Skip to main content
Log in

Regulation of Parkin E3 ubiquitin ligase activity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Parkin is an E3 ubiquitin ligase mutated in autosomal recessive juvenile Parkinson’s disease. In addition, it is a putative tumour suppressor, and has roles outside its enzymatic activity. It is critical for mitochondrial clearance through mitophagy, and is an essential protein in most eukaryotes. As such, it is a tightly controlled protein, regulated through an array of external interactions with multiple proteins, posttranslational modifications including phosphorylation and S-nitrosylation, and self-regulation through internal associations. In this review, we highlight some of the recent studies into Parkin regulation and discuss future challenges for gaining a full molecular understanding of the regulation of Parkin E3 ligase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gasser T (2007) Update on the genetics of Parkinson’s disease. Mov Disord 22(Suppl 17):S343–S350

    Article  PubMed  Google Scholar 

  2. Hardy J (2010) Genetic analysis of pathways to Parkinson disease. Neuron 68:201–206

    Article  PubMed  CAS  Google Scholar 

  3. Bonifati V (2012) Autosomal recessive Parkinsonism. Parkinsonism Relat Disord 18(Suppl 1):S4–S6

    Article  PubMed  Google Scholar 

  4. Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111:145–151

    PubMed  CAS  Google Scholar 

  5. Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord 25(Suppl 1):S32–S39

    Article  PubMed  Google Scholar 

  6. Devine MJ, Plun-Favreau H, Wood NW (2011) Parkinson’s disease and cancer: two wars, one front. Nat Rev Cancer 11:812–823

    Article  PubMed  CAS  Google Scholar 

  7. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  8. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R et al (2003) Parkin, a gene implicated in autosomal recessive juvenile Parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–q27. Proc Natl Acad Sci USA 100:5956–5961

    Article  PubMed  CAS  Google Scholar 

  9. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E et al (2010) Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42:77–82

    Article  PubMed  CAS  Google Scholar 

  10. Weir BA, Woo MS, Getz G, Perner S, Ding L et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Article  PubMed  CAS  Google Scholar 

  11. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  12. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  PubMed  CAS  Google Scholar 

  13. Hristova VA, Beasley SA, Rylett RJ, Shaw GS (2009) Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J Biol Chem 284:14978–14986

    Article  PubMed  CAS  Google Scholar 

  14. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31:763–780

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL et al (2000) Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97:13354–13359

    Article  PubMed  CAS  Google Scholar 

  16. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953

    Article  PubMed  CAS  Google Scholar 

  17. Emmerich CH, Schmukle AC, Walczak H (2011) The emerging role of linear ubiquitination in cell signaling. Sci Signal 4:re5

    Google Scholar 

  18. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    Article  PubMed  CAS  Google Scholar 

  19. Hoeller D, Hecker CM, Dikic I (2006) Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6:776–788

    Article  PubMed  CAS  Google Scholar 

  20. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    Article  PubMed  CAS  Google Scholar 

  21. Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273

    PubMed  CAS  Google Scholar 

  22. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471:591–596

    Article  PubMed  CAS  Google Scholar 

  23. Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M et al (2011) SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471:633–636

    Article  PubMed  CAS  Google Scholar 

  24. Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471:637–641

    Article  PubMed  CAS  Google Scholar 

  25. Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489

    Article  PubMed  CAS  Google Scholar 

  26. Winget JM, Mayor T (2010) The diversity of ubiquitin recognition: hot spots and varied specificity. Mol Cell 38:627–635

    Article  PubMed  CAS  Google Scholar 

  27. Chew KC, Matsuda N, Saisho K, Lim GG, Chai C et al (2011) Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination. PLoS ONE 6:e19720

    Article  PubMed  CAS  Google Scholar 

  28. Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N et al (2006) Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem 281:3204–3209

    Article  PubMed  CAS  Google Scholar 

  29. Hampe C, Ardila-Osorio H, Fournier M, Brice A, Corti O (2006) Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum Mol Genet 15:2059–2075

