Skip to main content

Advertisement

Log in

WWP1: a versatile ubiquitin E3 ligase in signaling and diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a multifunction protein containing an N-terminal C2 domain, four tandem WW domains for substrate binding, and a C-terminal catalytic HECT domain for ubiquitin transferring. WWP1 has been suggested to function as the E3 ligase for several PY motif-containing proteins, such as Smad2, KLF5, p63, ErbB4/HER4, RUNX2, JunB, RNF11, SPG20, and Gag, as well as several non-PY motif containing proteins, such as TβR1, Smad4, KLF2, and EPS15. WWP1 regulates a variety of cellular biological processes including protein trafficking and degradation, signaling, transcription, and viral budding. WWP1 has been implicated in several diseases, such as cancers, infectious diseases, neurological diseases, and aging. In this review article, we extensively summarize the current knowledge of WWP1 with special emphasis on the roles and action of mechanism of WWP1 in signaling and human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Seo SR, Lallemand F, Ferrand N, Pessah M, L’Hoste S, Camonis J, Atfi A (2004) The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23(19):3780–3792

    Article  PubMed  CAS  Google Scholar 

  2. Wood JD, Yuan J, Margolis RL, Colomer V, Duan K, Kushi J, Kaminsky Z, Kleiderlein JJ, Sharp AH, Ross CA (1998) Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci 11(3):149–160

    Article  PubMed  CAS  Google Scholar 

  3. Chen C, Matesic LE (2007) The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer Metastasis Rev 26(3–4):587–604. doi:10.1007/s10555-007-9091-x

    Article  PubMed  CAS  Google Scholar 

  4. Harvey KF, Kumar S (1999) Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions. Trends Cell Biol 9(5):166–169

    Article  PubMed  CAS  Google Scholar 

  5. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23(11):1972–1984

    Article  PubMed  CAS  Google Scholar 

  6. Shearwin-Whyatt L, Dalton HE, Foot N, Kumar S (2006) Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioessays 28(6):617–628

    Article  PubMed  CAS  Google Scholar 

  7. Plant PJ, Yeger H, Staub O, Howard P, Rotin D (1997) The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 272(51):32329–32336

    Article  PubMed  CAS  Google Scholar 

  8. Plant PJ, Lafont F, Lecat S, Verkade P, Simons K, Rotin D (2000) Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J Cell Biol 149(7):1473–1484

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Peng Q, Lin Q, Childress C, Carey D, Yang W (2010) Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J Biol Chem 285(16):12279–12288. doi:10.1074/jbc.M109.086405

    Article  PubMed  CAS  Google Scholar 

  10. Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL, Forman-Kay JD (2007) Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130(4):651–662. doi:10.1016/j.cell.2007.06.050

    Article  PubMed  CAS  Google Scholar 

  11. Chen C, Zhou Z, Liu R, Li Y, Azmi PB, Seth AK (2008) The WW domain containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11. Oncogene 27(54):6845–6855

    Article  PubMed  CAS  Google Scholar 

  12. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P (1995) Characterization of a novel protein-binding module–the WW domain. FEBS Lett 369(1):67–71

    Article  PubMed  CAS  Google Scholar 

  13. Sudol M, Hunter T (2000) NeW wrinkles for an old domain. Cell 103(7):1001–1004 S0092-8674(00)00203-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  14. Mosser EA, Kasanov JD, Forsberg EC, Kay BK, Ney PA, Bresnick EH (1998) Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains. Biochemistry 37(39):13686–13695

    Article  PubMed  CAS  Google Scholar 

  15. Li Y, Zhou Z, Chen C (2008) WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death Differ 15(12):1941–1951

    Article  PubMed  CAS  Google Scholar 

  16. Li Y, Zhou Z, Alimandi M, Chen C (2009) WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer. Oncogene 28(33):2948–2958

    Article  PubMed  CAS  Google Scholar 

  17. Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, Hunter T, Noel JP (2003) Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 11(1):249–259

    Article  PubMed  CAS  Google Scholar 

  18. Huang K, Johnson KD, Petcherski AG, Vandergon T, Mosser EA, Copeland NG, Jenkins NA, Kimble J, Bresnick EH (2000) A HECT domain ubiquitin ligase closely related to the mammalian protein WWP1 is essential for Caenorhabditis elegans embryogenesis. Gene 252(1–2):137–145

    Article  PubMed  CAS  Google Scholar 

  19. Malbert-Colas L, Fay M, Cluzeaud F, Blot-Chabaud M, Farman N, Dhermy D, Lecomte MC (2003) Differential expression and localisation of WWP1, a Nedd4-like protein, in epithelia. Pflugers Arch 447(1):35–43

