Cellular and Molecular Life Sciences

, Volume 69, Issue 18, pp 2999–3013 | Cite as

Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases

  • Antero Salminen
  • Johanna Ojala
  • Kai Kaarniranta
  • Anu Kauppinen
Review

Abstract

Oxidative stress and low-grade inflammation are the hallmarks of the aging process and are even more enhanced in many age-related degenerative diseases. Mitochondrial dysfunction and oxidative stress can provoke and potentiate inflammatory responses, but the mechanism has remained elusive. Recent studies indicate that oxidative stress can induce the assembly of multiprotein inflammatory complexes called the inflammasomes. Nod-like receptor protein 3 (NLRP3) is the major immune sensor for cellular stress signals, e.g., reactive oxygen species, ceramides, and cathepsin B. NLRP3 activation triggers the caspase-1-mediated maturation of the precursors of IL-1β and IL-18 cytokines. During aging, the autophagic clearance of mitochondria declines and dysfunctional mitochondria provoke chronic oxidative stress, which disturbs the cellular redox balance. Moreover, increased NF-κB signaling observed during aging could potentiate the expression of NLRP3 and cytokine proforms enhancing the priming of NLRP3 inflammasomes. Recent studies have demonstrated that NLRP3 activation is associated with several age-related diseases, e.g., the metabolic syndrome. We will review here the emerging field of inflammasomes in the appearance of the proinflammatory phenotype during the aging process and in age-related diseases.

