Skip to main content

Advertisement

Log in

Immunoregulation by the gut microbiota

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The human intestinal mucosa is constantly exposed to commensal microbiota. Since the gut microbiota is beneficial to the host, hosts have evolved intestine-specific immune systems to co-exist with the microbiota. On the other hand, the intestinal microbiota actively regulates the host’s immune system, and recent studies have revealed that specific commensal bacterial species induce the accumulation of specific immune cell populations. For instance, segmented filamentous bacteria and Clostridium species belonging to clusters XIVa and IV induce the accumulation of Th17 cells in the small intestine and Foxp3+ regulatory T cells in the large intestine, respectively. The immune cells induced by the gut microbiota likely contribute to intestinal homeostasis and influence systemic immunity in the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APRIL:

A proliferation-inducing ligand

AID:

Activation-induced cytidine deaminase

AMM:

Antimicrobial molecule

ASC:

Apoptosis-associated speck-like protein

BAFF:

B cell activating factor

CSR:

Class switch recombination

DC:

Dendritic cell

DSS:

Dextran sulfate sodium

EAE:

Experimental autoimmune encephalomyelitis

Fut2:

Fucosyltransferase 2

GF:

Germ-free

GALT:

Gut-associated lymphoid tissue

IKK:

IκB kinase

IL-10R:

IL-10 receptor

Ig:

Immunoglobulin

iTreg:

Inducible Treg

IBD:

Inflammatory bowel diseases

ILC:

Innate lymphoid cell

IECs:

Intestinal epithelial cells

ILFs:

Isolated lymphoid follicles

LPS:

Lipopolysaccharide

LTi:

Lymphoid tissue inducer

MHC:

Major histocompatibility complex

MOG:

Myelin oligodendrocyte glycoprotein

nTreg:

Natural Treg

NOD:

Non-obese diabetic

NLR:

Nucleotide-binding oligomerization domain-like receptor

PRR:

Pattern recognition receptor

PP:

Payer’s patche

pIgR:

Polymeric Ig receptor

PSA:

Polysaccharide A

RAG:

Recombinase-activating gene

RegIIIγ:

Regenerating islet-derived IIIγ

Treg:

Regulatory T

RORγt:

Retinoic acid receptor-related orphan receptor gamma t

rDNA:

Ribosomal DNA

SIgA:

Secretory IgA

SFB:

Segmented filamentous bacteria

STAT3:

Signal transducer and activator of transcription 3

SHM:

Somatic hypermutation

SPF:

Specific pathogen-free

TCR:

T cell receptor

TD:

T cell-dependent

TI:

T cell-independent

Th:

T helper

TSLP:

Thymic stromal lymphopoietin

TLR:

Toll-like receptor

TGF-β:

Transforming growth factor-β

TACI:

Transmembrane activator and calcium modulator and cyclophilin ligand interactor

T1D:

Type 1 diabetes

VRE:

Vancomycin-resistant Enterococcus

References

  1. Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10(2):131–144

    PubMed  CAS  Google Scholar 

  2. Wells JM, Rossi O, Meijerink M, van Baarlen P (2010) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 108(Suppl 1):4607–4614

    PubMed  Google Scholar 

  3. Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3(1):63–72

    PubMed  CAS  Google Scholar 

  4. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420

    PubMed  CAS  Google Scholar 

  5. Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474(7351):298–306

    PubMed  CAS  Google Scholar 

  6. Rescigno M (2010) Intestinal dendritic cells. Adv Immunol 107:109–138

    PubMed  CAS  Google Scholar 

  7. Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485

    PubMed  CAS  Google Scholar 

  8. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    PubMed  CAS  Google Scholar 

  9. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341

    PubMed  CAS  Google Scholar 

  10. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374):538–541

    PubMed  CAS  Google Scholar 

  11. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31(4):677–689

    PubMed  CAS  Google Scholar 

  12. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349

    PubMed  CAS  Google Scholar 

  13. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625

    PubMed  CAS  Google Scholar 

  14. O’Mahony C, Scully P, O’Mahony D, Murphy S, O’Brien F, Lyons A, Sherlock G, MacSharry J, Kiely B, Shanahan F, O’Mahony L (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation. PLoS Pathog 4(8):e1000112

