1 alpha synthesis in rat testis. Mol Cell Endocrinol 82(1):R13–R16

    Article  PubMed  CAS  Google Scholar 

  178. Syed V, Söder O, Arver S, Lindh M, Khan S, Ritzen E (1988) Ontogeny and cellular origin of an interleukin 1 like factor in the reproductive tract of the male rat. Int J Androl 11(5):437–447

    Article  PubMed  CAS  Google Scholar 

  179. Haugen TB, Landmark BF, Josefsen GM, Hansson V, Hogset A (1994) The mature form of interleukin-1 [alpha] is constitutively expressed in immature male germ cells from rat. Mol Cell Endocrinol 105(2):R19–R23

    Article  PubMed  CAS  Google Scholar 

  180. Calkins JH, Guo H, Sigel MM, Lin T (1990) Differential effects of recombinant interleukin-1 alpha and beta on Leydig cell function. Biochem Biophys Res Commun 167(2):548–553

    Article  PubMed  CAS  Google Scholar 

  181. Soder O, Syed V, Callard GV, Toppari J, Pollanen P, Parvinen M, Froysa B, Ritzen EM (1991) Production and secretion of an interleukin-1-like factor is stage-dependent and correlates with spermatogonial DNA synthesis in the rat seminiferous epithelium. Int J Androl 14(3):223–231

    Article  PubMed  CAS  Google Scholar 

  182. Hales DB (1992) Interleukin-1 inhibits Leydig cell steroidogenesis primarily by decreasing 17 alpha-hydroxylase/C17-20 lyase cytochrome P450 expression. Endocrinology 131(5):2165–2172

    Article  PubMed  CAS  Google Scholar 

  183. Lin T, Wang D, Nagpal ML (1993) Human chorionic gonadotropin induces interleukin-1 gene expression in rat Leydig cells in vivo. Mol Cell Endocrinol 95(1–2):139–145

    Article  PubMed  CAS  Google Scholar 

  184. Hayes R, Chalmers SA, Nikolic-Paterson DJ, Atkins RC, Hedger MP (1996) Secretion of bioactive interleukin 1 by rat testicular macrophages in vitro. J Androl 17(1):41–49

    PubMed  CAS  Google Scholar 

  185. Meroni SB, Suburo AM, Cigorraga SB (2000) Interleukin-1beta regulates nitric oxide production and gamma-glutamyl transpeptidase activity in Sertoli cells. J Androl 21(6):855–861

    PubMed  CAS  Google Scholar 

  186. Petersen C, Boitani C, Froysa B, Soder O (2002) Interleukin-1 is a potent growth factor for immature rat Sertoli cells. Mol Cell Endocrinol 186(1):37–47

    Article  PubMed  CAS  Google Scholar 

  187. Okuda Y, Bardin CW, Hodgskin LR, Morris PL (1995) Interleukins-1 alpha and -1 beta regulate interleukin-6 expression in Leydig and Sertoli cells. Recent Prog Horm Res 50:367–372

    PubMed  CAS  Google Scholar 

  188. Hoeben E, Van Damme J, Put W, Swinnen JV, Verhoeven G (1996) Cytokines derived from activated human mononuclear cells markedly stimulate transferrin secretion by cultured Sertoli cells. Endocrinology 137(2):514–521

    Article  PubMed  CAS  Google Scholar 

  189. Hoeben E, Van Aelst I, Swinnen JV, Opdenakker G, Verhoeven G (1996) Gelatinase A secretion and its control in peritubular and Sertoli cell cultures: effects of hormones, second messengers and inducers of cytokine production. Mol Cell Endocrinol 118(1–2):37–46

    Article  PubMed  CAS  Google Scholar 

  190. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3):328–341

    Article  PubMed  CAS  Google Scholar 

  191. Cheung WD, Hart GW (2008) AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem 283(19):13009–13020

    Article  PubMed  CAS  Google Scholar 

  192. Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346(Pt 3):561–576

    Article  PubMed  CAS  Google Scholar 

  193. Galardo MN, Riera MF, Pellizzari EH, Cigorraga SB, Meroni SB (2007) The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-d-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol 39(4):279–288

    Article  PubMed  CAS  Google Scholar 

  194. Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A, Alessi DR (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24(10):1810–1820

    Article  PubMed  CAS  Google Scholar 

  195. Russell LD, Steinberger A (1989) Sertoli cells in culture: views from the perspectives of an in vivoist and an in vitroist. Biol Reprod 41(4):571–577

    Article  PubMed  CAS  Google Scholar 

  196. Anway MD, Folmer J, Wright WW, Zirkin BR (2003) Isolation of Sertoli cells from adult rat testes: an approach to ex vivo studies of Sertoli cell function. Biol Reprod 68(3):996–1002

    Article  PubMed  CAS  Google Scholar 

  197. Syed V, Hecht NB (2001) Selective loss of Sertoli cell and germ cell function leads to a disruption in Sertoli cell-germ cell communication during aging in the Brown Norway rat. Biol Reprod 64(1):107–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the authors that positively answered our call for a paper copy or some punctual doubts that we had about technical or theoretical data interpretation. This work was supported by the Portuguese “Fundação para a Ciência e a Tecnologia”—FCT (PTDC/QUI-BIQ/121446/2010) co-funded by FEDER via Programa Operacional Factores de Competitividade—COMPETE/QREN. MG Alves (SFRH/BPD/80451/2011 L Rato (SFRH/BD/72733/2010) were financed by FCT. P.F. Oliveira was financed by FCT through FSE and POPH funds (Programa Ciência 2008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco G. Alves or Pedro F. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, M.G., Rato, L., Carvalho, R.A. et al. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell. Mol. Life Sci. 70, 777–793 (2013). https://doi.org/10.1007/s00018-012-1079-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1079-1

Keywords

Navigation