Keywords

Ageing Autophagy Inflammasome Inflammation NF-κB NLRP3 

Abbreviations

AIM2

Absent in melanoma 2

ASC

Apoptosis-associated speck-like protein containing CARD domain

CARD

Caspase recruitment domain

CSF

Cerebrospinal fluid

DAMP

Damage-associated molecular pattern

dsDNA

Double-stranded DNA

ER

Endoplasmic reticulum

FPR

Formyl peptide receptor

HMGB1

High-mobility group protein B1

IAPP

Islet amyloid polypeptide

IFNβ

Interferon β

IKK

Inhibitory-κB kinase

IL

Interleukin

LPS

Lipopolysaccharide

LRR

Leucine-rich repeat

MAM

Mitochondria-associated ER membrane

MAVS

Mitochondrial antiviral signaling protein

MnSOD

Mitochondrial manganese superoxide dismutase

mtDNA

Mitochondrial DNA

NADPH

Nicotinamide adenine dinucleotide phosphate

NF-κB

Nuclear factor-κB

NAIP5

NLR family, apoptosis inhibitory protein

NLR

Nucleotide-binding domain leucine-rich repeat-containing receptor family

NLRC4

NLR family, CARD-containing 4

NLRP3

NLR family, pyrin domain-containing 3

NOD1

Nucleotide-binding oligomerization domain-containing protein 1

NOS

Nitric-oxide synthase

Nox1-4

NADPH oxidases 1–4

NRF2

Nuclear factor E2-related factor 2

P2X7

P2X purinoceptor 7

PMN

Polymorphonuclear neutrophil

PYD

Pyrin domain

RIG-1

Retinoic acid inducible gene-1

ROS

Reactive oxygen species

SAMP

Senescence-accelerated prone mouse

STAT1

Signal transducer and activator of transcription 1

TLR

Toll-like receptors

TNF

Tumour necrosis factor

TRAF

TNF receptor-associated factor

TRIM30

Tripartite-motif protein 30

TRX

Thioredoxin

TXNIP

Thioredoxin-interacting protein

UCP

Uncoupling protein

UPRmt

Mitochondrial unfolded protein response

UVB

Ultraviolet B

References

  1. 1.
    Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213PubMedCrossRefGoogle Scholar
  2. 2.
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedGoogle Scholar
  3. 3.
    Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366:53–67PubMedCrossRefGoogle Scholar
  4. 4.
    Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343PubMedCrossRefGoogle Scholar
  5. 5.
    Gruber J, Schaffer S, Halliwell B (2008) The mitochondrial free radical theory of ageing-where do we stand? Front Biosci 13:6554–6579PubMedCrossRefGoogle Scholar
  6. 6.
    Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868PubMedCrossRefGoogle Scholar
  7. 7.
    Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27:983–993PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84:705–712PubMedCrossRefGoogle Scholar
  9. 9.
    Franceschi C, Valesin S, Bonafe M, Paolisso G, Yashin AI, Monti D, De Benedictis G (2000) The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 35:879–896PubMedCrossRefGoogle Scholar
  10. 10.
    Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Age Dev 128:92–105CrossRefGoogle Scholar
  11. 11.
    Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-κB signaling is the culprit of inflamm-aging. Ageing Res Rev 7:83–105PubMedCrossRefGoogle Scholar
  12. 12.
    de Magalhaes JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25:875–881PubMedCrossRefGoogle Scholar
  13. 13.
    Lamkanfi M, Dixit VM (2009) Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 227:95–105PubMedCrossRefGoogle Scholar
  14. 14.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedCrossRefGoogle Scholar
  15. 15.
    Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, Hornung V (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68:765–783PubMedCrossRefGoogle Scholar
  16. 16.
    Kersse K, Bertrand MJM, Lamkanfi M, Vandenabeele P (2011) NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 22:257–276PubMedCrossRefGoogle Scholar
  17. 17.
    Cruz CM, Rinna A, Forman HJ, Ventura ALM, Persechini PM, Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282:2871–2879PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140PubMedCrossRefGoogle Scholar
  19. 19.
    Xiang M, Shi X, Li Y, Xu J, Yin L, Xiao G, Scott MJ, Billiar TR, Wilson MA, Fan J (2011) Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol 187:4809–4817PubMedCrossRefGoogle Scholar
  20. 20.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-ß. Nat Immunol 9:857–865PubMedCrossRefGoogle Scholar
  21. 21.
    Rajamäki K, Lappalainen J, Öörni K, Välimäki E, Matikainen S, Kovanen PT, Eklund KK (2010) Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 5:e11765PubMedCrossRefGoogle Scholar
  22. 22.