    Article  PubMed  CAS  Google Scholar 

  30. Periquet M, Corti O, Jacquier S, Brice A (2005) Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem 95:1259–1276

    Article  PubMed  CAS  Google Scholar 

  31. Corti O, Hampe C, Koutnikova H, Darios F, Jacquier S et al (2003) The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet 12:1427–1437

    Article  PubMed  CAS  Google Scholar 

  32. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H et al (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150

    Article  PubMed  CAS  Google Scholar 

  33. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A et al (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293:263–269

    Article  PubMed  CAS  Google Scholar 

  34. Choi P, Snyder H, Petrucelli L, Theisler C, Chong M et al (2003) SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res 117:179–189

    Article  PubMed  CAS  Google Scholar 

  35. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y et al (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902

    Article  PubMed  CAS  Google Scholar 

  36. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E et al (2003) Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37:735–749

    Article  PubMed  CAS  Google Scholar 

  37. Hyun DH, Lee M, Halliwell B, Jenner P (2003) Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 86:363–373

    Article  PubMed  CAS  Google Scholar 

  38. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23:3316–3324

    PubMed  CAS  Google Scholar 

  39. Tsai YC, Fishman PS, Thakor NV, Oyler GA (2003) Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem 278:22044–22055

    Article  PubMed  CAS  Google Scholar 

  40. Jiang H, Jiang Q, Feng J (2004) Parkin increases dopamine uptake by enhancing the cell surface expression of dopamine transporter. J Biol Chem 279:54380–54386

    Article  PubMed  CAS  Google Scholar 

  41. Okui M, Yamaki A, Takayanagi A, Kudoh J, Shimizu N et al (2005) Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases. Exp Cell Res 309:220–228

    Article  PubMed  CAS  Google Scholar 

  42. Ko HS, von Coelln R, Sriram SR, Kim SW, Chung KK et al (2005) Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci 25:7968–7978

    Article  PubMed  CAS  Google Scholar 

  43. Fallon L, Belanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E et al (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8:834–842

    Article  PubMed  CAS  Google Scholar 

  44. Um JW, Min DS, Rhim H, Kim J, Paik SR et al (2006) Parkin ubiquitinates and promotes the degradation of RanBP2. J Biol Chem 281:3595–3603

    Article  PubMed  CAS  Google Scholar 

  45. Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE et al (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 27:1868–1878

    Article  PubMed  CAS  Google Scholar 

  46. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA et al (2007) Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 178:1025–1038

    Article  PubMed  CAS  Google Scholar 

  47. Fukae J, Sato S, Shiba K, Sato K, Mori H et al (2009) Programmed cell death-2 isoform1 is ubiquitinated by parkin and increased in the substantia nigra of patients with autosomal recessive Parkinson’s disease. FEBS Lett 583:521–525

    Article  PubMed  CAS  Google Scholar 

  48. Chen D, Gao F, Li B, Wang H, Xu Y, et al. (2010) Parkin mono-ubiquitinates BCL-2 and regulates autophagy. J Biol Chem 285:38214–38223

    Google Scholar 

  49. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  PubMed  CAS  Google Scholar 

  50. Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 107:5018–5023

    Article  PubMed  CAS  Google Scholar 

  51. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL et al (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  PubMed  CAS  Google Scholar 

  52. Shin JH, Ko HS, Kang H, Lee Y, Lee YI et al (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell 144:689–702

    Article  PubMed  CAS  Google Scholar 

  53. Joch M, Ase AR, Chen CX, MacDonald PA, Kontogiannea M et al (2007) Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell 18:3105–3118

    Article  PubMed  CAS  Google Scholar 

  54. Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291

    Article  PubMed  CAS  Google Scholar 

  55. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    Article  PubMed  CAS  Google Scholar 

  56. Von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M et al (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA 101:10744–10749

    Article  Google Scholar 

  57. Moore DJ, Zhang L, Troncoso J, Lee MK, Hattori N et al (2005) Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet 14:71–84

    Article  PubMed  CAS  Google Scholar 

  58. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  PubMed  CAS  Google Scholar 

  59. Pilsl A, Winklhofer KF (2012) Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol 123:173–188

    Article  PubMed  CAS  Google Scholar 

  60. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH et al (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870