    PubMed  Google Scholar 

  15. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809. doi:10.1038/nri2653

    PubMed  CAS  Google Scholar 

  16. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241. doi:10.1016/j.cell.2004.07.002

    PubMed  CAS  Google Scholar 

  17. Cario E, Gerken G, Podolsky DK (2004) Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127(1):224–238

    PubMed  CAS  Google Scholar 

  18. Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132(4):1359–1374

    PubMed  CAS  Google Scholar 

  19. Sonnenburg JL, Chen CT, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4(12):e413. doi:10.1371/journal.pbio.0040413

    PubMed  Google Scholar 

  20. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105(52):20858–20863

    PubMed  CAS  Google Scholar 

  21. Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130

    PubMed  CAS  Google Scholar 

  22. Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455(7214):804–807

    PubMed  CAS  Google Scholar 

  23. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258

    PubMed  CAS  Google Scholar 

  24. de Kivit S, Saeland E, Kraneveld AD, van de Kant HJ, Schouten B, van Esch BC, Knol J, Sprikkelman AB, van der Aa LB, Knippels LM, Garssen J, van Kooyk Y, Willemsen LE (2012) Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy 67(3):343–352. doi:10.1111/j.1398-9995.2011.02771.x

    PubMed  Google Scholar 

  25. Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG (2010) Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201(4):534–543. doi:10.1086/650203

    PubMed  CAS  Google Scholar 

  26. Song X, Zhu S, Shi P, Liu Y, Shi Y, Levin SD, Qian Y (2011) IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat Immunol 12(12):1151–1158

    PubMed  CAS  Google Scholar 

  27. Ramirez-Carrozzi V, Sambandam A, Luis E, Lin Z, Jeet S, Lesch J, Hackney J, Kim J, Zhou M, Lai J, Modrusan Z, Sai T, Lee W, Xu M, Caplazi P, Diehl L, de Voss J, Balazs M, Gonzalez L Jr, Singh H, Ouyang W, Pappu R (2011) IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol 12(12):1159–1166

    PubMed  CAS  Google Scholar 

  28. Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A, Sampietro GM, Nespoli A, Viale G, Allavena P, Rescigno M (2005) Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6(5):507–514

    PubMed  CAS  Google Scholar 

  29. Zaph C, Troy AE, Taylor BC, Berman-Booty LD, Guild KJ, Du Y, Yost EA, Gruber AD, May MJ, Greten FR, Eckmann L, Karin M, Artis D (2007) Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446(7135):552–556

    PubMed  CAS  Google Scholar 

  30. Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, Bhandoola A, Artis D (2010) IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464(7293):1362–1366. doi:10.1038/nature08901

    PubMed  CAS  Google Scholar 

  31. Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M (2009) Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol 2(4):340–350

    PubMed  CAS  Google Scholar 

  32. He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A, Knowles DM, Rescigno M, Cerutti A (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A (2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26(6):812–826

    PubMed  CAS  Google Scholar 

  33. Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, Bram RJ, Jabara H, Geha RS (2005) TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 201(1):35–39

    PubMed  CAS  Google Scholar 

  34. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207(5):1045–1056

    PubMed  CAS  Google Scholar 

  35. Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, Lam V, Potentier MS, Ng K, Bawa M, McCafferty DM, Rioux KP, Ghosh S, Xavier RJ, Colgan SP, Tschopp J, Muruve D, MacDonald JA, Beck PL (2011) NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis 17(6):1359–1372

    PubMed  Google Scholar 

  36. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD (2010) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32(3):379–391

    PubMed  CAS  Google Scholar 

  37. Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, LeBlanc PM, Meunier C, Turbide C, Gros P, Beauchemin N, Vallance BA, Saleh M (2010) Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32(3):367–378