    McGuire KA, Barlan AU, Griffin TM, Wiethoff CM (2011) Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. J Virol 85:10806–10813PubMedCrossRefGoogle Scholar
  23. 23.
    Deretic V (2011) Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opinion Immunol 24:1–11Google Scholar
  24. 24.
    West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402PubMedCrossRefGoogle Scholar
  25. 25.
    Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243:136–151PubMedCrossRefGoogle Scholar
  26. 26.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Moll Cell 10:417–426CrossRefGoogle Scholar
  27. 27.
    Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300PubMedCrossRefGoogle Scholar
  28. 28.
    Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735PubMedCrossRefGoogle Scholar
  29. 29.
    Dinarello CA (2006) Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83:447S–455SPubMedGoogle Scholar
  30. 30.
    Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831PubMedCrossRefGoogle Scholar
  31. 31.
    Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD, Dixit VM (2010) Inflammasome-dependent release of alarmin HMGB1 in endotoxemia. J Immunol 185:4385–4392PubMedCrossRefGoogle Scholar
  32. 32.
    Buzzo CK, Campopiano JC, Massis LM, Lage SL, Cassado AA, Leme-Souza R, Cunha LD, Russo M, Zamboni DS, Amarante-Mendes GP, Bortoluci KR (2010) A novel pathway for inducible nitric-oxide synthase activation through inflammasomes. J Biol Chem 285:32087–32095PubMedCrossRefGoogle Scholar
  33. 33.
    Brodsky IE, Monack D (2009) NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 21:199–207PubMedCrossRefGoogle Scholar
  34. 34.
    Kanneganti TD (2010) Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10:688–698PubMedCrossRefGoogle Scholar
  35. 35.
    Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435PubMedCrossRefGoogle Scholar
  36. 36.
    Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19:455–464PubMedCrossRefGoogle Scholar
  37. 37.
    Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589PubMedCrossRefGoogle Scholar
  38. 38.
    Allam R, Darisipudi MN, Rupanagudi KV, Lichtnekert J, Tschopp J, Anders HJ (2011) Cutting Edge: Cyclic polypeptide and aminoglycoside antibiotics trigger IL-1β secretion by activating the NLRP3 inflammasome. J Immunol 186:2714–2718PubMedCrossRefGoogle Scholar
  39. 39.
    Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H, Mori K, Tschopp J (2012) ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis 3:e261PubMedCrossRefGoogle Scholar
  40. 40.
    Peng TI, Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 1201:183–188PubMedCrossRefGoogle Scholar
  41. 41.
    Kurz T, Eaton JW, Brunk UT (2011) The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 43:1686–1697PubMedCrossRefGoogle Scholar
  42. 42.
    Tattoli I, Carneiro LA, Jehanno M, Magalhaes JG, Shu Y, Philpott DJ, Arnoult D, Girardin SE (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9:293–300PubMedCrossRefGoogle Scholar
  43. 43.
    Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, Ranjan P, Monroe KM, Pickles R, Sambhara S, Ting JPY (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity 34:854–865PubMedCrossRefGoogle Scholar
  44. 44.
    Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, Yang X, Hong J, Songyang Z, Chen ZJ, Wang RF (2011) NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 34:843–853PubMedCrossRefGoogle Scholar
  45. 45.
    Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF (2010) NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell 141:483–496PubMedCrossRefGoogle Scholar
  46. 46.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832PubMedCrossRefGoogle Scholar
  47. 47.
    Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, van Bruggen R, Tschopp J (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55:443–452PubMedCrossRefGoogle Scholar
  48. 48.
    Yin Y, Yan Y, Jiang X, Mai J, Chen NC, Wang H, Yang XF (2009) Inflammasomes are differentially expressed in cardiovascular and other tissues. Int J Immunopathol Pharmacol 22:311–322PubMedGoogle Scholar
  49. 49.
    Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A, Reed JC (2009) Mechanism of Bcl-2 and Bcl-xL inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci USA 106:3935–3940PubMedCrossRefGoogle Scholar
  50. 50.
    Liu F, Lo CF, Ning X, Kajkowski EM, Jin M, Chiriac C, Gonzales C, Naureckiene S, Lock YW, Pong K, Zaleska MM, Jacobsen JS, Silverman S, Ozenberger BA (2004) Expression of NALP1 in cerebellar granule neurons stimulates apoptosis. Cell Signal 16:1013–1021PubMedGoogle Scholar
