Skip to main content
Log in

How to halve ploidy: lessons from budding yeast meiosis

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Anaphase promoting complex

Cdk:

Cyclin-dependent kinase

dHJ:

Double Holliday junction

DSB:

Double-strand break

FEAR:

Cdc fourteen early anaphase release

MEN:

Mitotic exit network

MT:

Microtubule

SC:

Synaptonemal complex

SPB:

Spindle pole body

References

  1. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    PubMed  CAS  Google Scholar 

  2. Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777

    PubMed  CAS  Google Scholar 

  3. Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301

    PubMed  CAS  Google Scholar 

  4. Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    PubMed  CAS  Google Scholar 

  5. Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G (2003) Transcriptional regulation of meiosis in budding yeast. Int Rev Cytol 224:111–171

    PubMed  CAS  Google Scholar 

  6. Honigberg SM, Purnapatre K (2003) Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 116:2137–2147

    PubMed  CAS  Google Scholar 

  7. Covitz PA, Herskowitz I, Mitchell AP (1991) The yeast RME1 gene encodes a putative zinc finger protein that is directly repressed by a1-alpha 2. Genes Dev 5:1982–1989

    PubMed  CAS  Google Scholar 

  8. Toone WM, Johnson AL, Banks GR, Toyn JH, Stuart D, Wittenberg C, Johnston LH (1995) Rme1, a negative regulator of meiosis, is also a positive activator of G1 cyclin gene expression. EMBO J 14:5824–5832

    PubMed  CAS  Google Scholar 

  9. Shah JC, Clancy MJ (1992) IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 12:1078–1086

    PubMed  CAS  Google Scholar 

  10. Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30:4509–4518

    PubMed  CAS  Google Scholar 

  11. Rubin-Bejerano I, Mandel S, Robzyk K, Kassir Y (1996) Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional repressor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol Cell Biol 16:2518–2526

    PubMed  CAS  Google Scholar 

  12. Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371

    PubMed  CAS  Google Scholar 

  13. Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433

    PubMed  CAS  Google Scholar 

  14. Pnueli L, Edry I, Cohen M, Kassir Y (2004) Glucose and nitrogen regulate the switch from histone deacetylation to acetylation for expression of early meiosis-specific genes in budding yeast. Mol Cell Biol 24:5197–5208

    PubMed  CAS  Google Scholar 

  15. Malathi K, Xiao Y, Mitchell AP (1997) Interaction of yeast repressor-activator protein Ume6p with glycogen synthase kinase 3 homolog Rim11p. Mol Cell Biol 17:7230–7236

    PubMed  CAS  Google Scholar 

  16. Vidan S, Mitchell AP (1997) Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Mol Cell Biol 17:2688–2697

    PubMed  CAS  Google Scholar 

  17. Dirick L, Goetsch L, Ammerer G, Byers B (1998) Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 281:1854–1857

    PubMed  CAS  Google Scholar 

  18. Colomina N, Garí E, Gallego C, Herrero E, Aldea M (1999) G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO J 18:320–329

    PubMed  CAS  Google Scholar 

  19. Gari E, Volpe T, Wang H, Gallego C, Futcher B, Aldea M (2001) Whi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast. Genes Dev 15:2803–2808

    PubMed  CAS  Google Scholar 

  20. Collins I, Newlon CS (1994) Chromosomal DNA replication initiates at the same origins in meiosis and mitosis. Mol Cell Biol 14:3524–3534

    PubMed  CAS  Google Scholar 

  21. Williamson DH, Johnston LH, Fennell DJ, Simchen G (1983) The timing of the S phase and other nuclear events in yeast meiosis. Exp Cell Res 145:209–217

    PubMed  CAS  Google Scholar 

  22. Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N (2000) Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev 14:493–503

    PubMed  CAS  Google Scholar 

  23. Schwob E, Nasmyth K (1993) CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev 7:1160–1175

    PubMed  CAS  Google Scholar 

  24. Stuart D, Wittenberg C (1998) CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev 12:2698–2710

    PubMed  CAS  Google Scholar 

  25. Davis L, Barbera M, McDonnell A, McIntyre K, Sternglanz R, Jin Q, Loidl J, Engebrecht J (2001) The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks. Genetics 157:1179–1189