    Article  PubMed  CAS  Google Scholar 

  20. Chen C, Sun X, Guo P, Dong XY, Sethi P, Zhou W, Zhou Z, Petros J, Frierson HF Jr, Vessella RL, Atfi A, Dong JT (2007) Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene 26(16):2386–2394

    Article  PubMed  CAS  Google Scholar 

  21. Chen C, Zhou Z, Ross JS, Zhou W, Dong JT (2007) The amplified WWP1 gene is a potential molecular target in breast cancer. Int J Cancer 121(1):2834–2841

    Google Scholar 

  22. Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K (2004) Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23(41):6914–6923

    Article  PubMed  CAS  Google Scholar 

  23. Chen C, Sun X, Guo P, Dong XY, Sethi P, Cheng X, Zhou J, Ling J, Simons JW, Lingrel JB, Dong JT (2005) Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J Biol Chem 280(50):41553–41561

    Article  PubMed  CAS  Google Scholar 

  24. Nguyen Huu NS, Ryder WD, Zeps N, Flasza M, Chiu M, Hanby AM, Poulsom R, Clarke RB, Baron M (2008) Tumour-promoting activity of altered WWP1 expression in breast cancer and its utility as a prognostic indicator. J Pathol 216(1):93–102

    Article  PubMed  CAS  Google Scholar 

  25. Flasza M, Gorman P, Roylance R, Canfield AE, Baron M (2002) Alternative splicing determines the domain structure of WWP1, a Nedd4 family protein. Biochem Biophys Res Commun 290(1):431–437

    Article  PubMed  CAS  Google Scholar 

  26. Flasza M, Nguyen Huu NS, Mazaleyrat S, Clemence S, Villemant C, Clarke R, Baron M (2006) Regulation of the nuclear localization of the human Nedd4-related WWP1 protein by Notch. Mol Membr Biol 23(3):269–276

    Article  PubMed  Google Scholar 

  27. Chen C, Zhou Z, Sheehan CE, Slodkowska E, Sheehan CB, Boguniewicz A, Ross JS (2009) Overexpression of WWP1 is associated with the estrogen receptor and insulin-like growth factor receptor 1 in breast carcinoma. Int J Cancer 124(12):2829–2836

    Article  PubMed  CAS  Google Scholar 

  28. Li X, Huang M, Zheng H, Wang Y, Ren F, Shang Y, Zhai Y, Irwin DM, Shi Y, Chen D, Chang Z (2008) CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J Cell Biol 181(6):959–972

    Article  PubMed  CAS  Google Scholar 

  29. Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M, Awad H, Chen D, Xing L (2011) Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells 29(10):1601–1610. doi:10.1002/stem.703

    Article  PubMed  CAS  Google Scholar 

  30. Cao X, Xue L, Han L, Ma L, Chen T, Tong T (2011) WW Domain-containing E3 ubiquitin protein ligase 1 (WWP1) Delays cellular senescence by promoting p27Kip1 degradation in human diploid fibroblasts. J Biol Chem 286(38):33447–33456. doi:10.1074/jbc.M111.225565

    Article  PubMed  CAS  Google Scholar 

  31. Laine A, Ronai Z (2007) Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 26(10):1477–1483

    Article  PubMed  CAS  Google Scholar 

  32. Gu Z, Rubin MA, Yang Y, Deprimo SE, Zhao H, Horvath S, Brooks JD, Loda M, Reiter RE (2005) Reg IV: a promising marker of hormone refractory metastatic prostate cancer. Clin Cancer Res 11(6):2237–2243

    Article  PubMed  CAS  Google Scholar 

  33. Nakajima Y, Akaogi K, Suzuki T, Osakabe A, Yamaguchi C, Sunahara N, Ishida J, Kako K, Ogawa S, Fujimura T, Homma Y, Fukamizu A, Murayama A, Kimura K, Inoue S, Yanagisawa J (2011) Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERbeta and KLF5. Sci Signal 4(168):ra22. doi:10.1126/scisignal.2001551

    Article  PubMed  Google Scholar 

  34. Moren A, Imamura T, Miyazono K, Heldin CH, Moustakas A (2005) Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 280(23):22115–22123

    Article  PubMed  CAS  Google Scholar 

  35. Herbst A, Salghetti SE, Kim SY, Tansey WP (2004) Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 23(21):3863–3871