  51. 51.
    Pontillo A, Catamo E, Arosio B, Mari D, Crovella S (2011) NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord. doi:10.1097/WAD.0b013e318231a8ac Google Scholar
  52. 52.
    Jin Y, Mauilloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356:1216–1225PubMedCrossRefGoogle Scholar
  53. 53.
    de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28:3404–3414PubMedCrossRefGoogle Scholar
  54. 54.
    Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. J Intern Med 263:167–178PubMedCrossRefGoogle Scholar
  55. 55.
    Ren J, Pulakat L, Whaley-Connell A, Sowers JR (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 88:993–1001CrossRefGoogle Scholar
  56. 56.
    Coskun P, Wyrembak J, Schriner S, Chen HW, Marciniack C, Laferla F, Wallace DC (2011) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta. doi:10:1016/j.bbagen.2011.08.008 Google Scholar
  57. 57.
    Tschopp J (2011) Mitochondria: sovereign in inflammation? Eur J Immunol 41:1196–1202PubMedCrossRefGoogle Scholar
  58. 58.
    Cloonan SM, Choi AMK (2011) Mitochondria: commanders of innate immunity and disease? Curr Opinion Immunol. doi:10.1016/j.coi.2011.11.001 Google Scholar
  59. 59.
    Rousset S, Emre Y, Join-Lambert O, Hurtaud C, Ricquier D, Cassard-Doulcier AM (2006) The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35:135–142PubMedCrossRefGoogle Scholar
  60. 60.
    Emre Y, Nubel T (2010) Uncoupling protein UCP2: when mitochondrial activity meets immunity. FEBS Lett 584:1437–1442PubMedCrossRefGoogle Scholar
  61. 61.
    Horvath TL, Diano S, Miyamoto S, Barry S, Gatti S, Alberati D, Livak F, Lombardi A, Moreno M, Goglia F, Mor G, Hamilton J, Kachinskas D, Horwitz B, Warden CH (2003) Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice. Int J Obes 27:433–442CrossRefGoogle Scholar
  62. 62.
    Ricquier D (1999) Mitochondrial uncoupling proteins. Curr Opin Drug Discov Dev 2:497–504Google Scholar
  63. 63.
    Haines BA, Mehta SL, Pratt SM, Warden CH, Li PA (2010) Deletion of mitochondrial uncoupling protein-2 increases ischemic brain damage after transient focal ischemia by altering gene expression patterns and enhancing inflammatory cytokines. J Cereb Blood Flow Metab 30:1825–1833PubMedCrossRefGoogle Scholar
  64. 64.
    Bai Y, Onuma H, Bai X, Medvedev AV, Misukonis M, Weinberg JB, Cao W, Robidoux J, Floering LM, Daniel KW, Collins S (2005) Persistent nuclear factor-κb activation in Ucp2/− mice leads to enhanced nitric oxide and inflammatory cytokine production. J Biol Chem 280:19062–19069PubMedCrossRefGoogle Scholar
  65. 65.
    Escames G, Lopez LC, Garcia JA, Garcia-Corzo L, Ortiz F, Acuna-Castroviejo D (2011) Mitochondrial DNA and inflammatory diseases. Hum Genet. doi:10.1007/s00439-011-1057-y PubMedGoogle Scholar
  66. 66.
    Krysko DV, Agostimis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32:157–164PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107PubMedCrossRefGoogle Scholar
  68. 68.
    Arnoult D, Soares F, Tattoli I, Girardin SE (2011) Mitochondria in innate immunity. EMBO Rep 12:901–910PubMedCrossRefGoogle Scholar
  69. 69.
    Broz P, Monack DM (2011) Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev 243:174–190PubMedCrossRefGoogle Scholar
  70. 70.
    Bauernfeind FG, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V (2011) Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 187:613–617PubMedCrossRefGoogle Scholar
  71. 71.
    Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791PubMedCrossRefGoogle Scholar
  72. 72.
    Troy CM, Stefanis L, Prochiantz A, Greene LA, Shelanski ML (1996) The contrasting roles of ICE family proteases and interleukin-1β in apoptosis induced by trophic factor withdrawal and by copper/zinc superoxide dismutase down-regulation. Proc Natl Acad Sci USA 93:5635–5640PubMedCrossRefGoogle Scholar
  73. 73.
    Haddad JJ (2000) Glutathione depletion is associated with augmenting a proinflammatory signal: evidence for an antioxidant/pro-oxidant mechanism regulating cytokines in the alveolar epithelium. Cytokines Cell Mol Ther 6:177–187PubMedGoogle Scholar
  74. 74.
    Carta S, Castellani P, Delfino L, Tassi S, Vene R, Rubartelli A (2009) DAMPs and inflammatory processes: the role of redox in the different outcomes. J Leukoc Biol 86:549–555PubMedCrossRefGoogle Scholar
  75. 75.
