Skip to main content

Advertisement

Log in

Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fitzgerald B, Levytska K, Kingdom J, Walker M, Baczyk D, Keating S (2011) Villous trophoblast abnormalities in extremely preterm deliveries with elevated second trimester maternal serum hCG or inhibin-A. Placenta 32:339–345

    Article  PubMed  CAS  Google Scholar 

  2. Brouillet S, Hoffmann P, Benharouga M, Salomon A, Schaal JP, Feige JJ, Alfaidy N (2010) Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells. Mol Biol Cell 21:2832–2843

    Article  PubMed  CAS  Google Scholar 

  3. Hoffmann P, Saoudi Y, Benharouga M, Graham CH, Schaal JP, Mazouni C, Feige JJ, Alfaidy N (2009) Role of EG-VEGF in human placentation: Physiological and pathological implications. J Cell Mol Med 13:2224–2235

    Article  PubMed  Google Scholar 

  4. LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412:877–884

    Article  PubMed  CAS  Google Scholar 

  5. Battersby S, Critchley HO, Morgan K, Millar RP, Jabbour HN (2004) Expression and regulation of the prokineticins (endocrine gland-derived vascular endothelial growth factor and Bv8) and their receptors in the human endometrium across the menstrual cycle. J Clinical Endocrinol Metabolism 89:2463–2469

    Article  CAS  Google Scholar 

  6. Ferrara N, Frantz G, LeCouter J, Dillard-Telm L, Pham T, Draksharapu A, Giordano T, Peale F (2003) Differential expression of the angiogenic factor genes vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF in normal and polycystic human ovaries. Am J Pathol 162:1881–1893

    Article  PubMed  CAS  Google Scholar 

  7. LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N (2004) Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA 101:16813–16818

    Article  PubMed  CAS  Google Scholar 

  8. Podlovni H, Ovadia O, Kisliouk T, Klipper E, Zhou QY, Friedman A, Alfaidy N, Meidan R (2006) Differential expression of prokineticin receptors by endothelial cells derived from different vascular beds: a physiological basis for distinct endothelial function. Cell Physiol Biochem 18:315–326

    Article  PubMed  CAS  Google Scholar 

  9. Samson M, Peale FV Jr, Frantz G, Rioux-Leclercq N, Rajpert-De Meyts E, Ferrara N (2004) Human endocrine gland-derived vascular endothelial growth factor: expression early in development and in Leydig cell tumors suggests roles in normal and pathological testis angiogenesis. J Clinical Endocrinol Metabolism 89:4078–4088

    Article  CAS  Google Scholar 

  10. Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H, Zhou QY (2002) Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J Biological Chem 277:19276–19280

    Article  CAS  Google Scholar 

  11. Hoffmann P, Feige JJ, Alfaidy N (2006) Expression and oxygen regulation of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 and its receptors in human placenta during early pregnancy. Endocrinology 147:1675–1684

    Article  PubMed  CAS  Google Scholar 

  12. Hoffmann P, Feige JJ, Alfaidy N (2007) Placental expression of EG-VEGF and its receptors PKR1 (prokineticin receptor-1) and PKR2 throughout mouse gestation. Placenta 28:1049–1058

    Article  PubMed  CAS  Google Scholar 

  13. Herr F, Baal N, Reisinger K, Lorenz A, McKinnon T, Preissner KT, Zygmunt M (2007) HCG in the regulation of placental angiogenesis. Results of an in vitro study. Placenta 28(Suppl A):S85–S93

    Article  PubMed  Google Scholar 

  14. Licht P, Russu V, Wildt L (2001) On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Semin Reprod Med 19:37–47

    Article  PubMed  CAS  Google Scholar 

  15. Malassine A, Cronier L (2002) Hormones and human trophoblast differentiation: a review. Endocrine 19:3–11

    Article  PubMed  CAS  Google Scholar 

  16. Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L (2007) Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol Cell Endocrinol 269:85–92

    Article  PubMed  CAS  Google Scholar 

  17. Zygmunt M, Herr F, Keller-Schoenwetter S, Kunzi-Rapp K, Munstedt K, Rao CV, Lang U, Preissner KT (2002) Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clinical Endocrinol Metabolism 87:5290–5296

    Article  CAS  Google Scholar 

  18. Rao CV, Lei ZM (2007) The past, present and future of nongonadal LH/hCG actions in reproductive biology and medicine. Mol Cell Endocrinol 269:2–8

    Article  PubMed  CAS  Google Scholar 

  19. Shi QJ, Lei ZM, Rao CV, Lin J (1993) Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology 132:1387–1395

    Article  PubMed  CAS  Google Scholar 

  20. Yoshida Y (2005) Secretion of human chorionic gonadotropin in early pregnancy. Med Mol Morphol 38:104–111

    Article  PubMed  CAS  Google Scholar 

  21. Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O, Vidaud M, Rabreau M, Evain-Brion D, Mallet F (2003) Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 23:3566–3574