    PubMed  CAS  Google Scholar 

  26. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    PubMed  CAS  Google Scholar 

  27. Klein F, Mahr P, Galova M, Buonomo SBC, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    PubMed  CAS  Google Scholar 

  28. Nicolette ML, Lee K, Guo Z, Rani M, Chow JM, Lee SE, Paull TT (2010) Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat Struct Mol Biol 17:1478–1485

    PubMed  CAS  Google Scholar 

  29. Lao JP, Hunter N (2010) Trying to avoid your sister. PLoS Biol 8:e1000519

    PubMed  Google Scholar 

  30. Matos J, Blanco MG, Maslen S, Skehel JM, West SC (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147:158–172

    PubMed  CAS  Google Scholar 

  31. Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    PubMed  Google Scholar 

  32. Whitby MC (2005) Making crossovers during meiosis. Biochem Soc Trans 33:1451–1455

    PubMed  CAS  Google Scholar 

  33. Smith KN, Penkner A, Ohta K, Klein F, Nicolas A (2001) B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis. Curr Biol 11:88–97

    PubMed  CAS  Google Scholar 

  34. Borde V, Goldman AS, Lichten M (2000) Direct coupling between meiotic DNA replication and recombination initiation. Science 290:806–809

    PubMed  CAS  Google Scholar 

  35. Hochwagen A, Tham WH, Brar GA, Amon A (2005) The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122:861–873

    PubMed  CAS  Google Scholar 

  36. Sasanuma H, Ohta K (2009) Formation of DNA double-strand breaks in meiosis. Tanpakushitsu Kakusan Koso 54:459–465

    PubMed  CAS  Google Scholar 

  37. Wan L, Niu H, Futcher B, Zhang C, Shokat KM, Boulton SJ, Hollingsworth NM (2008) Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes Dev 22:386–397

    PubMed  CAS  Google Scholar 

  38. Hochwagen A, Amon A (2006) Checking your breaks: surveillance mechanisms of meiotic recombination. Curr Biol 16:R217–R228

    PubMed  CAS  Google Scholar 

  39. Leu JY, Roeder GS (1999) The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated phosphorylation of the cyclin-dependent kinase Cdc28. Mol Cell 4:805–814

    PubMed  CAS  Google Scholar 

  40. Xu L, Ajimura M, Padmore R, Klein C, Kleckner N (1995) NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol Cell Biol 15:6572–6581

    PubMed  CAS  Google Scholar 

  41. Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK (1999) Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J 18:6448–6454

    PubMed  CAS  Google Scholar 

  42. Lindgren A, Bungard D, Pierce M, Xie J, Vershon A, Winter E (2000) The pachytene checkpoint in Saccharomyces cerevisiae requires the Sum1 transcriptional repressor. EMBO J 19:6489–6497

    PubMed  CAS  Google Scholar 

  43. Pak J, Segall J (2002) Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol Cell Biol 22:6430–6440

    PubMed  CAS  Google Scholar 

  44. Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK (2003) Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol Cell Biol 23:4814–4825

    PubMed  CAS  Google Scholar 

  45. Shin ME, Skokotas A, Winter E (2010) The Cdk1 and Ime2 protein kinases trigger exit from meiotic prophase in Saccharomyces cerevisiae by inhibiting the Sum1 transcriptional repressor. Mol Cell Biol 30:2996–3003

    PubMed  CAS  Google Scholar 

  46. Wang Y, Chang CY, Wu JF, Tung KS (2011) Nuclear localization of the meiosis-specific transcription factor Ndt80 is regulated by the pachytene checkpoint. Mol Biol Cell 22:1878–1886