    Article  PubMed  CAS  Google Scholar 

  36. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8

    Article  PubMed  CAS  Google Scholar 

  37. Aqeilan RI, Donati V, Gaudio E, Nicoloso MS, Sundvall M, Korhonen A, Lundin J, Isola J, Sudol M, Joensuu H, Croce CM, Elenius K (2007) Association of Wwox with ErbB4 in breast cancer. Cancer Res 67(19):9330–9336

    Article  PubMed  CAS  Google Scholar 

  38. Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278(35):33334–33341

    Article  PubMed  CAS  Google Scholar 

  39. Omerovic J, Puggioni EM, Napoletano S, Visco V, Fraioli R, Frati L, Gulino A, Alimandi M (2004) Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Exp Cell Res 294(2):469–479

    Article  PubMed  CAS  Google Scholar 

  40. Omerovic J, Santangelo L, Puggioni EM, Marrocco J, Dall’Armi C, Palumbo C, Belleudi F, Di Marcotullio L, Frati L, Torrisi MR, Cesareni G, Gulino A, Alimandi M (2007) The E3 ligase Aip4/Itch ubiquitinates and targets ErbB-4 for degradation. Faseb J 21(11):2849–2862

    Article  PubMed  CAS  Google Scholar 

  41. Feng SM, Muraoka-Cook RS, Hunter D, Sandahl MA, Caskey LS, Miyazawa K, Atfi A, Earp HS 3rd (2009) The E3 ubiquitin ligase WWP1 selectively targets HER4 and its proteolytically derived signaling isoforms for degradation. Mol Cell Biol 29(3):892–906

    Article  PubMed  CAS  Google Scholar 

  42. Vecchi M, Carpenter G (1997) Constitutive proteolysis of the ErbB-4 receptor tyrosine kinase by a unique, sequential mechanism. J Cell Biol 139(4):995–1003

    Article  PubMed  CAS  Google Scholar 

  43. Barnes NL, Khavari S, Boland GP, Cramer A, Knox WF, Bundred NJ (2005) Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast. Clin Cancer Res 11(6):2163–2168

    Article  PubMed  CAS  Google Scholar 

  44. Naresh A, Long W, Vidal GA, Wimley WC, Marrero L, Sartor CI, Tovey S, Cooke TG, Bartlett JM, Jones FE (2006) The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Res 66(12):6412–6420

    Article  PubMed  CAS  Google Scholar 

  45. Bakowska JC, Jupille H, Fatheddin P, Puertollano R, Blackstone C (2007) Troyer syndrome protein spartin is mono-ubiquitinated and functions in EGF receptor trafficking. Mol Biol Cell 18(5):1683–1692

    Article  PubMed  CAS  Google Scholar 

  46. Eastman SW, Yassaee M, Bieniasz PD (2009) A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J Cell Biol 184(6):881–894

    Article  PubMed  CAS  Google Scholar 

  47. Edwards TL, Clowes VE, Tsang HT, Connell JW, Sanderson CM, Luzio JP, Reid E (2009) Endogenous spartin (SPG20) is recruited to endosomes and lipid droplets and interacts with the ubiquitin E3 ligases AIP4 and AIP5. Biochem J 423(1):31–39

    Article  PubMed  CAS  Google Scholar 

  48. Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188(2):143–160

    Article  PubMed  CAS  Google Scholar 

  49. Dong JT, Chen C (2009) Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 66(16):2691–2706

    Article  PubMed  CAS  Google Scholar 

  50. Chen C, Sun X, Ran Q, Wilkinson KD, Murphy TJ, Simons JW, Dong JT (2005) Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene 24(20):3319–3327

    Article  PubMed  CAS  Google Scholar 

  51. Zhao D, Zheng HQ, Zhou Z, Chen C (2010) The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res 70(11):4728–4738

    Article  PubMed  CAS  Google Scholar 

  52. Zhang X, Srinivasan SV, Lingrel JB (2004) WWP1-dependent ubiquitination and degradation of the lung Kruppel-like factor, KLF2. Biochem Biophys Res Commun 316(1):139–148

    Article  PubMed  CAS  Google Scholar 

  53. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  PubMed  CAS  Google Scholar 

  54. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245

    Article  PubMed  CAS  Google Scholar 

  55. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112(6):779–791

    Article  PubMed  CAS  Google Scholar 

  56. Peschiaroli A, Scialpi F, Bernassola F, El Sherbini el S, Melino G (2010) The E3 ubiquitin ligase WWP1 regulates DeltaNp63-dependent transcription through Lys63 linkages. Biochem Biophys Res Commun 402(2):425–430. doi:10.1016/j.bbrc.2010.10.050

    Article  PubMed  CAS  Google Scholar 

  57. Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS (2006) Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 25(4):589–600