    Article  PubMed  CAS  Google Scholar 

  22. Ryu KS, Gilchrist RL, Koo YB, Ji I, Ji TH (1998) Gene, interaction, signal generation, signal divergence and signal transduction of the LH/CG receptor. Int J Gynaecology and obstetrics: the off organ of the Int Federation of Gynaecology and Obstetrics 60(Suppl 1):S9–S20

    Article  CAS  Google Scholar 

  23. Ryu KS, Ji I, Chang L, Ji TH (1996) Molecular mechanism of LH/CG receptor activation. Mol Cell Endocrinol 125:93–100

    Article  PubMed  CAS  Google Scholar 

  24. Alsat E, Cedard L (1974) Demonstration of a specific fixation of radio-iodinated human chorionic gonadotropin (HCG I-125) in fragments of human placentas. C R Acad Sci Hebd Seances Acad Sci D 278:2665–2668

    PubMed  CAS  Google Scholar 

  25. Reshef E, Lei ZM, Rao CV, Pridham DD, Chegini N, Luborsky JL (1990) The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua. J Clinical Endocrinol Metabolism 70:421–430

    Article  CAS  Google Scholar 

  26. Jauniaux E, Bao S, Eblen A, Li X, Lei ZM, Meuris S, Rao CV (2000) HCG concentration and receptor gene expression in placental tissue from trisomy 18 and 21. Mol Hum Reprod 6:5–10

    Article  PubMed  CAS  Google Scholar 

  27. Licht P, Cao H, Lei ZM, Rao CV, Merz WE (1993) Novel self-regulation of human chorionic gonadotropin biosynthesis in term pregnancy human placenta. Endocrinology 133:3014–3025

    Article  PubMed  CAS  Google Scholar 

  28. Pidoux G, Gerbaud P, Tsatsaris V, Marpeau O, Ferreira F, Meduri G, Guibourdenche J, Badet J, Evain-Brion D, Frendo JL (2007) Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation. J Cell Physiol 212:26–35

    Article  PubMed  CAS  Google Scholar 

  29. Rao CV (1996) The beginning of a new era in reproductive biology and medicine : Expression of low functional luteinizing hormone/human chorionic gonadotropin receptors in nongonadal tissues. J Physiol Pharmacol 47:41–53

    Google Scholar 

  30. Botelho LH, Webster LC, Rothermel JD, Baraniak J, Stec WJ (1988) Inhibition of cAMP-dependent protein kinase by adenosine cyclic 3′-, 5′-phosphorodithioate, a second cAMP antagonist. J Biological Chem 263:5301–5305

    CAS  Google Scholar 

  31. Alfaidy N, Gupta S, DeMarco C, Caniggia I, Challis JR (2002) Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J Clinical Endocrinol Metabolism 87:4797–4805

    Article  CAS  Google Scholar 

  32. Bradbury FA, Menon KM (1999) Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized. Biochemistry 38:8703–8712

    Article  PubMed  CAS  Google Scholar 

  33. Menon KM, Menon B, Wang L, Gulappa T, Harada M (2010) Molecular regulation of gonadotropin receptor expression: relationship to sterol metabolism. Mol Cell Endocrinol 329:26–32

    Article  PubMed  CAS  Google Scholar 

  34. Menon KM, Munshi UM, Clouser CL, Nair AK (2004) Regulation of luteinizing hormone/human chorionic gonadotropin receptor expression: a perspective. Biol Reprod 70:861–866

    Article  PubMed  CAS  Google Scholar 

  35. Conti M, Harwood JP, Hsueh AJ, Dufau ML, Catt KJ (1976) Gonadotropin-induced loss of hormone receptors and desensitization of adenylate cyclase in the ovary. J Biological Chem 251:7729–7731

    CAS  Google Scholar 

  36. Kisliouk T, Levy N, Hurwitz A, Meidan R (2003) Presence and regulation of endocrine gland vascular endothelial growth factor/prokineticin-1 and its receptors in ovarian cells. J Clinical Endocrinol Metabolism 88:3700–3707

    Article  CAS  Google Scholar 

  37. Kisliouk T, Podlovni H, Meidan R (2005) Unique expression and regulatory mechanisms of EG-VEGF/prokineticin-1 and its receptors in the corpus luteum. Ann Anat 187:529–537

    Article  PubMed  CAS  Google Scholar 

  38. Kisliouk T, Podlovni H, Spanel-Borowski K, Ovadia O, Zhou QY, Meidan R (2005) Prokineticins (endocrine gland-derived vascular endothelial growth factor and BV8) in the bovine ovary: expression and role as mitogens and survival factors for corpus luteum-derived endothelial cells. Endocrinology 146:3950–3958

