Abstract
Age is an important risk for autoimmunity, and many autoimmune diseases preferentially occur in the second half of adulthood when immune competence has declined and thymic T cell generation has ceased. Many tolerance checkpoints have to fail for an autoimmune disease to develop, and several of those are susceptible to the immune aging process. Homeostatic T cell proliferation which is mainly responsible for T cell replenishment during adulthood can lead to the selection of T cells with increased affinity to self- or neoantigens and enhanced growth and survival properties. These cells can acquire a memory-like phenotype, in particular under lymphopenic conditions. Accumulation of end-differentiated effector T cells, either specific for self-antigen or for latent viruses, have a low activation threshold due to the expression of signaling and regulatory molecules and generate an inflammatory environment with their ability to be cytotoxic and to produce excessive amounts of cytokines and thereby inducing or amplifying autoimmune responses.
Similar content being viewed by others
Abbreviations
- ATM:
-
Ataxia telangiectasia mutated
- CMV:
-
Cytomegalovirus
- HAART:
-
Highly active antiretroviral therapy
- IRIS:
-
Immune reconstitution inflammatory syndrome
- KIR:
-
Killer immunoglobulin-like receptors
- TREC:
-
T cell receptor excision circle
References
Christen U, Hintermann E, Holdener M, von Herrath MG (2010) Viral triggers for autoimmunity: is the ‘glass of molecular mimicry’ half full or half empty? J Autoimmun 34:38–44
Green NM, Marshak-Rothstein A (2011) Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 23(2):106–112
Shlomchik MJ (2009) Activating systemic autoimmunity: B’s, T’s, and tolls. Curr Opin Immunol 21:626–633
Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N et al (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–186
Rivetti D, Jefferson T, Thomas R, Rudin M, Rivetti A, et al (2006) Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 3:CD004876
Goodwin K, Viboud C, Simonsen L (2006) Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24:1159–1169
Arvin AM (2008) Humoral and cellular immunity to varicella-zoster virus: an overview. J Infect Dis 197(Suppl 2):S58–S60
Goronzy JJ, Weyand CM (2003) Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 5:225–234
Ruffatti A, Rossi L, Calligaro A, Del Ross T, Lagni M et al (1990) Autoantibodies of systemic rheumatic diseases in the healthy elderly. Gerontology 36:104–111
Moulias R, Proust J, Wang A, Congy F, Marescot MR et al (1984) Age-related increase in autoantibodies. Lancet 1:1128–1129
Weyand CM, Goronzy JJ (2003) Medium- and large-vessel vasculitis. N Engl J Med 349:160–169
Doran MF, Pond GR, Crowson CS, O’Fallon WM, Gabriel SE (2002) Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum 46:625–631
Goronzy JJ, Weyand CM (2005) Rheumatoid arthritis. Immunol Rev 204:55–73
Goronzy JJ, Shao L, Weyand CM (2010) Immune aging and rheumatoid arthritis. Rheum Dis Clin North Am 36:297–310
Weng NP (2006) Aging of the immune system: how much can the adaptive immune system adapt? Immunity 24:495–499
Kong FK, Chen CL, Six A, Hockett RD, Cooper MD (1999) T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool. Proc Natl Acad Sci USA 96:1536–1540
Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695
Hazenberg MD, Borghans JA, de Boer RJ, Miedema F (2003) Thymic output: a bad TREC record. Nat Immunol 4:97–99
Naylor K, Li G, Vallejo AN, Lee WW, Koetz K et al (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452
Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17:468–475
Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK et al (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest 115:930–939
Koetz K, Bryl E, Spickschen K, O’Fallon WM, Goronzy JJ et al (2000) T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 97:9203–9208
Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862
Wallace DL, Zhang Y, Ghattas H, Worth A, Irvine A et al (2004) Direct measurement of T cell subset kinetics in vivo in elderly men and women. J Immunol 173:1787–1794
Cicin-Sain L, Messaoudi I, Park B, Currier N, Planer S et al (2007) Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. Proc Natl Acad Sci USA 104:19960–19965
Labrecque N, Whitfield LS, Obst R, Waltzinger C, Benoist C et al (2001) How much TCR does a T cell need? Immunity 15:71–82
Polic B, Kunkel D, Scheffold A, Rajewsky K (2001) How alpha beta T cells deal with induced TCR alpha ablation. Proc Natl Acad Sci USA 98:8744–8749
Seddon B, Zamoyska R (2002) TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J Immunol 169:3752–3759
Kassiotis G, Zamoyska R, Stockinger B (2003) Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med 197:1007–1016