    Article  PubMed  CAS  Google Scholar 

  61. Rakovic A, Grunewald A, Kottwitz J, Bruggemann N, Pramstaller PP et al (2011) Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS ONE 6:e16746

    Article  PubMed  CAS  Google Scholar 

  62. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE 5:e10054

    Article  PubMed  CAS  Google Scholar 

  63. Glauser L, Sonnay S, Stafa K, Moore DJ (2011) Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 118:636–645

    Article  PubMed  CAS  Google Scholar 

  64. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  PubMed  CAS  Google Scholar 

  65. Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ et al (2011) Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J 30:2853–2867

    Article  PubMed  CAS  Google Scholar 

  66. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–108

    Article  PubMed  CAS  Google Scholar 

  67. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed  CAS  Google Scholar 

  68. Henn IH, Gostner JM, Lackner P, Tatzelt J, Winklhofer KF (2005) Pathogenic mutations inactivate parkin by distinct mechanisms. J Neurochem 92:114–122

    Article  PubMed  CAS  Google Scholar 

  69. Cookson MR, Lockhart PJ, McLendon C, O’Farrell C, Schlossmacher M et al (2003) RING finger 1 mutations in Parkin produce altered localization of the protein. Hum Mol Genet 12:2957–2965

    Article  PubMed  CAS  Google Scholar 

  70. Wang C, Ko HS, Thomas B, Tsang F, Chew KC et al (2005) Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet 14:3885–3897

    Article  PubMed  CAS  Google Scholar 

  71. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  PubMed  CAS  Google Scholar 

  72. Deas E, Wood NW, Plun-Favreau H (2011) Mitophagy and Parkinson’s disease: The PINK1-parkin link. Biochim Biophys Acta 1813:623–633

    Google Scholar 

  73. Deas E, Plun-Favreau H, Wood NW (2009) PINK1 function in health and disease. EMBO Mol Med 1:152–165

    Article  PubMed  CAS  Google Scholar 

  74. Zhou H, Falkenburger BH, Schulz JB, Tieu K, Xu Z et al (2007) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 3:242–250

    Article  PubMed  CAS  Google Scholar 

  75. Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A et al (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446

    Article  PubMed  CAS  Google Scholar 

  76. Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4:e5777

    Article  PubMed  CAS  Google Scholar 

  77. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    Article  PubMed  CAS  Google Scholar 

  78. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB et al (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100:4078–4083

    Article  PubMed  CAS  Google Scholar 

  79. Park J, Lee SB, Lee S, Kim Y, Song S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    Article  PubMed  CAS  Google Scholar 

  80. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 103:10793–10798

    Article  PubMed  CAS  Google Scholar 

  81. Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K et al (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284:22938–22951

    Article  PubMed  CAS  Google Scholar 

  82. Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C et al (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27:12413–12418

    Article  PubMed  CAS  Google Scholar 

  83. Kim Y, Park J, Kim S, Song S, Kwon SK et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980

    Article  PubMed  CAS  Google Scholar 

  84. Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet 19:352–363

    Article  PubMed  CAS  Google Scholar 

  85. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed  CAS  Google Scholar 

  86. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  CAS  Google Scholar 

  87. Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci USA 108:12937–12942

    Article  PubMed  CAS  Google Scholar 

  88. Xiong H, Wang D, Chen L, Choo YS, Ma H et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119:650–660

    Article  PubMed  CAS  Google Scholar 

  89. Kamp F, Exner N, Lutz AK, Wender N, Hegermann J et al (2010) Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29:3571–3589

    Article  PubMed  CAS  Google Scholar 

  90. Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M et al (2011) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20:40–50

    Article  PubMed  CAS  Google Scholar 

  91. Lazarou M, Jin SM, Kane LA, Youle R (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell. doi:10.1016/j.bbr.2011.03.031

  92. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  PubMed  CAS  Google Scholar 

  93. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N et al (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 21:257–264

    Article  PubMed  CAS  Google Scholar 

  94. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T et al (2002) CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55–67

    Article  PubMed  CAS  Google Scholar 

  95. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    PubMed  CAS  Google Scholar 