    PubMed  CAS  Google Scholar 

  38. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757

    PubMed  CAS  Google Scholar 

  39. Lucke K, Miehlke S, Jacobs E, Schuppler M (2006) Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol 55(Pt 5):617–624

    Google Scholar 

  40. Kleessen B, Kroesen AJ, Buhr HJ, Blaut M (2002) Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37(9):1034–1041

    PubMed  CAS  Google Scholar 

  41. Reuter BK, Pizarro TT (2004) Commentary: the role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe? Eur J Immunol 34(9):2347–2355

    PubMed  CAS  Google Scholar 

  42. Takagi H, Kanai T, Okazawa A, Kishi Y, Sato T, Takaishi H, Inoue N, Ogata H, Iwao Y, Hoshino K, Takeda K, Akira S, Watanabe M, Ishii H, Hibi T (2003) Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol 38(8):837–844

    PubMed  CAS  Google Scholar 

  43. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, Liu K, Jakubzick C, Ingersoll MA, Leboeuf M, Stanley ER, Nussenzweig M, Lira SA, Randolph GJ, Merad M (2009) Origin of the lamina propria dendritic cell network. Immunity 31(3):513–525

    PubMed  CAS  Google Scholar 

  44. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, Fehling HJ, Hardt WD, Shakhar G, Jung S (2009) Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31(3):502–512

    PubMed  CAS  Google Scholar 

  45. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254–258

    PubMed  CAS  Google Scholar 

  46. Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, Pabst O (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206(13):3101–3114

    PubMed  CAS  Google Scholar 

  47. Rescigno M, Valzasina B, Bonasio R, Urbano M, Ricciardi-Castagnoli P (2001) Dendritic cells, loaded with recombinant bacteria expressing tumor antigens, induce a protective tumor-specific response. Clin Cancer Res 7 (3 Suppl):865s–870s

    Google Scholar 

  48. Chieppa M, Rescigno M, Huang AY, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13):2841–2852

    PubMed  CAS  Google Scholar 

  49. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8(10):1086–1094

    PubMed  CAS  Google Scholar 

  50. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455(7214):808–812

    PubMed  CAS  Google Scholar 

  51. Kayama H, Ueda Y, Sawa Y, Jeon SG, Ma JS, Okumura R, Kubo A, Ishii M, Okazaki T, Murakami M, Yamamoto M, Yagita H, Takeda K (2012) Intestinal CX3C chemokine receptor 1high (CX3CR1high) myeloid cells prevent T-cell-dependent colitis. Proc Natl Acad Sci USA 109(13):5010–5015. doi:10.1073/pnas.1114931109

    PubMed  CAS  Google Scholar 

  52. Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Forster R, Pabst O (2008) Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med 205(11):2483–2490

    PubMed  CAS  Google Scholar 

  53. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764

    PubMed  CAS  Google Scholar 

  54. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785

    PubMed  CAS  Google Scholar 

  55. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246

    PubMed  CAS  Google Scholar 

  56. Laffont S, Siddiqui KR, Powrie F (2010) Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur J Immunol 40(7):1877–1883

    PubMed  CAS  Google Scholar 

  57. Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT, Ng D, Klinakis A, Charo IF, Jung S, Gommerman JL, Ivanov II, Liu K, Merad M, Reizis B (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35(5):780–791

    PubMed  CAS  Google Scholar 

  58. Niess JH, Adler G (2010) Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J Immunol 184(4):2026–2037

    PubMed  CAS  Google Scholar 

  59. Macpherson AJ, Geuking MB, Slack E, Hapfelmeier S, McCoy KD (2012) The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev 245(1):132–146

    PubMed  CAS  Google Scholar 

  60. Bergqvist P, Gardby E, Stensson A, Bemark M, Lycke NY (2006) Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol 177(11):7772–7783

    PubMed  CAS  Google Scholar 

  61. Snider DP, Liang H, Switzer I, Underdown BJ (1999) IgA production in MHC class II-deficient mice is primarily a function of B-1a cells. Int Immunol 11(2):191–198