Kieper WC, Burghardt JT, Surh CD (2004) A role for TCR affinity in regulating naive T cell homeostasis. J Immunol 172:40–44
Goronzy JJ, Weyand CM (2001) T cell homeostasis and autoreactivity in rheumatoid arthritis. Curr Dir Autoimmun 3:112–132
Goronzy JJ, Weyand CM (2001) Thymic function and peripheral T-cell homeostasis in rheumatoid arthritis. Trends Immunol 22:251–255
Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J et al (2000) Diversity of human alpha beta T cell receptors. Science 288:1135
Wagner UG, Koetz K, Weyand CM, Goronzy JJ (1998) Perturbation of the T cell repertoire in rheumatoid arthritis. Proc Natl Acad Sci USA 95:14447–14452
Warren RL, Freeman JD, Zeng T, Choe G, Munro S et al (2011) Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 21(5):790–797
Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, et al (2010) Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci Transl Med 2:47ra64
Cho BK, Rao VP, Ge Q, Eisen HN, Chen J (2000) Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 192:549–556
Goldrath AW, Bogatzki LY, Bevan MJ (2000) Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 192:557–564
Goldrath AW, Luckey CJ, Park R, Benoist C, Mathis D (2004) The molecular program induced in T cells undergoing homeostatic proliferation. Proc Natl Acad Sci USA 101:16885–16890
Williams KM, Hakim FT, Gress RE (2007) T cell immune reconstitution following lymphodepletion. Semin Immunol 19:318–330
Jendro MC, Ganten T, Matteson EL, Weyand CM, Goronzy JJ (1995) Emergence of oligoclonal T cell populations following therapeutic T cell depletion in rheumatoid arthritis. Arthritis Rheum 38:1242–1251
Akbar AN, Fletcher JM (2005) Memory T cell homeostasis and senescence during aging. Curr Opin Immunol 17:480–485
Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8:512–522
Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL et al (2008) T cell subset-specific susceptibility to aging. Clin Immunol 127:107–118
Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157
Weng NP, Akbar AN, Goronzy J (2009) CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol 30:306–312
Moss P (2010) The emerging role of cytomegalovirus in driving immune senescence: a novel therapeutic opportunity for improving health in the elderly. Curr Opin Immunol 22:529–534
Schmidt D, Goronzy JJ, Weyand CM (1996) CD4+ CD7− CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 97:2027–2037
Zal B, Kaski JC, Arno G, Akiyu JP, Xu Q et al (2004) Heat-shock protein 60-reactive CD4+ CD28 null T cells in patients with acute coronary syndromes. Circulation 109:1230–1235
Messaoudi I, Warner J, Nikolich-Zugich D, Fischer M, Nikolich-Zugich J (2006) Molecular, cellular, and antigen requirements for development of age-associated T cell clonal expansions in vivo. J Immunol 176:301–308
Zhang R, Shah MV, Loughran TP Jr (2010) The root of many evils: indolent large granular lymphocyte leukaemia and associated disorders. Hematol Oncol 28:105–117
Shah MV, Zhang R, Loughran TP Jr (2009) Never say die: survival signaling in large granular lymphocyte leukemia. Clin Lymphoma Myeloma 9(Suppl 3):S244–S253
Schirmer M, Vallejo AN, Weyand CM, Goronzy JJ (1998) Resistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4+ CD28− T cells from rheumatoid arthritis patients. J Immunol 161:1018–1025
Park W, Weyand CM, Schmidt D, Goronzy JJ (1997) Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4 + CD28− T cells. Eur J Immunol 27:1082–1090
Weyand CM, Brandes JC, Schmidt D, Fulbright JW, Goronzy JJ (1998) Functional properties of CD4 + CD28− T cells in the aging immune system. Mech Ageing Dev 102:131–147
Serriari NE, Gondois-Rey F, Guillaume Y, Remmerswaal EB, Pastor S et al (2010) B and T lymphocyte attenuator is highly expressed on CMV-specific T cells during infection and regulates their function. J Immunol 185:3140–3148
Fann M, Chiu WK, Wood WH 3rd, Levine BL, Becker KG et al (2005) Gene expression characteristics of CD28 null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol Rev 205:190–206
Warrington KJ, Takemura S, Goronzy JJ, Weyand CM (2001) CD4+, CD28− T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. Arthritis Rheum 44:13–20
Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ et al (2000) Killer cell activating receptors function as costimulatory molecules on CD4+ CD28 null T cells clonally expanded in rheumatoid arthritis. J Immunol 165:1138–1145
Bigouret V, Hoffmann T, Arlettaz L, Villard J, Colonna M et al (2003) Monoclonal T-cell expansions in asymptomatic individuals and in patients with large granular leukemia consist of cytotoxic effector T cells expressing the activating CD94:NKG2C/E and NKD2D killer cell receptors. Blood 101:3198–3204
