Skip to main content
Log in

Variants in SNAP25 are targets of natural selection and influence verbal performances in women

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Descriptions of genes that are adaptively evolving in humans and that carry polymorphisms with an effect on cognitive performances have been virtually absent. SNAP25 encodes a presynaptic protein with a role in regulation of neurotransmitter release. We analysed the intra-specific diversity along SNAP25 and identified a region in intron 1 that shows signatures of balancing selection in humans. The estimated TMRCA (time to the most recent common ancestor) of the SNAP25 haplotype phylogeny amounted to 2.08 million years. The balancing selection signature is not secondary to demographic events or to biased gene conversion, and encompasses rs363039. This SNP has previously been associated to cognitive performances with contrasting results in different populations. We analysed this variant in two Italian cohorts in different age ranges and observed a significant genotype effect for rs363039 on verbal performances in females alone. Post hoc analysis revealed that the effect is driven by differences between heterozygotes and both homozygous genotypes. Thus, heterozygote females for rs363039 display higher verbal performances compared to both homozygotes. This finding was replicated in a cohort of Italian subjects suffering from neuromuscular diseases that do not affect cognition. Heterozygote advantage is one of the possible reasons underlying the maintenance of genetic diversity in natural populations. The observation that heterozygotes for rs363039 display higher verbal abilities compared to homozygotes perfectly fits the underlying balancing selection model. Although caution should be used in inferring selective pressures from observed signatures, SNAP25 might represent the first description of an adaptively evolving gene with a role in cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SNP:

Single nucleotide polymorphism

EAS:

East Asians

CEU:

Europeans

YRI:

Yoruba

TMRCA:

Time to the most recent common ancestor

ASF:

Allele frequency spectrum

MLHKA:

Maximum-likelihood HKA

BGC:

Biased gene conversion

IQ:

Intelligence quotient

References

  1. 1000 Genomes Project Consortium, Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  Google Scholar 

  2. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  3. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. doi:10.1093/bioinformatics/bth457

    Article  PubMed  CAS  Google Scholar 

  4. Bishop DV (2009) Genes, cognition, and communication: insights from neurodevelopmental disorders. Ann NY Acad Sci 1156:1–18

    Article  PubMed  CAS  Google Scholar 

  5. Bruno C, Minetti C (2004) Congenital myopathies. Curr Neurol Neurosci Rep 4:68–73

    Article  PubMed  Google Scholar 

  6. Bushby K (2009) Diagnosis and management of the limb girdle muscular dystrophies. Pract Neurol 9:314–323

    Article  PubMed  Google Scholar 

  7. Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:e64

    Article  PubMed  Google Scholar 

  8. Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M (2010) Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 285:24968–24976

    Article  PubMed  CAS  Google Scholar 

  9. Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M (2009) SNAP-25 in neuropsychiatric disorders. Ann NY Acad Sci 1152:93–99

    Article  PubMed  CAS  Google Scholar 

  10. Downes EC, Robson J, Grailly E, Abdel-All Z, Xuereb J, Brayne C, Holland A, Honer WG, Mukaetova-Ladinska EB (2008) Loss of synaptophysin and synaptosomal-associated protein 25-kDa (SNAP-25) in elderly Down syndrome individuals. Neuropathol Appl Neurobiol 34:12–22

    PubMed  CAS  Google Scholar 

  11. Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:285–311

    Article  PubMed  CAS  Google Scholar 

  12. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  PubMed  CAS  Google Scholar 

  13. Etain B, Dumaine A, Mathieu F, Chevalier F, Henry C, Kahn JP, Deshommes J, Bellivier F, Leboyer M, Jamain S (2010) A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 15:748–755

    Article  PubMed  CAS  Google Scholar 

  14. Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309:1717–1720

    Article  PubMed  CAS  Google Scholar 

  15. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  16. Fumagalli M, Cagliani R, Pozzoli U, Riva S, Comi GP, Menozzi G, Bresolin N, Sironi M (2009) Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res 19:199–212

    Article  PubMed  CAS  Google Scholar 

  17. Ghezzo A, Guerini FR, Bolognesi E, Matteoli M, Manca S, Sotgiu S, Bejor M, Clerici M, Chiappedi M (2009) Neuropsycological gender differences in healthy individuals and in pediatric neurodevelopmental disorders. A role for SNAP-25. Med Hypotheses 73:978–980

    Article  PubMed  CAS  Google Scholar 

  18. Glazko GV, Nei M (2003) Estimation of divergence times for major lineages of primate species. Mol Biol Evol 20:424–434

    Article  PubMed  CAS  Google Scholar 

  19. Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D (2008) Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav 7:355–364

    Article  PubMed  CAS  Google Scholar 

  20. Gosso MF, de Geus EJ, van Belzen MJ, Polderman TJ, Heutink P, Boomsma DI, Posthuma D (2006) The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 11:878–886