    PubMed  CAS  Google Scholar 

  47. Sopko R, Raithatha S, Stuart D (2002) Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol Cell Biol 22:7024–7040

    PubMed  CAS  Google Scholar 

  48. Chu S, Herskowitz I (1998) Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol Cell 1:685–696

    PubMed  CAS  Google Scholar 

  49. Hepworth SR, Friesen H, Segall J (1998) NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 18:5750–5761

    PubMed  CAS  Google Scholar 

  50. Sourirajan A, Lichten M (2008) Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev 22:2627–2632

    PubMed  CAS  Google Scholar 

  51. Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SB, Nasmyth K (2000) Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103:1155–1168

    PubMed  CAS  Google Scholar 

  52. Rabitsch KP, Petronczki M, Javerzat JP, Genier S, Chwalla B, Schleiffer A, Tanaka TU, Nasmyth K (2003) Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev Cell 4:535–548

    PubMed  CAS  Google Scholar 

  53. Petronczki M, Matos J, Mori S, Gregan J, Bogdanova A, Schwickart M, Mechtler K, Shirahige K, Zachariae W, Nasmyth K (2006) Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126:1049–1064

    PubMed  CAS  Google Scholar 

  54. Huang J, Brito IL, Villen J, Gygi SP, Amon A, Moazed D (2006) Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev 20:2887–2901

    PubMed  CAS  Google Scholar 

  55. Waples WG, Chahwan C, Ciechonska M, Lavoie BD (2009) Putting the brake on FEAR: Tof2 promotes the biphasic release of Cdc14 phosphatase during mitotic exit. Mol Biol Cell 20:245–255

    PubMed  CAS  Google Scholar 

  56. Lee BH, Amon A (2003) Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300:482–486

    PubMed  CAS  Google Scholar 

  57. Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K (2003) Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5:480–485

    PubMed  CAS  Google Scholar 

  58. Matos J, Lipp JJ, Bogdanova A, Guillot S, Okaz E, Junqueira M, Shevchenko A, Zachariae W (2008) Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 135:662–678

    PubMed  CAS  Google Scholar 

  59. Corbett KD, Yip CK, Ee LS, Walz T, Amon A, Harrison SC (2010) The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 142:556–567

    PubMed  CAS  Google Scholar 

  60. Gregan J, Riedel CG, Pidoux AL, Katou Y, Rumpf C, Schleiffer A, Kearsey SE, Shirahige K, Allshire RC, Nasmyth K (2007) The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr Biol 17:1190–1200

    PubMed  CAS  Google Scholar 

  61. Rumpf C, Cipak L, Schleiffer A, Pidoux A, Mechtler K, Tolic-Norrelykke IM, Gregan J (2010) Laser microsurgery provides evidence for merotelic kinetochore attachments in fission yeast cells lacking Pcs1 or Clr4. Cell Cycle 9:3997–4004

    PubMed  CAS  Google Scholar 

  62. Tada K, Susumu H, Sakuno T, Watanabe Y (2011) Condensin association with histone H2A shapes mitotic chromosomes. Nature 474:477–483

    PubMed  CAS  Google Scholar 

  63. Brito IL, Yu HG, Amon A (2010) Condensins promote coorientation of sister chromatids during meiosis I in budding yeast. Genetics 185:55–64

    PubMed  CAS  Google Scholar 

  64. Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517

    PubMed  CAS  Google Scholar 

  65. Marston AL, Tham WH, Shah H, Amon A (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303:1367–1370

    PubMed  CAS  Google Scholar 

  66. Rabitsch KP, Gregan J, Schleiffer A, Javerzat JP, Eisenhaber F, Nasmyth K (2004) Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14:287–301

    PubMed  CAS  Google Scholar 

  67. Katis VL, Galova M, Rabitsch KP, Gregan J, Nasmyth K (2004) Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol 14:560–572

    PubMed  CAS  Google Scholar 

  68. Tang TT, Bickel SE, Young LM, Orr-Weaver TL (1998) Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein. Genes Dev 12:3843–3856

    PubMed  CAS  Google Scholar 

  69. Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande WZ (2005) A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15:948–954

    PubMed  CAS  Google Scholar 

  70. Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y (2008) Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10:42–52

    PubMed  CAS  Google Scholar 

  71. Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Gálová M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K, Nasmyth K (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61