  96. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM et al (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944

    Article  PubMed  CAS  Google Scholar 

  97. Van Humbeeck C, Waelkens E, Corti O, Brice A, Vandenberghe W (2008) Parkin occurs in a stable, non-covalent, approximately 110 kDa complex in brain. Eur J Neurosci 27:284–293

    Article  PubMed  Google Scholar 

  98. Sato S, Chiba T, Sakata E, Kato K, Mizuno Y et al (2006) 14-3-3eta is a novel regulator of parkin ubiquitin ligase. EMBO J 25:211–221

    Article  PubMed  CAS  Google Scholar 

  99. Kalia SK, Lee S, Smith PD, Liu L, Crocker SJ et al (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945

    Article  PubMed  CAS  Google Scholar 

  100. Kalia LV, Kalia SK, Chau H, Lozano AM, Hyman BT et al (2011) Ubiquitinylation of alpha-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS ONE 6:e14695

    Article  PubMed  CAS  Google Scholar 

  101. Um JW, Chung KC (2006) Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res 84:1543–1554

    Article  PubMed  CAS  Google Scholar 

  102. Shimura H, Hattori N, Kubo S, Yoshikawa M, Kitada T et al (1999) Immunohistochemical and subcellular localization of Parkin protein: absence of protein in autosomal recessive juvenile Parkinsonism patients. Ann Neurol 45:668–672

    Article  PubMed  CAS  Google Scholar 

  103. Stichel CC, Augustin M, Kuhn K, Zhu XR, Engels P et al (2000) Parkin expression in the adult mouse brain. Eur J Neurosci 12:4181–4194

    PubMed  CAS  Google Scholar 

  104. da Costa CA, Sunyach C, Giaime E, West A, Corti O et al (2009) Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat Cell Biol 11:1370–1375

    Article  PubMed  CAS  Google Scholar 

  105. Trempe JF, Chen CX, Grenier K, Camacho EM, Kozlov G et al (2009) SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol Cell 36:1034–1047

    Article  PubMed  CAS  Google Scholar 

  106. Liu F, Walters KJ (2011) Policing Parkin with a UblD. EMBO J 30:2757–2758

    Article  PubMed  CAS  Google Scholar 

  107. Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M (2011) The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144:769–781

    Article  PubMed  CAS  Google Scholar 

  108. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  PubMed  CAS  Google Scholar 

  109. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563

    Article  PubMed  CAS  Google Scholar 

  110. Durcan TM, Kontogiannea M, Thorarinsdottir T, Fallon L, Williams AJ et al (2011) The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum Mol Genet 20:141–154

    Article  PubMed  CAS  Google Scholar 

  111. Costa MD, Paulson HL (2011) Toward understanding Machado-Joseph disease. Prog Neurobiol (in press)

  112. Durcan TM, Fon EA (2011) Mutant ataxin-3 promotes the autophagic degradation of parkin. Autophagy 7:233–234

    Article  PubMed  Google Scholar 

  113. Durcan TM, Kontogiannea M, Bedard N, Wing SS, Fon EA (2012) Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme. J Biol Chem 287:531–541

    Article  PubMed  CAS  Google Scholar 

  114. Kuroda Y, Sako W, Goto S, Sawada T, Uchida D, et al. (2012) Parkin interacts with Klokin1 for mitochondrial import and maintenance of membrane potential. Hum Mol Genet 21:991–1003

    Google Scholar 

  115. Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K et al (2011) Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 31:10249–10261

    Article  PubMed  CAS  Google Scholar 

  116. Kao SY (2009) DNA damage induces nuclear translocation of parkin. J Biomed Sci 16:67

    Article  PubMed  CAS  Google Scholar 

  117. Rankin CA, Roy A, Zhang Y, Richter M (2011) Parkin, a top level manager in the cell’s sanitation department. Open Biochem J 5:9–26

    Article  PubMed  CAS  Google Scholar 

  118. Rubio de la Torre E, Gomez-Suaga P, Martinez-Salvador M, Hilfiker S (2011) Posttranslational modifications as versatile regulators of parkin function. Curr Med Chem 18:2477–2485