    PubMed  CAS  Google Scholar 

  62. Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3(9):822–829

    PubMed  CAS  Google Scholar 

  63. Cerutti A, Chen K, Chorny A (2011) Immunoglobulin responses at the mucosal interface. Annu Rev Immunol 29:273–293

    PubMed  CAS  Google Scholar 

  64. Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, Betsholtz C, Brandtzaeg P (1999) Absence of epithelial immunoglobulin a transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 190(7):915–922

    PubMed  CAS  Google Scholar 

  65. Shimada S, Kawaguchi-Miyashita M, Kushiro A, Sato T, Nanno M, Sako T, Matsuoka Y, Sudo K, Tagawa Y, Iwakura Y, Ohwaki M (1999) Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J Immunol 163(10):5367–5373

    PubMed  CAS  Google Scholar 

  66. Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298(5597):1424–1427. doi:10.1126/science.1077336298/5597/1424

    PubMed  CAS  Google Scholar 

  67. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, Fagarasan S (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101(7):1981–1986

    PubMed  CAS  Google Scholar 

  68. Wei M, Shinkura R, Doi Y, Maruya M, Fagarasan S, Honjo T (2011) Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol 12(3):264–270

    PubMed  CAS  Google Scholar 

  69. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133

    PubMed  CAS  Google Scholar 

  70. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453(7191):106–109

    PubMed  CAS  Google Scholar 

  71. Schraml BU, Hildner K, Ise W, Lee WL, Smith WA, Solomon B, Sahota G, Sim J, Mukasa R, Cemerski S, Hatton RD, Stormo GD, Weaver CT, Russell JH, Murphy TL, Murphy KM (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460(7253):405–409. doi:10.1038/nature08114

    PubMed  CAS  Google Scholar 

  72. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8(9):967–974. doi:10.1038/ni1488

    PubMed  CAS  Google Scholar 

  73. Awasthi A, Kuchroo VK (2009) Th17 cells: from precursors to players in inflammation and infection. Int Immunol 21(5):489–498

    PubMed  CAS  Google Scholar 

  74. Malinarich FH, Grabski E, Worbs T, Chennupati V, Haas JD, Schmitz S, Candia E, Quera R, Malissen B, Forster R, Hermoso M, Prinz I (2010) Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial gammadelta T cells is functional in vivo. Eur J Immunol 40(12):3378–3388

    PubMed  CAS  Google Scholar 

  75. Nanno M, Kanari Y, Naito T, Inoue N, Hisamatsu T, Chinen H, Sugimoto K, Shimomura Y, Yamagishi H, Shiohara T, Ueha S, Matsushima K, Suematsu M, Mizoguchi A, Hibi T, Bhan AK, Ishikawa H (2008) Exacerbating role of gammadelta T cells in chronic colitis of T-cell receptor alpha mutant mice. Gastroenterology 134(2):481–490

    PubMed  CAS  Google Scholar 

  76. Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS, Ghosh S (2010) T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity 33(5):791–803

    PubMed  CAS  Google Scholar 

  77. Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R (2002) Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA 99(22):14338–14343

    PubMed  CAS  Google Scholar 

  78. Inagaki-Ohara K, Chinen T, Matsuzaki G, Sasaki A, Sakamoto Y, Hiromatsu K, Nakamura-Uchiyama F, Nawa Y, Yoshimura A (2004) Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J Immunol 173(2):1390–1398

    PubMed  CAS  Google Scholar 

  79. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Buonocore S, Tlaskalova-Hogenova H, Cua DJ, Powrie F (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25(2):309–318

    PubMed  CAS  Google Scholar 

  80. Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10(7):479–489

    PubMed  CAS  Google Scholar 

  81. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31(2):321–330

    PubMed  CAS  Google Scholar 

  82. Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher C, Honig M, Pannicke U, Schwarz K, Ware CF, Finke D, Diefenbach A (2010) Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33(5):736–751

    PubMed  CAS  Google Scholar 

  83. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464(7293):1371–1375

    PubMed  CAS  Google Scholar 

  84. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC, Colonna M (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457(7230):722–725