    PubMed  CAS  Google Scholar 

  72. Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52

    PubMed  CAS  Google Scholar 

  73. Xu Z, Cetin B, Anger M, Cho US, Helmhart W, Nasmyth K, Xu W (2009) Structure and function of the PP2A-shugoshin interaction. Mol Cell 35:426–441

    PubMed  CAS  Google Scholar 

  74. Katis VL, Lipp JJ, Imre R, Bogdanova A, Okaz E, Habermann B, Mechtler K, Nasmyth K, Zachariae W (2010) Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev Cell 18:397–409

    PubMed  CAS  Google Scholar 

  75. Alexandru G, Uhlmann F, Mechtler K, Poupart MA, Nasmyth K (2001) Phosphorylation of the cohesin subunit Scc1 by polo/cdc5 kinase regulates sister chromatid separation in yeast. Cell 105:459–472

    PubMed  CAS  Google Scholar 

  76. Ishiguro T, Tanaka K, Sakuno T, Watanabe Y (2010) Shugoshin-PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase. Nat Cell Biol 12:500–506

    PubMed  CAS  Google Scholar 

  77. Rumpf C, Cipak L, Dudas A, Benko Z, Pozgajova M, Riedel CG, Ammerer G, Mechtler K, Gregan J (2010) Casein kinase 1 is required for efficient removal of Rec8 during meiosis I. Cell Cycle 9:2657–2662

    PubMed  CAS  Google Scholar 

  78. Brar GA, Kiburz BM, Zhang Y, Kim JE, White F, Amon A (2006) Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441:532–536

    PubMed  CAS  Google Scholar 

  79. Dahmann C, Diffley JF, Nasmyth KA (1995) S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5:1257–1269

    PubMed  CAS  Google Scholar 

  80. Marston AL, Lee BH, Amon A (2003) The Cdc14 phosphatase and the FEAR network control meiotic spindle disassembly and chromosome segregation. Dev Cell 4:711–726

    PubMed  CAS  Google Scholar 

  81. Buonomo SB, Rabitsch KP, Fuchs J, Gruber S, Sullivan M, Uhlmann F, Petronczki M, Tóth A, Nasmyth K (2003) Division of the nucleolus and its release of CDC14 during anaphase of meiosis I depends on separase, SPO12, and SLK19. Dev Cell 4:727–739

    PubMed  CAS  Google Scholar 

  82. Visintin R, Hwang ES, Amon A (1999) Cfi1 prevents premature exit from mitosis by inhibiting and sequestering the Cdc14 phosphatase in the nucleolus. Nature 398:818–823

    PubMed  CAS  Google Scholar 

  83. Shou W, Seol JH, Shevchenko A, Baskerville C, Moazed D, Chen ZW, Jang J, Shevchenko A, Charbonneau H, Deshaies RJ (1999) Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97:233–244

    PubMed  CAS  Google Scholar 

  84. Queralt E, Lehane C, Novak B, Uhlmann F (2006) Downregulation of PP2A (Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125:719–732

    PubMed  CAS  Google Scholar 

  85. Yellman CM, Burke DJ (2006) The role of Cdc55 in the spindle checkpoint is through regulation of mitotic exit in Saccharomyces cerevisiae. Mol Biol Cell 17:658–666

    PubMed  CAS  Google Scholar 

  86. Queralt E, Uhlmann F (2008) Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase. J Cell Biol 182:873–883

    PubMed  CAS  Google Scholar 

  87. Tomson BN, Rahal R, Reiser V, Monje-Casas F, Mekhail K, Moazed D, Amon A (2009) Regulation of Spo12 phosphorylation and its essential role in the FEAR network. Curr Biol 19:449–460

    PubMed  CAS  Google Scholar 

  88. Stegmeier F, Huang J, Rahal R, Zmolik J, Moazed D, Amon A (2004) The replication fork block protein Fob1 functions as a negative regulator of the FEAR network. Curr Biol 14:467–480

    PubMed  CAS  Google Scholar 

  89. Kerr GW, Sarkar S, Tibbles KL, Petronczki M, Millar JB, Arumugam P (2011) Meiotic nuclear divisions in budding yeast require PP2A(Cdc55)-mediated antagonism of Net1 phosphorylation by Cdk. J Cell Biol 193:1157–1166