    Tassi S, Carta S, Vene R, Delfino L, Ciriolo MR, Rubartelli A (2009) Pathogen-induced interleukin-1β processing and secretion is regulated by a biphasic redox response. J Immunol 183:1456–1462PubMedCrossRefGoogle Scholar
  76. 76.
    Rubartelli A, Gattorno M, Netea MG, Dinarello CA (2011) Interplay between redox status and inflammasome activation. Trends Immunol 32:559–566PubMedCrossRefGoogle Scholar
  77. 77.
    Hu Y, Mao K, Zeng Y, Chen S, Tao Z, Yang C, Sun S, Wu X, Meng G, Sun B (2010) Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating reactive oxygen species production. J Immunol 185:7699–7705PubMedCrossRefGoogle Scholar
  78. 78.
    Tsai PY, Ka SM, Chang JM, Chen HC, Shui HA, Li CY, Hua KF, Chang WL, Huang JJ, Yang SS, Chen A (2011) Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic Biol Med 51:744–754PubMedCrossRefGoogle Scholar
  79. 79.
    Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AMK (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 8:222–230CrossRefGoogle Scholar
  80. 80.
    Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225PubMedCrossRefGoogle Scholar
  81. 81.
    Wu JJ, Quijano C, Chen E, Liu H, Cao L, Fergusson MM, Rovira II, Gutkind S, Daniels MP, Komatsu M, Finkel T (2009) Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging 1:425–437PubMedGoogle Scholar
  82. 82.
    Fesus L, Demeny MA, Petrovski G (2011) Autophagy shapes inflammation. Antioxid Redox Signal 14:2233–2243PubMedCrossRefGoogle Scholar
  83. 83.
    Giorgi C, De Stefani D, Boboni A, Rizzuto R, Pinton P (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41:1817–1827PubMedCrossRefGoogle Scholar
  84. 84.
    Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604PubMedCrossRefGoogle Scholar
  85. 85.
    Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KHG, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LAJ (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11:897–904PubMedCrossRefGoogle Scholar
  86. 86.
    Castiglioni A, Canti V, Rovere-Querini P, Manfredi AA (2011) High-mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res 343:189–199PubMedCrossRefGoogle Scholar
  87. 87.
    Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailänder V, Landfester K, Rouis M, Simmet T (2011) Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5:9648–9657PubMedCrossRefGoogle Scholar
  88. 88.
    Choumar A, Tarhuni A, Letteron P, Reyl-Desmars F, Dauhoo N, Damasse J, Vadrot N, Nahon P, Moreau R, Pessayre D, Mansouri A (2011) Lipopolysaccharide-induced mitochondrial DNA depletion. Antioxid Redox Signal 15:2837–2854PubMedCrossRefGoogle Scholar
  89. 89.
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188PubMedCrossRefGoogle Scholar
  90. 90.
    Nikolova-Karakashian M, Karakashian A, Rutkute K (2008) Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 49:469–486PubMedCrossRefGoogle Scholar
  91. 91.
    Yu J, Novgorodov SA, Chudakova D, Zhu H, Bielawska A, Bielawski J, Obeid LM, Kindy MS, Gudz TI (2007) JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J Biol Chem 282:25940–25949PubMedCrossRefGoogle Scholar
  92. 92.
    Siskind LJ, Kolesnick RN, Colombini M (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6:118–125PubMedCrossRefGoogle Scholar
  93. 93.
    Chen CL, Lin CF, Chang WT, Huang WC, Teng CF, Lin YS (2008) Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111:4365–4374PubMedCrossRefGoogle Scholar
  94. 94.
    Sreekumar PG, Ding Y, Ryan SJ, Kannan R, Hinton DR (2009) Regulation of thioredoxin by ceramide in retinal pigment epithelial cells. Exp Eye Res 88:410–417PubMedCrossRefGoogle Scholar
  95. 95.
    Raoof M, Zhang Q, Itagaki K, Hauser CJ (2010) Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J Trauma 68:1328–1332PubMedCrossRefGoogle Scholar
  96. 96.
    Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91PubMedCrossRefGoogle Scholar
  97. 97.
    Sohal RS, Brunk UT (1989) Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol 266:17–26PubMedGoogle Scholar
  98. 98.
    Stienstra R, Joosten LAB, Koenen T, van Tits B, van Diepen JA, van den Berg SAA, Rensen PCN, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Muller M, van den Berg WB, van Rooijen N, Wabitsch M, Kullberg BJ, van den Meer JWM, Kanneganti T, Tack CJ, Netea MG (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12:593–605PubMedCrossRefGoogle Scholar
  99. 99.
    Stoll G, Bendszus M (2006) Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37:1923–1932PubMedCrossRefGoogle Scholar
