Skip to main content

Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries

Abstract

Skin acts as a barrier between the environment and internal organs and performs functions that are critical for the preservation of body homeostasis. In mammals, a complex network of circadian clocks and oscillators adapts physiology and behavior to environmental changes by generating circadian rhythms. These rhythms are induced in the central pacemaker and peripheral tissues by similar transcriptional–translational feedback loops involving clock genes. In this work, we investigated the presence of functional oscillators in the human skin by studying kinetics of clock gene expression in epidermal and dermal cells originating from the same donor and compared their characteristics. Primary cultures of fibroblasts, keratinocytes, and melanocytes were established from an abdominal biopsy and expression of clock genes following dexamethasone synchronization was assessed by qPCR. An original mathematical method was developed to analyze simultaneously up to nine clock genes. By fitting the oscillations to a common period, the phase relationships of the genes could be determined accurately. We thereby show the presence of functional circadian machinery in each cell type. These clockworks display specific periods and phase relationships between clock genes, suggesting regulatory mechanisms that are particular to each cell type. Taken together, our data demonstrate that skin has a complex circadian organization. Oscillators are present not only in fibroblasts but also in epidermal keratinocytes and melanocytes and are likely to act in coordination to drive rhythmic functions within the skin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20(5):391–403

    PubMed  Article  CAS  Google Scholar 

  2. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 (spec no 2):R271–R277

    PubMed  Article  CAS  Google Scholar 

  3. Denda M, Tsuchiya T (2000) Barrier recovery rate varies time-dependently in human skin. Br J Dermatol 142(5):881–884

    PubMed  Article  CAS  Google Scholar 

  4. Yosipovitch G, Sackett-Lundeen L, Goon A, Yiong Huak C, Leok Goh C, Haus E (2004) Circadian and ultradian (12 h) variations of skin blood flow and barrier function in non-irritated and irritated skin-effect of topical corticosteroids. J Invest Dermatol 122(3):824–829

    PubMed  Article  CAS  Google Scholar 

  5. Yosipovitch G, Xiong GL, Haus E, Sackett-Lundeen L, Ashkenazi I, Maibach HI (1998) Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J Invest Dermatol 110(1):20–23

    PubMed  Article  CAS  Google Scholar 

  6. Le Fur I, Reinberg A, Lopez S, Morizot F, Mechkouri M, Tschachler E (2001) Analysis of circadian and ultradian rhythms of skin surface properties of face and forearm of healthy women. J Invest Dermatol 117(3):718–724

    PubMed  Article  Google Scholar 

  7. Brown WR (1991) A review and mathematical analysis of circadian rhythms in cell proliferation in mouse, rat, and human epidermis. J Invest Dermatol 97(2):273–280

    PubMed  Article  CAS  Google Scholar 

  8. Henry F, Arrese JE, Claessens N, Pierard-Franchimont C, Pierard GE (2002) Skin and its daily chronobiological clock. Rev Med Liege 57(10):661–665

    PubMed  CAS  Google Scholar 

  9. Zanello SB, Jackson DM, Holick MF (2000) Expression of the circadian clock genes clock and period1 in human skin. J Invest Dermatol 115(4):757–760

    PubMed  Article  CAS  Google Scholar 

  10. Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJ, Ben-David Y (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–1801

    PubMed  Article  CAS  Google Scholar 

  11. Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA, Chicheportiche R, Dayer JM, Albrecht U, Schibler U (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3(10):e338

    PubMed  Article  Google Scholar 

  12. Sporl F, Schellenberg K, Blatt T, Wenck H, Wittern KP, Schrader A, Kramer A (2011) A circadian clock in HaCaT keratinocytes. J Invest Dermatol 131(2):338–348

    PubMed  Article  Google Scholar 

  13. Tanioka M, Yamada H, Doi M, Bando H, Yamaguchi Y, Nishigori C, Okamura H (2009) Molecular clocks in mouse skin. J Invest Dermatol 129(5):1225–1231

    PubMed  Article  CAS  Google Scholar 

  14. Lin KK, Kumar V, Geyfman M, Chudova D, Ihler AT, Smyth P, Paus R, Takahashi JS, Andersen B (2009) Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet 5(7):e1000573

    PubMed  Article  Google Scholar 

  15. Eisinger M, Marko O (1982) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA 79(6):2018–2022

    PubMed  Article  CAS  Google Scholar 

  16. Singh SK, Nizard C, Kurfurst R, Bonte F, Schnebert S, Tobin DJ (2008) The silver locus product (Silv/gp100/Pmel17) as a new tool for the analysis of melanosome transfer in human melanocyte–keratinocyte co-culture. Exp Dermatol 17(5):418–426

    PubMed  Article  Google Scholar 

  17. Hsu MY, Herlyn M (1996) Cultivation of normal human epidermal melanocytes. Methods Mol Med 2:9–20

    PubMed  CAS  Google Scholar 

  18. Normand J, Karasek MA (1995) A method for the isolation and serial propagation of keratinocytes, endothelial cells, and fibroblasts from a single punch biopsy of human skin. In Vitro Cell Dev Biol Anim 31(6):447–455

    PubMed  Article  CAS  Google Scholar 

  19. Takashima A (2001) Establishment of fibroblast cultures. Curr Protoc Cell Biol Chapter 2:Unit 2.1, University of Texas Southwest Medical Center, Dallas, May 2001