    PubMed  CAS  Google Scholar 

  90. Bizzari F, Marston AL (2011) Cdc55 coordinates spindle assembly and chromosome disjunction during meiosis. J Cell Biol 193:1213–1228

    PubMed  CAS  Google Scholar 

  91. Kamieniecki RJ, Liu L, Dawson DS (2005) FEAR but not MEN genes are required for exit from meiosis I. Cell Cycle 4:1093–1098

    PubMed  CAS  Google Scholar 

  92. Benjamin KR, Zhang C, Shokat KM, Herskowitz I (2003) Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev 17:1524–1539

    PubMed  CAS  Google Scholar 

  93. Holt LJ, Hutti JE, Cantley LC, Morgan DO (2007) Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell 25:689–702

    PubMed  CAS  Google Scholar 

  94. Schindler K, Winter E (2006) Phosphorylation of Ime2 regulates meiotic progression in Saccharomyces cerevisiae. J Biol Chem 281:18307–18316

    PubMed  CAS  Google Scholar 

  95. Carlile TM, Amon A (2008) Meiosis I is established through division-specific translational control of a cyclin. Cell 133:280–291

    PubMed  CAS  Google Scholar 

  96. Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11:124–136

    PubMed  CAS  Google Scholar 

  97. Li XC, Schimenti JC (2007) Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet 3:e130

    PubMed  Google Scholar 

  98. Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu H, Helmhart W, Kudo H, McKay M, Maro B, Ellenberg J, de Boer P, Nasmyth K (2006) Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126:135–146

    PubMed  CAS  Google Scholar 

  99. Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464

    PubMed  CAS  Google Scholar 

  100. Yokobayashi S, Yamamoto M, Watanabe Y (2003) Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast. Mol Cell Biol 23:3965–3973

    PubMed  CAS  Google Scholar 

  101. Sakuno T, Tada K, Watanabe Y (2009) Kinetochore geometry defined by cohesion within the centromere. Nature 458:852–858

    PubMed  CAS  Google Scholar 

  102. Shao T, Tang D, Wang K, Wang M, Che L, Qin B, Yu H, Li M, Gu M, Cheng Z (2011) OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol 156:1386–1396

    PubMed  CAS  Google Scholar 

  103. Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Márquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mézard C, Grelon M (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632

    PubMed  CAS  Google Scholar 

  104. Mocciaro A, Schiebel E (2010) Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 123:2867–2876

    PubMed  CAS  Google Scholar 

  105. Chen CT, Peli-Gulli MP, Simanis V, McCollum D (2006) S. pombe FEAR protein orthologs are not required for release of Clp1/Flp1 phosphatase from the nucleolus during mitosis. J Cell Sci 119:4462–4466

    PubMed  CAS  Google Scholar 

  106. Izawa D, Goto M, Yamashita A, Yamano H, Yamamoto M (2005) Fission yeast Mes1p ensures the onset of meiosis II by blocking degradation of cyclin Cdc13p. Nature 434:529–533

    PubMed  CAS  Google Scholar 

  107. Furuno N, Nishizawa M, Okazaki K, Tanaka H, Iwashita J, Nakajo N, Ogawa Y, Sagata N (1994) Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. EMBO J 13:2399–2410

    PubMed  CAS  Google Scholar 

  108. Nakajo N, Yoshitome S, Iwashita J, Iida M, Uto K, Ueno S, Okamoto K, Sagata N (2000) Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev 14:328–338

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to numerous colleagues if, due to space constraints, their work is not cited in this review. P.A. and S.S. are supported by a grant from the Biotechnology and Biological Sciences Research Council (BBSRC, BB/G00353X/1). G.W.K. is supported by a BBSRC-funded studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Arumugam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, G.W., Sarkar, S. & Arumugam, P. How to halve ploidy: lessons from budding yeast meiosis. Cell. Mol. Life Sci. 69, 3037–3051 (2012). https://doi.org/10.1007/s00018-012-0974-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0974-9

Keywords

Navigation