    Article  PubMed  CAS  Google Scholar 

  21. Griffiths RC, Tavare S (1995) Unrooted genealogical tree probabilities in the infinitely-many-sites model. Math Biosci 127:77–98

    Article  PubMed  CAS  Google Scholar 

  22. Griffiths RC, Tavare S (1994) Sampling theory for neutral alleles in a varying environment. Philos Trans R Soc Lond B Biol Sci 344:403–410

    Article  PubMed  CAS  Google Scholar 

  23. Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S, Matteoli M and Clerici M (2011) SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders (in press)

  24. Haworth CM, Wright MJ, Luciano M, Martin NG, de Geus EJ, van Beijsterveldt CE, Bartels M, Posthuma D, Boomsma DI, Davis OS, Kovas Y, Corley RP, Defries JC, Hewitt JK, Olson RK, Rhea SA, Wadsworth SJ, Iacono WG, McGue M, Thompson LA, Hart SA, Petrill SA, Lubinski D, Plomin R (2010) The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry 15:1112–1120

    Article  PubMed  CAS  Google Scholar 

  25. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA (2007) Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat Genet 39:1140–1144

    Article  PubMed  CAS  Google Scholar 

  26. Jacobsson G, Razani H, Ogren SO, Meister B (1998) Estrogen down-regulates mRNA encoding the exocytotic protein SNAP-25 in the rat pituitary gland. J Neuroendocrinol 10:157–163

    Article  PubMed  CAS  Google Scholar 

  27. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  28. Lustig RH, Hua P, Wilson MC, Federoff HJ (1993) Ontogeny, sex dimorphism, and neonatal sex hormone determination of synapse-associated messenger RNAs in rat brain. Brain Res Mol Brain Res 20:101–110

    Article  PubMed  CAS  Google Scholar 

  29. Marshall C, Hitman GA, Partridge CJ, Clark A, Ma H, Shearer TR, Turner MD (2005) Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic beta-cells. Mol Endocrinol 19:213–224

    Article  PubMed  CAS  Google Scholar 

  30. Mekel-Bobrov N, Gilbert SL, Evans PD, Vallender EJ, Anderson JR, Hudson RR, Tishkoff SA, Lahn BT (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309:1720–1722

    Article  PubMed  CAS  Google Scholar 

  31. Mekel-Bobrov N, Posthuma D, Gilbert SL, Lind P, Gosso MF, Luciano M, Harris SE, Bates TC, Polderman TJ, Whalley LJ, Fox H, Starr JM, Evans PD, Montgomery GW, Fernandes C, Heutink P, Martin NG, Boomsma DI, Deary IJ, Wright MJ, de Geus EJ, Lahn BT (2007) The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence. Hum Mol Genet 16:600–608

    Article  PubMed  CAS  Google Scholar 

  32. Munsat TL, Davies KE (1992) International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 2:423–428

    Article  PubMed  CAS  Google Scholar 

  33. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  34. Padberg GW, Lunt PW, Koch M, Fardeau M (1991) Diagnostic criteria for facioscapulohumeral muscular dystrophy. Neuromuscul Disord 1:231–234

    Article  PubMed  CAS  Google Scholar 

  35. Parman Y (2007) Hereditary neuropathies. Curr Opin Neurol 20:542–547

    Article  PubMed  CAS  Google Scholar 

  36. Petryshen TL, Sabeti PC, Aldinger KA, Fry B, Fan JB, Schaffner SF, Waggoner SG, Tahl AR, Sklar P (2010) Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol Psychiatry 15:810–815

    Article  PubMed  CAS  Google Scholar 

  37. Pinker S (2003) Language as an adaptation to the cognitive niche. In: Christiansen M, Kirby S (eds) Language evolution: states of the art. Oxford University Press, New York

    Google Scholar 

  38. Pinker S (2010) Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language. Proc Natl Acad Sci USA 107(Suppl 2):8993–8999

    Article  PubMed  CAS  Google Scholar 

  39. Pozzi D, Condliffe S, Bozzi Y, Chikhladze M, Grumelli C, Proux-Gillardeaux V, Takahashi M, Franceschetti S, Verderio C, Matteoli M (2008) Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci USA 105:323–328

    Article  PubMed  CAS  Google Scholar 

  40. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  41. R Development Core Team (2008) R: a language and environment for statistical computing. Vienna, Austria

    Google Scholar 

  42. Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE, Wilson MC (1997) Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 68:176–186

    Article  PubMed  CAS  Google Scholar 

  43. Romeo S, Sentinelli F, Cavallo MG, Leonetti F, Fallarino M, Mariotti S, Baroni MG (2008) Search for genetic variants of the SYNTAXIN 1A (STX1A) gene: the -352 A > T variant in the STX1A promoter associates with impaired glucose metabolism in an Italian obese population. Int J Obes (Lond) 32:413–420