    PubMed  CAS  Google Scholar 

  85. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O’Shea JJ (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206(1):35–41

    PubMed  CAS  Google Scholar 

  86. Reynders A, Yessaad N, Vu Manh TP, Dalod M, Fenis A, Aubry C, Nikitas G, Escaliere B, Renauld JC, Dussurget O, Cossart P, Lecuit M, Vivier E, Tomasello E (2011) Identity, regulation and in vivo function of gut NKp46+ RORgammat+ and NKp46+ RORgammat-lymphoid cells. EMBO J 30(14):2934–2947

    PubMed  CAS  Google Scholar 

  87. Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208(6):1127–1133

    PubMed  CAS  Google Scholar 

  88. Hue S, Ahern P, Buonocore S, Kullberg MC, Cua DJ, McKenzie BS, Powrie F, Maloy KJ (2006) Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 203(11):2473–2483

    PubMed  CAS  Google Scholar 

  89. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314(5804):1461–1463

    PubMed  CAS  Google Scholar 

  90. O’Connor W Jr, Zenewicz LA, Flavell RA (2010) The dual nature of T(H)17 cells: shifting the focus to function. Nat Immunol 11(6):471–476

    PubMed  Google Scholar 

  91. O’Connor W Jr, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y, Kolls JK, Flavell RA (2009) A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10(6):603–609

    PubMed  Google Scholar 

  92. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29(6):947–957

    PubMed  CAS  Google Scholar 

  93. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289

    PubMed  CAS  Google Scholar 

  94. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205(5):1063–1075

    PubMed  CAS  Google Scholar 

  95. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    PubMed  CAS  Google Scholar 

  96. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    PubMed  CAS  Google Scholar 

  97. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21

    PubMed  CAS  Google Scholar 

  98. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73

    PubMed  CAS  Google Scholar 

  99. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27(1):18–20

    PubMed  CAS  Google Scholar 

  100. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21(2):267–277

    PubMed  CAS  Google Scholar 

  101. Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY (2006) An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7(4):401–410

    PubMed  CAS  Google Scholar 

  102. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T cell receptor diversity of Foxp3+ CD4+ CD25+ T cells. Immunity 25(2):249–259

    PubMed  CAS  Google Scholar 

  103. Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C (2007) Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 178(11):7032–7041

    PubMed  CAS  Google Scholar 

  104. Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ (2004) CD25-T cells generate CD25+ Foxp3+ regulatory T cells by peripheral expansion. J Immunol 173(12):7259–7268 pii: 173/12/7259

    PubMed  CAS  Google Scholar 

  105. Cobbold SP, Castejon R, Adams E, Zelenika D, Graca L, Humm S, Waldmann H (2004) Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 172(10):6003–6010

    PubMed  CAS  Google Scholar 

  106. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6(12):1219–1227

    PubMed  CAS  Google Scholar 

  107. Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA (2005) Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115(7):1923–1933

    PubMed  CAS  Google Scholar 

  108. Nishio J, Feuerer M, Wong J, Mathis D, Benoist C (2010) Anti-CD3 therapy permits regulatory T cells to surmount T cell receptor-specified peripheral niche constraints. J Exp Med 207(9):1879–1889

    PubMed  CAS  Google Scholar 

  109. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    PubMed  CAS  Google Scholar 

  110. Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Cheever A, Jankovic D, Sher A (1998) Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect Immun 66(11):5157–5166

    PubMed  CAS  Google Scholar 

  111. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, McCoy KD, Macpherson AJ (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34(5):794–806

    PubMed  CAS  Google Scholar 

  112. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR Jr, Muller W, Rudensky AY (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28(4):546–558

    PubMed  CAS  Google Scholar 

  113. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, Perro M, Diestelhorst J, Allroth A, Murugan D, Hatscher N, Pfeifer D, Sykora KW, Sauer M, Kreipe H, Lacher M, Nustede R, Woellner C, Baumann U, Salzer U, Koletzko S, Shah N, Segal AW, Sauerbrey A, Buderus S, Snapper SB, Grimbacher B, Klein C (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361(21):2033–2045