  20. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19

    PubMed  Article  Google Scholar 

  21. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101(15):5339–5346

    PubMed  Article  CAS  Google Scholar 

  22. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N (1998) Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun 253(2):199–203

    PubMed  Article  CAS  Google Scholar 

  23. Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    PubMed  Article  CAS  Google Scholar 

  24. Girotti M, Weinberg MS, Spencer RL (2009) Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule. Am J Physiol Endocrinol Metab 296(4):E888–E897

    PubMed  Article  CAS  Google Scholar 

  25. Noguchi T, Michihata T, Nakamura W, Takumi T, Shimizu R, Yamamoto M, Ikeda M, Ohmiya Y, Nakajima Y (2010) Dual-colour luciferase mouse directly demonstrates coupled expression of two clock genes. Biochemistry 49(37):8053–8061

    PubMed  Article  CAS  Google Scholar 

  26. Wharfe MD, Mark PJ, Waddell BJ (2011) Circadian variation in placental and hepatic clock genes in rat pregnancy. Endocrinology 152(9):3552–3560

    PubMed  Article  CAS  Google Scholar 

  27. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signalling. Science 289(5488):2344–2347

    PubMed  Article  CAS  Google Scholar 

  28. Yagita K, Okamura H (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 465(1):79–82

    PubMed  Article  CAS  Google Scholar 

  29. Yagita K, Tamanini F, van Der Horst GT, Okamura H (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292(5515):278–281

    PubMed  Article  CAS  Google Scholar 

  30. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705

    PubMed  Article  CAS  Google Scholar 

  31. Brown SA, Kunz D, Dumas A, Westermark PO, Vanselow K, Tilmann-Wahnschaffe A, Herzel H, Kramer A (2008) Molecular insights into human daily behaviour. Proc Natl Acad Sci USA 105(5):1602–1607

    PubMed  Article  CAS  Google Scholar 

  32. Brown SA, Pagani L, Cajochen C, Eckert A (2011) Systemic and cellular reflections on ageing and the circadian oscillator: a mini-review. Gerontology 57(5):427–434

    PubMed  Google Scholar 

  33. Pagani L, Schmitt K, Meier F, Izakovic J, Roemer K, Viola A, Cajochen C, Wirz-Justice A, Brown SA, Eckert A (2011) Serum factors in older individuals change cellular clock properties. Proc Natl Acad Sci USA 108(17):7218–7223

    PubMed  Article  CAS  Google Scholar 

  34. Pagani L, Semenova EA, Moriggi E, Revell VL, Hack LM, Lockley SW, Arendt J, Skene DJ, Meier F, Izakovic J, Wirz-Justice A, Cajochen C, Sergeeva OJ, Cheresiz SV, Danilenko KV, Eckert A, Brown SA (2010) The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts. PLoS ONE 5(10):e13376

    PubMed  Article  Google Scholar 

  35. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    PubMed  Article  CAS  Google Scholar 

  36. Peirson SN, Butler JN, Duffield GE, Takher S, Sharma P, Foster RG (2006) Comparison of clock gene expression in SCN, retina, heart, and liver of mice. Biochem Biophys Res Commun 351(4):800–807

    PubMed  Article  CAS  Google Scholar 

  37. Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the mammalian retina. Proc Natl Acad Sci USA 103(25):9703–9708

    PubMed  Article  CAS  Google Scholar 

  38. Sandu C, Hicks D, Felder-Schmittbuhl MP (2011) Rat photoreceptor circadian oscillator strongly relies on lighting conditions. Eur J Neurosci 34(3):507–516

    PubMed  Article  Google Scholar 

  39. Tosini G, Davidson AJ, Fukuhara C, Kasamatsu M, Castanon-Cervantes O (2007) Localization of a circadian clock in mammalian photoreceptors. Faseb J 21(14):3866–3871

    PubMed  Article  CAS  Google Scholar 

  40. Teboul M, Barrat-Petit MA, Li XM, Claustrat B, Formento JL, Delaunay F, Levi F, Milano G (2005) Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells. J Mol Med (Berl) 83(9):693–699

    Article  CAS  Google Scholar 

  41. Maywood ES, O’Brien JA, Hastings MH (2003) Expression of mCLOCK and other circadian clock-relevant proteins in the mouse suprachiasmatic nuclei. J Neuroendocrinol 15(4):329–334

    PubMed  Article  CAS  Google Scholar 

  42. DeBruyne JP, Weaver DR, Reppert SM (2007) Peripheral circadian oscillators require CLOCK. Curr Biol 17(14):R538–R539

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by LVMH Research and Centre National de la Recherche Scientifique. We thank Lauren Savary (LVMH Research) for cell culture technical assistance. The mathematical analysis was presented as the year paper of Diariétou Sambakhe for the Master of Statistics of the University of Strasbourg (supervisor: André Malan). We thank Dr. David Hicks for English correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Paule Felder-Schmittbuhl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sandu, C., Dumas, M., Malan, A. et al. Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cell. Mol. Life Sci. 69, 3329–3339 (2012). https://doi.org/10.1007/s00018-012-1026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1026-1

Keywords

  • Circadian rhythm
  • Keratinocytes
  • Melanocytes
  • Fibroblasts
  • Human
  • Clock gene