    Article  PubMed  CAS  Google Scholar 

  119. Yamamoto A, Friedlein A, Imai Y, Takahashi R, Kahle PJ et al (2005) Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem 280:3390–3399

    Article  PubMed  CAS  Google Scholar 

  120. Avraham E, Rott R, Liani E, Szargel R, Engelender S (2007) Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem 282:12842–12850

    Article  PubMed  CAS  Google Scholar 

  121. Rubio de la Torre E, Luzon-Toro B, Forte-Lago I, Minguez-Castellanos A, Ferrer I et al (2009) Combined kinase inhibition modulates parkin inactivation. Hum Mol Genet 18:809–823

    PubMed  CAS  Google Scholar 

  122. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS et al (2010) Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci USA 107:16691–16696

    Article  PubMed  CAS  Google Scholar 

  123. Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF et al (2011) Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci 31:157–163

    Article  PubMed  CAS  Google Scholar 

  124. Gu Z, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 41:55–72

    Article  PubMed  CAS  Google Scholar 

  125. Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O et al (2009) S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci USA 106:4900–4905

    Article  PubMed  CAS  Google Scholar 

  126. Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP et al (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39:184–195

    Article  PubMed  CAS  Google Scholar 

  127. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  PubMed  CAS  Google Scholar 

  128. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A et al (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Article  PubMed  CAS  Google Scholar 

  129. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC et al (2004) S-Nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331

    Article  PubMed  CAS  Google Scholar 

  130. Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y et al (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:10810–10814

    Article  PubMed  CAS  Google Scholar 

  131. Meng F, Yao D, Shi Y, Kabakoff J, Wu W et al (2011) Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 6:34

    Article  PubMed  CAS  Google Scholar 

  132. Winklhofer KF, Henn IH, Kay-Jackson PC, Heller U, Tatzelt J (2003) Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J Biol Chem 278:47199–47208

    Article  PubMed  CAS  Google Scholar 

  133. Nagy V, Dikic I (2010) Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity. Biol Chem 391:163–169

    Article  PubMed  CAS  Google Scholar 

  134. Um JW, Han KA, Im E, Oh Y, Lee K, et al. (2012) Neddylation positively regulates the ubiquitin E3 ligase activity of parkin. J Neurosci Res (in press)

  135. Burchell L, Chaugule VK, Walden H (2012) Small, N-terminal tags activate Parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation. PLoS ONE (in press)

  136. Choo YS, Vogler G, Wang D, Kalvakuri S, Iliuk A et al (2012) Regulation of parkin and PINK1 by neddylation. Hum Mol Genet. doi:10.1093/hmg/dds070

    PubMed  Google Scholar 

  137. Lim KL, Chew KC, Tan JM, Wang C, Chung KK et al (2005) Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 25:2002–2009

    Article  PubMed  CAS  Google Scholar 

  138. Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B (2003) Parkin suppresses dopaminergic neuron-selective meurotoxicity induced by Pael-R in Drosophila. Neuron 37:911–924

    Article  PubMed  CAS  Google Scholar 

  139. Huynh DP, Scoles DR, Nguyen D, Pulst SM (2003) The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet 12:2587–2597

    Article  PubMed  CAS  Google Scholar 

  140. Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM (2006) Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J Biol Chem 281:16193–16196

    Article  PubMed  CAS  Google Scholar 

  141. Wang H, Song P, Du L, Tian W, Yue W et al (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286:11649–11658

    Article  PubMed  CAS  Google Scholar 

  142. Corti O, Brice A (2007) Of Parkin and Parkinson’s: light and dark sides of a multifaceted E3 ubiquitin-protein ligase. Drug Discov Today Dis Mech 4:121–127

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Cancer Research UK. H.W. is a European Molecular Biology Organisation (EMBO) Young Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Walden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walden, H., Martinez-Torres, R.J. Regulation of Parkin E3 ubiquitin ligase activity. Cell. Mol. Life Sci. 69, 3053–3067 (2012). https://doi.org/10.1007/s00018-012-0978-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0978-5

Keywords

Navigation