    PubMed  CAS  Google Scholar 

  114. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (2009) CD4+ regulatory T cells control TH17 responses in a stat3-dependent manner. Science 326(5955):986–991

    PubMed  CAS  Google Scholar 

  115. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578

    PubMed  CAS  Google Scholar 

  116. Huber S, Gagliani N, Esplugues E, O’Connor W Jr, Huber FJ, Chaudhry A, Kamanaka M, Kobayashi Y, Booth CJ, Rudensky AY, Roncarolo MG, Battaglia M, Flavell RA (2011) Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34(4):554–565

    PubMed  CAS  Google Scholar 

  117. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192(2):295–302

    PubMed  CAS  Google Scholar 

  118. Langer LF, Clay TM, Morse MA (2007) Update on anti-CTLA-4 antibodies in clinical trials. Expert Opin Biol Ther 7(8):1245–1256

    PubMed  CAS  Google Scholar 

  119. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO (2009) A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA 106(46):19256–19261

    PubMed  CAS  Google Scholar 

  120. Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3(6):417–427

    PubMed  CAS  Google Scholar 

  121. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    PubMed  Google Scholar 

  122. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785

    PubMed  CAS  Google Scholar 

  123. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848

    PubMed  CAS  Google Scholar 

  124. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211

    PubMed  CAS  Google Scholar 

  125. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ (2006) Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 44(11):4136–4141

    PubMed  CAS  Google Scholar 

  126. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Dore J (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15(8):1183–1189

    PubMed  CAS  Google Scholar 

  127. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66(11):5224–5231

    PubMed  CAS  Google Scholar 

  128. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, Glickman JN, Glimcher LH (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131(1):33–45

    PubMed  CAS  Google Scholar 

  129. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, Punit S, Karlsson M, Bry L, Glickman JN, Gordon JI, Onderdonk AB, Glimcher LH (2010) Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8(3):292–300

    PubMed  CAS  Google Scholar 

  130. Prakash T, Oshima K, Morita H, Fukuda S, Imaoka A, Kumar N, Sharma VK, Kim SW, Takahashi M, Saitou N, Taylor TD, Ohno H, Umesaki Y, Hattori M (2011) Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation. Cell Host Microbe 10(3):273–284

    PubMed  CAS  Google Scholar 

  131. Sczesnak A, Segata N, Qin X, Gevers D, Petrosino JF, Huttenhower C, Littman DR, Ivanov II (2011) The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10(3):260–272

    PubMed  CAS  Google Scholar 

  132. Kuwahara T, Ogura Y, Oshima K, Kurokawa K, Ooka T, Hirakawa H, Itoh T, Nakayama-Imaohji H, Ichimura M, Itoh K, Ishifune C, Maekawa Y, Yasutomo K, Hattori M, Hayashi T (2011) The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res 18(4):291–303

    PubMed  CAS  Google Scholar 

  133. Caselli M, Holton J, Boldrini P, Vaira D, Calo G (2010) Morphology of segmented filamentous bacteria and their patterns of contact with the follicle-associated epithelium of the mouse terminal ileum: implications for the relationship with the immune system. Gut Microbes 1(6):367–372. doi:10.4161/gmic.1.6.14390

    PubMed  Google Scholar 

  134. Yamauchi KE, Snel J (2000) Transmission electron microscopic demonstration of phagocytosis and intracellular processing of segmented filamentous bacteria by intestinal epithelial cells of the chick ileum. Infect Immun 68(11):6496–6504

    PubMed  CAS  Google Scholar 

  135. Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H (1995) Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 39(8):555–562

    PubMed  CAS  Google Scholar 

  136. Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, Itoh K (1999) Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 67(7):3504–3511

    PubMed  CAS  Google Scholar 

  137. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498

    PubMed  CAS  Google Scholar 

  138. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA (2009) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83