  100. 100.
    Ungvari Z, Kaley G, de Capo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65A:1028–1041CrossRefGoogle Scholar
  101. 101.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361PubMedCrossRefGoogle Scholar
  102. 102.
    Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T (2009) Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 30:198–209PubMedCrossRefGoogle Scholar
  103. 103.
    Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A (2008) Amyloid-β oligomers set fire to inflammasomes and induce Alzheimer’s pathology. J Cell Mol Med 12:2255–2262PubMedCrossRefGoogle Scholar
  104. 104.
    Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gria D, Matsushima GK, Ting JPY (2010) The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 30:15811–15820PubMedCrossRefGoogle Scholar
  105. 105.
    Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393PubMedCrossRefGoogle Scholar
  106. 106.
    Li H, Ambade A, Re F (2009) Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol 183:1528–1532PubMedCrossRefGoogle Scholar
  107. 107.
    Petrovski G, Ayna G, Majai G, Hodrea J, Benko S, Madi A, Fesus L (2011) Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1β release in human macrophages. Autophagy 7:321–330PubMedCrossRefGoogle Scholar
  108. 108.
    Leemans JC, Cassel SL, Sutterwala FS (2011) Sensing damage by the NLRP3 inflammasome. Immunol Rev 243:152–162PubMedCrossRefGoogle Scholar
  109. 109.
    McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CCM, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366PubMedCrossRefGoogle Scholar
  110. 110.
    Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M, Corr M (2009) Caspase-1-independent activation of interleukin-1β in neutrophil-predominant inflammation. Arthritis Rheum 60:3642–3650PubMedCrossRefGoogle Scholar
  111. 111.
    Joosten LAB, Netea MG, Fantuzzi G, Koenders MI, Helsen MMA, Sparrer H, Pham CT, van der Meer JWM, Dinarello CA, van den Berg WB (2009) Inflammatory arthritis in caspase 1 gene—deficient mice. Arthritis Rheum 60:3651–3662PubMedCrossRefGoogle Scholar
  112. 112.
    Stehlik C (2009) Multiple interleukin-1β-converting enzymes contribute to inflammatory arthritis. Arthritis Rheum 60:3524–3530PubMedCrossRefGoogle Scholar
  113. 113.
    Harris J, Hartman M, Roche C, Zeng SG, O’Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J, Kornfeld H, Fitzgerald KA, Lavelle EC (2011) Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J Biol Chem 286:9587–9597PubMedCrossRefGoogle Scholar
  114. 114.
    Crisan TO, Plantinga TS, van de Veerdonk FL, Farcas MF, Stoffels M, Kullberg BJ, van den Meer JWM, Joosten LAB, Netea MG (2011) Inflammasome-independent modulation of cytokine response by autophagy in human cells. PLoS One 6:e18666PubMedCrossRefGoogle Scholar
  115. 115.
    Bruunsgaard H, Andersen-Ranberg K, Hjelmborg JVB, Pedersen BK, Jeune B (2003) Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am J Med 115:278–283PubMedCrossRefGoogle Scholar
  116. 116.
    Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39:687–699PubMedCrossRefGoogle Scholar
  117. 117.
    Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G (2003) Aging-induced proinflammatory shift in cytokine expression profile in rat coronary arteries. FASEB J 17:1183–1185PubMedGoogle Scholar
  118. 118.
    Maher FO, Martin DSD, Lynch MA (2004) Increased IL-1β in cortex of aged rats is accompanied by downregulation of ERK and PI-3 kinase. Neurobiol Aging 25:795–806PubMedCrossRefGoogle Scholar
  119. 119.
    Niemi K, Teirilä L, Lappalainen J, Rajamäki K, Baumann MH, Öörni K, Wolff H, Kovanen PT, Matikainen S, Eklund KK (2011) Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and cathepsin B-sensitive pathway. J Immunol 186:6119–6128PubMedCrossRefGoogle Scholar
  120. 120.
    Ungvari Z, Sonntag WE, Csiszar A (2010) Mitochondria and aging in the vascular system. J Mol Med 88:1021–1027PubMedCrossRefGoogle Scholar
  121. 121.
    Krishnan E (2010) Inflammation, oxidative stress and lipids: the risk triad for atherosclerosis in gout. Rheumatology 49:1229–1238PubMedCrossRefGoogle Scholar
  122. 122.
    Yajima N, Takahashi M, Morimoto H, Shiba Y, Takahashi Y, Masumoto J, Ise H, Sagara J, Nakayama J, Taniguchi S, Ikeda U (2008) Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation 117:3079–3087PubMedCrossRefGoogle Scholar
  123. 123.