    Article  PubMed  CAS  Google Scholar 

  39. Evans J, Catalano RD, Brown P, Sherwin R, Critchley HO, Fazleabas AT, Jabbour HN (2009) Prokineticin 1 mediates fetal-maternal dialogue regulating endometrial leukemia inhibitory factor. FASEB J 23:2165–2175

    Article  PubMed  CAS  Google Scholar 

  40. Evans J, Catalano RD, Morgan K, Critchley HO, Millar RP, Jabbour HN (2008) Prokineticin 1 signaling and gene regulation in early human pregnancy. Endocrinology 149:2877–2887

    Article  PubMed  CAS  Google Scholar 

  41. Catalano RD, Lannagan TR, Gorowiec M, Denison FC, Norman JE, Jabbour HN (2010) Prokineticins: novel mediators of inflammatory and contractile pathways at parturition? Mol Hum Reprod 16:311–319

    Article  PubMed  CAS  Google Scholar 

  42. Denison FC, Battersby S, King AE, Szuber M, Jabbour HN (2008) Prokineticin-1: a novel mediator of the inflammatory response in third-trimester human placenta. Endocrinology 149:3470–3477

    Article  PubMed  CAS  Google Scholar 

  43. Islami D, Bischof P, Chardonnens D (2003) Modulation of placental vascular endothelial growth factor by leptin and hCG. Mol Hum Reprod 9:395–398

    Article  PubMed  CAS  Google Scholar 

  44. Menon KM, Nair AK, Wang L (2006) A novel post-transcriptional mechanism of regulation of luteinizing hormone receptor expression by an RNA binding protein from the ovary. Mol Cell Endocrinol 246:135–141

    Article  PubMed  CAS  Google Scholar 

  45. Bukovsky A, Indrapichate K, Fujiwara H, Cekanova M, Ayala ME, Dominguez R, Caudle MR, Wimalsena J, Elder RF, Copas P, Foster JS, Fernando RI, Henley DC, Upadhyaya NB (2003) Multiple luteinizing hormone receptor (LHR) protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer’s disease. Reprod Biol Endocrinol 1:46

    Article  PubMed  Google Scholar 

  46. Misrahi M, Beau I, Ghinea N, Vannier B, Loosfelt H, Meduri G, Vu Hai MT, Milgrom E (1996) The LH/CG and FSH receptors: different molecular forms and intracellular traffic. Mol Cell Endocrinol 125:161–167

    Article  PubMed  CAS  Google Scholar 

  47. Pidoux G, Gerbaud P, Marpeau O, Guibourdenche J, Ferreira F, Badet J, Evain-Brion D, Frendo JL (2007) Human placental development is impaired by abnormal human chorionic gonadotropin signaling in trisomy 21 pregnancies. Endocrinology 148:5403–5413

    Article  PubMed  CAS  Google Scholar 

  48. Aplin JD (2010) Developmental cell biology of human villous trophoblast: current research problems. Int J Developmental Biol 54:323–329

    Article  Google Scholar 

  49. Chan CC, Lao TT, Cheung AN (1999) Apoptotic and proliferative activities in first trimester placentae. Placenta 20:223–227

    Article  PubMed  CAS  Google Scholar 

  50. Kar M, Ghosh D, Sengupta J (2007) Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast. Hum Reproduction (Oxf, Engl) 22:2814–2823

    Article  Google Scholar 

  51. Knofler M, Saleh L, Bauer S, Vasicek R, Griesinger G, Strohmer H, Helmer H, Husslein P (2000) Promoter elements and transcription factors involved in differentiation-dependent human chorionic gonadotrophin-alpha messenger ribonucleic acid expression of term villous trophoblasts. Endocrinology 141:3737–3748

    Article  PubMed  CAS  Google Scholar 

  52. Gaspard U, Foidart JM, Lambotte R, Reuter AM, Franchimont P (1984) Human chorionic gonadotropin and its subunits in normal and pathologic pregnancies. Ann Endocrinol 45:269–280

    CAS  Google Scholar 

  53. Goldstein DP, Berkowitz RS (1994) Current management of complete and partial molar pregnancy. J Reproduct Med 39:139–146

    CAS  Google Scholar 

  54. Myatt L, Miodovnik M (1999) Prediction of preeclampsia. Semin Perinatol 23:45–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Department of Gynecology/Obstetrics (Pr. J.P. Schaal) at the University Hospital of Grenoble for giving us access to human placentas. We acknowledge the following sources of funding: INSERM (U1036), University Joseph Fourier, Commissariat à l’Energie Atomique (DSV/iRTSV/BCI), the Région Rhône-Alpes (CIBLE-2008). S.B. was supported by doctoral scholarships from the French Ministry of Education and Research and from the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Alfaidy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouillet, S., Hoffmann, P., Chauvet, S. et al. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors. Cell. Mol. Life Sci. 69, 1537–1550 (2012). https://doi.org/10.1007/s00018-011-0889-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0889-x

Keywords

Navigation