Snyder MR, Muegge LO, Offord C, O’Fallon WM, Bajzer Z et al (2002) Formation of the killer Ig-like receptor repertoire on CD4+ CD28 null T cells. J Immunol 168:3839–3846
Chen X, Bai F, Sokol L, Zhou J, Ren A et al (2009) A critical role for DAP10 and DAP12 in CD8+ T cell-mediated tissue damage in large granular lymphocyte leukemia. Blood 113:3226–3234
Hickman SP, Turka LA (2005) Homeostatic T cell proliferation as a barrier to T cell tolerance. Philos Trans R Soc Lond B Biol Sci 360:1713–1721
Ramanathan S, Poussier P (2001) BB rat lyp mutation and Type 1 diabetes. Immunol Rev 184:161–171
King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265–277
Calzascia T, Pellegrini M, Lin A, Garza KM, Elford AR et al (2008) CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity. Proc Natl Acad Sci USA 105:2999–3004
Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T et al (2007) T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17 + Th cells that cause autoimmune arthritis. J Exp Med 204:41–47
Muller M, Wandel S, Colebunders R, Attia S, Furrer H et al (2010) Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis 10:251–261
Thewissen M, Somers V, Venken K, Linsen L, van Paassen P et al (2007) Analyses of immunosenescent markers in patients with autoimmune disease. Clin Immunol 123:209–218
Goronzy JJ, Matteson EL, Fulbright JW, Warrington KJ, Chang-Miller A et al (2004) Prognostic markers of radiographic progression in early rheumatoid arthritis. Arthritis Rheum 50:43–54
Schönland SO, Lopez C, Widmann T, Zimmer J, Bryl E, Goronzy JJ, Weyand CM (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves lymphoid and myeloid cell lineages. Proc Natl Acad Sci USA 100:13471–13476
Colmegna I, Diaz-Borjon A, Fujii H, Schaefer L, Goronzy JJ et al (2008) Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum 58:990–1000
Beerman I, Maloney WJ, Weissmann IL, Rossi DJ (2010) Stem cells and the aging hematopoietic system. Curr Opin Immunol 22:500–506
Fujii H, Shao L, Colmegna I, Goronzy JJ, Weyand CM (2009) Telomerase insufficiency in rheumatoid arthritis. Proc Natl Acad Sci USA 106:4360–4365
Shao L, Fujii H, Colmegna I, Oishi H, Goronzy JJ et al (2009) Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. J Exp Med 206:1435–1449
Martens PB, Goronzy JJ, Schaid D, Weyand CM (1997) Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum 40:1106–1114
Komocsi A, Lamprecht P, Csernok E, Mueller A, Holl-Ulrich K et al (2002) Peripheral blood and granuloma CD4(+)CD28(−) T cells are a major source of interferon-gamma and tumor necrosis factor-alpha in Wegener’s granulomatosis. Am J Pathol 160:1717–1724
McKinney EF, Lyons PA, Carr EJ, Hollis JL, Jayne DR, et al. (2010) A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med 16:581, 586–591
Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O et al (2010) T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther 12:204
Berden AE, Kallenberg CG, Savage CO, Yard BA, Abdulahad WH et al (2009) Cellular immunity in Wegener’s granulomatosis: characterizing T lymphocytes. Arthritis Rheum 60:1578–1587
Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR et al (2000) Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101:2883–2888
Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL et al (2002) T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105:570–575
Sato K, Niessner A, Kopecky SL, Frye RL, Goronzy JJ et al (2006) TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J Exp Med 203:239–250
Pryshchep S, Sato K, Goronzy JJ, Weyand CM (2006) T cell recognition and killing of vascular smooth muscle cells in acute coronary syndrome. Circ Res 98:1168–1176
Snyder MR, Weyand CM, Goronzy JJ (2004) The double life of NK receptors: stimulation or co-stimulation? Trends Immunol 25:25–32
Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7:737–744
Van Belle TL, von Herrath MG (2009) The role of the activating receptor NKG2D in autoimmunity. Mol Immunol 47:8–11
Snyder MR, Lucas M, Vivier E, Weyand CM, Goronzy JJ (2003) Selective activation of the c-Jun NH2-terminal protein kinase signaling pathway by stimulatory KIR in the absence of KARAP/DAP12 in CD4+ T cells. J Exp Med 197:437–449
Sawai H, Park YW, Roberson J, Imai T, Goronzy JJ et al (2005) T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis Rheum 52:1392–1401
Goodnow CC (2007) Multistep pathogenesis of autoimmune disease. Cell 130:25–35
Acknowledgments
This work was supported by grants from the National Institutes of Health (AI 57266 and AI 90019).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goronzy, J.J., Weyand, C.M. Immune aging and autoimmunity. Cell. Mol. Life Sci. 69, 1615–1623 (2012). https://doi.org/10.1007/s00018-012-0970-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-012-0970-0