    Gemma C, Bickford PC (2007) Interleukin-1β and caspase-1: players in the regulation of age-related cognitive dysfunction. Rev Neurosci 18:137–148PubMedCrossRefGoogle Scholar
  124. 124.
    Gemma C, Bachstetter AD, Cole MJ, Fister M, Hudson C, Bickford PC (2007) Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur J Neurosci 26:2795–2803PubMedCrossRefGoogle Scholar
  125. 125.
    Alboni S, Cervia D, Sugama S, Conti B (2010) Interleukin 18 in CNS. J Neuroinflamm 7:9CrossRefGoogle Scholar
  126. 126.
    Njie EG, Boelen E, Stassen FR, Steinbusch HWM, Borchelt, Streit WJ (2011) Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 33:195.e1–195.e12CrossRefGoogle Scholar
  127. 127.
    Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360PubMedCrossRefGoogle Scholar
  128. 128.
    Karuppagounder SS, Shi Q, Xu H, Gibson GE (2007) Changes in inflammatory processes associated with selective vulnerability following mild impairment of oxidative metabolism. Neurobiol Dis 26:353–362PubMedCrossRefGoogle Scholar
  129. 129.
    Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002PubMedCrossRefGoogle Scholar
  130. 130.
    Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224PubMedCrossRefGoogle Scholar
  131. 131.
    Petrovski G, Das DK (2010) Does autophagy take a front seat in lifespan extension? J Cell Mol Med 14:2543–2551PubMedCrossRefGoogle Scholar
  132. 132.
    Weber TA, Reichert AS (2010) Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol 45:503–511PubMedCrossRefGoogle Scholar
  133. 133.
    Cardoso SM, Pereira CF, Moreira PI, Arduino DM, Esteves AR, Oliveira CR (2010) Mitochondrial control of autophagic lysosomal pathway in Alzheimer’s disease. Exp Neurol 223:294–298PubMedCrossRefGoogle Scholar
  134. 134.
    Las G, Shirihai OS (2010) The role of autophagy in β-cell lipotoxicity and type 2 diabetes. Diabetes Obes Metab 12(Suppl.2):15–19PubMedCrossRefGoogle Scholar
  135. 135.
    Gloire G, Legrand-Poels S, piette J (2006) NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505Google Scholar
  136. 136.
    Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O’Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L, Karin M (2007) NF-κB is a negative regulator of IL-1β secretion revealed by genetic and pharmacological inhibition of IKKβ. Cell 130:918–931PubMedCrossRefGoogle Scholar
  137. 137.
    Watanabe R, Nakamura H, Masutani H, Yodoi J (2010) Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther 127:261–270PubMedCrossRefGoogle Scholar
  138. 138.
    Yoshida T, Nakamura H, Masutani H, Yodoi J (2005) The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process. Ann N Y Acad Sci 1055:1–12PubMedCrossRefGoogle Scholar
  139. 139.
    Lovell MA, Xie C, Gabbita P, Markesbery WR (2000) Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. Free Rad Biol Med 28:418–427PubMedCrossRefGoogle Scholar
  140. 140.
    Kaimul AM, Nakamura H, Masutani H, Yodoi J (2007) Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Rad Biol Med 43:861–868PubMedCrossRefGoogle Scholar
  141. 141.
    Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits !L-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263PubMedCrossRefGoogle Scholar
  142. 142.
    Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G (2008) Aging of the immune system as a prognostic factor for human longevity. Physiology 23:64–74PubMedCrossRefGoogle Scholar
  143. 143.
    Kovacs EJ, Palmer JL, Fortin CF, Fulop T Jr, Goldstein DR, Linton PJ (2009) Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol 30:319–324PubMedCrossRefGoogle Scholar
  144. 144.
    Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transplant Int 22:1041–1050CrossRefGoogle Scholar
  145. 145.
    Guarda G, Dostert C, Staehli F, Cabalzar K, Castillo R, Tardivel A, Schneider P, Tschopp J (2009) T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460:269–273PubMedCrossRefGoogle Scholar
  146. 146.
    Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Förster I, Farlik M, Decker T, Du Pasquier RA, Romero P, Tschopp J (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34:213–223PubMedCrossRefGoogle Scholar
  147. 147.
    Youm YH, Kanneganti TD, Vandanmagsar B, Zhu X, Ravussin A, Adijiang A, Owen JS, Thomas MJ, Francis J, Parks JS, Dixit VD (2012) The NLRP3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep 1:56–68PubMedCrossRefGoogle Scholar
  148. 148.
    Nakanishi H, Wu Z (2009) Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res 201:1–7PubMedCrossRefGoogle Scholar