    PubMed  Google Scholar 

  139. Jepson MA, Clark MA, Simmons NL, Hirst BH (1993) Actin accumulation at sites of attachment of indigenous apathogenic segmented filamentous bacteria to mouse ileal epithelial cells. Infect Immun 61(9):4001–4004

    PubMed  CAS  Google Scholar 

  140. Ostman S, Rask C, Wold AE, Hultkrantz S, Telemo E (2006) Impaired regulatory T cell function in germ-free mice. Eur J Immunol 36(9):2336–2346. doi:10.1002/eji.200535244

    PubMed  Google Scholar 

  141. Strauch UG, Obermeier F, Grunwald N, Gurster S, Dunger N, Schultz M, Griese DP, Mahler M, Scholmerich J, Rath HC (2005) Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut 54(11):1546–1552. doi:10.1136/gut.2004.059451

    PubMed  CAS  Google Scholar 

  142. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107(27):12204–12209

    PubMed  CAS  Google Scholar 

  143. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478(7368):250–254

    PubMed  CAS  Google Scholar 

  144. Chinen T, Volchkov PY, Chervonsky AV, Rudensky AY (2010) A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J Exp Med 207(11):2323–2330. doi:10.1084/jem.20101235

    PubMed  CAS  Google Scholar 

  145. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184(7):3433–3441

    PubMed  CAS  Google Scholar 

  146. Gorbach SL, Bartlett JG (1974) Anaerobic infections (second of three parts). N Engl J Med 290(22):1237–1245

    PubMed  CAS  Google Scholar 

  147. Thadepalli H, Gorbach SL, Broido PW, Norsen J, Nyhus L (1973) Abdominal trauma, anaerobes, and antibiotics. Surg Gynecol Obstet 137(2):270–276

    PubMed  CAS  Google Scholar 

  148. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332(6032):974–977

    PubMed  CAS  Google Scholar 

  149. Itoh K, Mitsuoka T (1985) Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. Lab Anim 19(2):111–118

    PubMed  CAS  Google Scholar 

  150. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109–1113

    PubMed  CAS  Google Scholar 

  151. Rossini AA, Williams RM, Mordes JP, Appel MC, Like AA (1979) Spontaneous diabetes in the gnotobiotic BB/W rat. Diabetes 28(11):1031–1032

    PubMed  CAS  Google Scholar 

  152. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, Heuvelmans-Jacobs M, Akira S, Nicklin MJ, Ribeiro-Dias F, van den Berg WB (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 118(1):205–216

    PubMed  CAS  Google Scholar 

  153. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, Littman DR, Benoist C, Mathis D (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32(6):815–827

    PubMed  CAS  Google Scholar 

  154. Bjork J, Kleinau S, Midtvedt T, Klareskog L, Smedegard G (1994) Role of the bowel flora for development of immunity to hsp 65 and arthritis in three experimental models. Scand J Immunol 40(6):648–652

    PubMed  CAS  Google Scholar 

  155. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108(Suppl 1):4615–4622

    PubMed  CAS  Google Scholar 

  156. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177(1):566–573

    PubMed  CAS  Google Scholar 

  157. Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 108(28):11548–11553

    PubMed  CAS  Google Scholar 

  158. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736. doi:10.1073/pnas.0804812105

    PubMed  CAS  Google Scholar 

  159. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, Fort M, Hershberg RM (2004) Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 113(9):1296–1306. doi:10.1172/JCI20295

    PubMed  CAS  Google Scholar 

  160. Shen C, Landers CJ, Derkowski C, Elson CO, Targan SR (2008) Enhanced CBir1-specific innate and adaptive immune responses in Crohn’s disease. Inflamm Bowel Dis 14(12):1641–1651. doi:10.1002/ibd.20645

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the funding program for next generation world-leading researchers (NEXT program) from the Japan Society for the Promotion of Science (JSPS) to K. Honda and Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to J. Nishio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenya Honda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishio, J., Honda, K. Immunoregulation by the gut microbiota. Cell. Mol. Life Sci. 69, 3635–3650 (2012). https://doi.org/10.1007/s00018-012-0993-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0993-6

Keywords

Navigation