    Article  CAS  Google Scholar 

  44. Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D (2005) Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15:1576–1583

    Article  PubMed  CAS  Google Scholar 

  45. Soderqvist S, McNab F, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T (2010) The SNAP25 gene is linked to working memory capacity and maturation of the posterior cingulate cortex during childhood. Biol Psychiatry 68:1120–1125

    Article  PubMed  Google Scholar 

  46. Sorensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E (2003) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114:75–86

    Article  PubMed  CAS  Google Scholar 

  47. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  PubMed  CAS  Google Scholar 

  48. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  49. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  50. Takahashi N, Hatakeyama H, Okado H, Noguchi J, Ohno M, Kasai H (2010) SNARE conformational changes that prepare vesicles for exocytosis. Cell Metab 12:19–29

    Article  PubMed  CAS  Google Scholar 

  51. Thornton K (2003) Libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics 19:2325–2327

    Article  PubMed  CAS  Google Scholar 

  52. Tishkoff SA, Verrelli BC (2003) Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 4:293–340

    Article  PubMed  CAS  Google Scholar 

  53. Torri F, Akelai A, Lupoli S, Sironi M, Amann-Zalcenstein D, Fumagalli M, Dal Fiume C, Ben-Asher E, Kanyas K, Cagliani R, Cozzi P, Trombetti G, Strik Lievers L, Salvi E, Orro A, Beckmann JS, Lancet D, Kohn Y, Milanesi L, Ebstein RB, Lerer B, Macciardi F (2010) Fine mapping of AHI1 as a schizophrenia susceptibility gene: from association to evolutionary evidence. FASEB J 24:3066–3082

    Article  PubMed  CAS  Google Scholar 

  54. Tsunoda K, Sanke T, Nakagawa T, Furuta H, Nanjo K (2001) Single nucleotide polymorphism (D68D, T to C) in the syntaxin 1A gene correlates to age at onset and insulin requirement in Type II diabetic patients. Diabetologia 44:2092–2097

    Article  PubMed  CAS  Google Scholar 

  55. Turner MD, Cassell PG, Hitman GA (2005) Calpain-10: from genome search to function. Diabetes Metab Res Rev 21:505–514

    Article  PubMed  CAS  Google Scholar 

  56. Vallender EJ (2008) Exploring the origins of the human brain through molecular evolution. Brain Behav Evol 72:168–177

    Article  PubMed  Google Scholar 

  57. Vander Molen J, Frisse LM, Fullerton SM, Qian Y, Del Bosque-Plata L, Hudson RR, Di Rienzo A (2005) Population genetics of CAPN10 and GPR35: implications for the evolution of type 2 diabetes variants. Am J Hum Genet 76:548–560

    Article  PubMed  CAS  Google Scholar 

  58. Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599–610

    Article  PubMed  CAS  Google Scholar 

  59. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  60. Wechsler D (1989) WPPSI-R manual: Wechsler preschool and primary scale of intelligence-revised. The Psychological Corporation, San Antonio, TX

  61. Wechsler D (1981) Examiner’s manual: Wechsler intelligence scale for children revised. Psychological Corporation, New York

    Google Scholar 

  62. Wechsler D (1981) The Psychometric Tradition. Dev Wechsler Adult Intel Scale 6:82–85

    Google Scholar 

  63. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy–Weinberg equilibrium. Am J Hum Genet 76:887–893

    Article  PubMed  CAS  Google Scholar 

  64. Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R (2007) Localizing recent adaptive evolution in the human genome. PLoS Genet 3:e90

    Article  PubMed  Google Scholar 

  65. Wright SI, Charlesworth B (2004) The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics 168:1071–1076

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs A. Frigerio and F.R. Guerini for useful comments about the manuscript. We also wish to thank Dr Andreina Bordoni for technical support. M. Clerici is supported by grants from Istituto Superiore di Sanita’ “Programma Nazionale di Ricerca sull’ AIDS”, the nGIN EC WP7 Project, Ricerca Finalizzata [Italian Ministry of Health], 2008 Ricerca Corrente [Italian Ministry of Health], Progetto FIRB RETI: Rete Italiana Chimica Farmaceutica CHEM-PROFARMA-NET [RBPR05NWWC], and Fondazione CARIPLO.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Sironi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material 1 (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cagliani, R., Riva, S., Marino, C. et al. Variants in SNAP25 are targets of natural selection and influence verbal performances in women. Cell. Mol. Life Sci. 69, 1705–1715 (2012). https://doi.org/10.1007/s00018-011-0896-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0896-y

Keywords

Navigation