  149. 149.
    Sharma G, Hanania NA, Shim YM (2009) The aging immune system and its relationship to the development of chronic obstructive pulmonary disease. Proc Am Thorac Soc 6:573–580PubMedCrossRefGoogle Scholar
  150. 150.
    Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691PubMedGoogle Scholar
  151. 151.
    Yaar M, Gilchrest BA (2007) Photoaging: mechanism, prevention and therapy. Br J Dermatol 157:874–887PubMedCrossRefGoogle Scholar
  152. 152.
    Bosset S, Bonnet-Duquennoy M, Barre P, Chalon A, Kurfurst R, Bonte F, Schnebert S, Le Varlet B, Nicolas JF (2003) Photoageing shows histological features of chronic skin inflammation without clinical and molecular abnormalities. Br J Dermatol 149:826–835PubMedCrossRefGoogle Scholar
  153. 153.
    Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes. Curr Biol 17:1140–1145PubMedCrossRefGoogle Scholar
  154. 154.
    Watanabe H, Gaide O, Petrilli V, Martinon F, Contassot E, Roques S, Kummer JA, Tschopp J, French LE (2007) Activation of the IL-1β-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol 127:1956–1963PubMedCrossRefGoogle Scholar
  155. 155.
    Cho KA, Suh JW, Lee KH, Kang JL, Woo SY (2011) IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol. doi:10.1093/intimm/dxr110 PubMedGoogle Scholar
  156. 156.
    Salskov-Iversen ML, Johansen C, Kragballe K, Iversen L (2011) Caspase-5 expression is upregulated in lesional psoriatic skin. J Invest Dermatol 131:670–676PubMedCrossRefGoogle Scholar
  157. 157.
    Dai X, Sayama K, Tohyama M, Shirakata Y, Hanakawa Y, Tokumaru S, Yang L, Hirakawa S, Hashimoto K (2011) Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. J Allergy Clin Immunol 127:806-14.e1-4Google Scholar
  158. 158.
    Dombrowski Y, Peric M, Koglin S, Kammerbauer C, Göss C, Anz D, Simanski M, Gläser R, Harder J, Hornung V, Gallo RL, Ruzicka T, Besch R, Schauber J (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38PubMedCrossRefGoogle Scholar
  159. 159.
    Singh T, Newman AB (2010) Inflammatory markers in population studies of aging. Ageing Res Rev 10:319–329PubMedCrossRefGoogle Scholar
  160. 160.
    Swindell WR (2009) Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics 10:585PubMedCrossRefGoogle Scholar
  161. 161.
    Rosenstiel P, Derer S, Till A, Eberstein H, Bewig B, Nikolaus S, Nebel A, Schreiber C (2008) Systematic expression profiling of innate immune genes defines a complex pattern of immunosenescence in peripheral and intestinal leukocytes. Genes Immun 9:103–114PubMedCrossRefGoogle Scholar
  162. 162.
    Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-κB activity. Genes Dev 21:3244–3257PubMedCrossRefGoogle Scholar
  163. 163.
    Tschopp J, Schroeder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215PubMedCrossRefGoogle Scholar
  164. 164.
    van Bruggen R, Köker MY, Jansen M, van Houdt M, Roos D, Kuijpers TW, van den Berg TK (2010) Human NLRP3 inflammasome activation is No1–4 independent. Blood 115:5398–5400PubMedCrossRefGoogle Scholar
  165. 165.
    Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE (2008) Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci USA 105:6912–6917PubMedCrossRefGoogle Scholar
  166. 166.
    Koenen TB, Stienstra R, van Tits LJ, de Graaf J, Stalenhoef AF, Joosten LA, Tack CJ, Netea MG (2011) Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1β transcription in human adipose tissue. Diabetes 60:517–524PubMedCrossRefGoogle Scholar
  167. 167.
    Salminen A, Kaarniranta K (2010) Glycolysis links p53 function with NF-κB signaling: impact on cancer and aging process. J Cell Physiol 224:1–6PubMedGoogle Scholar
  168. 168.
    Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MTH, Brickey WJ, Ting JPY (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415PubMedCrossRefGoogle Scholar
  169. 169.
    Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 89:667–676CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Antero Salminen
    • 1
    • 2
  • Johanna Ojala
    • 1
  • Kai Kaarniranta
    • 3
    • 4
  • Anu Kauppinen
    • 3
  1. 1.Department of Neurology, Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
  2. 2.Department of NeurologyUniversity Hospital of KuopioKuopioFinland
  3. 3.Department of Ophthalmology, Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
  4. 4.Department of OphthalmologyUniversity Hospital of KuopioKuopioFinland

Personalised recommendations