    Article  PubMed  CAS  Google Scholar 

  58. Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH (2006) Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312(5777):1223–1227

    Article  PubMed  CAS  Google Scholar 

  59. Shen R, Chen M, Wang YJ, Kaneki H, Xing L, O’Keefe RJ, Chen D (2006) Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. J Biol Chem 281(6):3569–3576

    Article  PubMed  CAS  Google Scholar 

  60. Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, Ang KK, El-Naggar AK, Zanation AM, Cmelak AJ, Levy S, Slebos RJ, Yarbrough WG (2006) Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 66(16):8210–8218

    Article  PubMed  CAS  Google Scholar 

  61. Zhou Z, Liu R, Chen C (2011) The WWP1 ubiquitin E3 ligase increases TRAIL resistance in breast cancer. Int J Cancer. doi:10.1002/ijc.26122

  62. Galinier R, Gout E, Lortat-Jacob H, Wood J, Chroboczek J (2002) Adenovirus protein involved in virus internalization recruits ubiquitin-protein ligases. Biochemistry 41(48):14299–14305

    Article  PubMed  CAS  Google Scholar 

  63. Martin-Serrano J, Eastman SW, Chung W, Bieniasz PD (2005) HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J Cell Biol 168(1):89–101

    Article  PubMed  CAS  Google Scholar 

  64. Heidecker G, Lloyd PA, Fox K, Nagashima K, Derse D (2004) Late assembly motifs of human T cell leukemia virus type 1 and their relative roles in particle release. J Virol 78(12):6636–6648

    Article  PubMed  CAS  Google Scholar 

  65. Chen HI, Sudol M (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci USA 92(17):7819–7823

    Article  PubMed  CAS  Google Scholar 

  66. Patnaik A, Wills JW (2002) In vivo interference of Rous sarcoma virus budding by cis expression of a WW domain. J Virol 76(6):2789–2795

    Article  PubMed  CAS  Google Scholar 

  67. Heidecker G, Lloyd PA, Soheilian F, Nagashima K, Derse D (2007) The role of WWP1-Gag interaction and Gag ubiquitination in assembly and release of human T cell leukemia virus type 1. J Virol 81(18):9769–9777

    Article  PubMed  CAS  Google Scholar 

  68. Rauch S, Martin-Serrano J (2011) Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J Virol 85(7):3546–3556. doi:10.1128/JVI.02045-10

    Article  PubMed  CAS  Google Scholar 

  69. Chen CS, Bellier A, Kao CY, Yang YL, Chen HD, Los FC, Aroian RV (2010) WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans. PLoS One 5(3):e9494

    Article  PubMed  Google Scholar 

  70. Kanazawa I (1999) Molecular pathology of dentatorubral-pallidoluysian atrophy. Philos Trans R Soc Lond B 354(1386):1069–1074

    Article  CAS  Google Scholar 

  71. Qin H, Pu HX, Li M, Ahmed S, Song J (2008) Identification and structural mechanism for a novel interaction between a ubiquitin ligase WWP1 and Nogo-A, a key inhibitor for central nervous system regeneration. Biochemistry 47(51):13647–13658

    Article  PubMed  CAS  Google Scholar 

  72. Patel H, Cross H, Proukakis C, Hershberger R, Bork P, Ciccarelli FD, Patton MA, McKusick VA, Crosby AH (2002) SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet 31(4):347–348

    PubMed  CAS  Google Scholar 

  73. Carrano AC, Liu Z, Dillin A, Hunter T (2009) A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460(7253):396–399

    Google Scholar 

  74. Matsumoto H, Maruse H, Inaba Y, Yoshizawa K, Sasazaki S, Fujiwara A, Nishibori M, Nakamura A, Takeda S, Ichihara N, Kikuchi T, Mukai F, Mannen H (2008) The ubiquitin ligase gene (WWP1) is responsible for the chicken muscular dystrophy. FEBS Lett 582(15):2212–2218

    Google Scholar 

  75. Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK, Fowlkes DM (1997) Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem 272(23):14611–14616

    Article  PubMed  CAS  Google Scholar 

  76. Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O’Malley BW, Nawaz Z (2006) WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol 20(10):2343–2354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from National Nature Science Foundation of China (81072162 and 81120108019) and a grant from Yunnan Province High-Profile Scientists Program (云南省高端科技人才计划 2010CI114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceshi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, X., Chen, C. WWP1: a versatile ubiquitin E3 ligase in signaling and diseases. Cell. Mol. Life Sci. 69, 1425–1434 (2012). https://doi.org/10.1007/s00018-011-0871-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0871-7

Keywords

Navigation