Skip to main content

Advertisement

Log in

The dynorphin/κ-opioid receptor system and its role in psychiatric disorders

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. WHO (2001) Mental health: new understanding, new hope. The world health report 2001

  2. Dani JA, Harris RA (2005) Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 8:1465–1470. doi:10.1038/nn1580

    Article  PubMed  CAS  Google Scholar 

  3. Henriksen G, Willoch F (2008) Imaging of opioid receptors in the central nervous system. Brain 131:1171–1196. doi:10.1093/brain/awm255

    Article  PubMed  Google Scholar 

  4. Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215:413–415

    Article  PubMed  CAS  Google Scholar 

  5. Shippenberg TS (2009) The dynorphin/kappa opioid receptor system: a new target for the treatment of addiction and affective disorders? Neuropsychopharmacology 34:247. doi:10.1038/npp.2008.165

    Article  PubMed  CAS  Google Scholar 

  6. Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature 298:245–249

    Article  PubMed  CAS  Google Scholar 

  7. Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78:7219–7223

    Article  PubMed  CAS  Google Scholar 

  8. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 76:6666–6670

    Article  PubMed  CAS  Google Scholar 

  9. Minamino N, Kangawa K, Fukuda A, Matsuo H, Iagarashi M (1980) A new opioid octapeptide related to dynorphin from porcine hypothalamus. Biochem Biophys Res Commun 95:1475–1481. pii: S0006-291X(80)80063-5

    Article  PubMed  CAS  Google Scholar 

  10. Kangawa K, Matsuo H (1979) Alpha-Neo-endorphin: a “big” Leu-enkephalin with potent opiate activity from porcine hypothalami. Biochem Biophys Res Commun 86:153–160

    Article  PubMed  CAS  Google Scholar 

  11. Minamino N, Kangawa K, Chino N, Sakakibara S, Matsuo H (1981) Beta-neo-endorphin, a new hypothalamic “big” Leu-enkephalin of porcine origin: its purification and the complete amino acid sequence. Biochem Biophys Res Commun 99:864–870. pii: 0006-291X(81)91243-2

    Article  PubMed  CAS  Google Scholar 

  12. Fischli W, Goldstein A, Hunkapiller MW, Hood LE (1982) Isolation and amino acid sequence analysis of a 4, 000-dalton dynorphin from porcine pituitary. Proc Natl Acad Sci USA 79:5435–5437

    Article  PubMed  CAS  Google Scholar 

  13. Kilpatrick DL, Wahlstrom A, Lahm HW, Blacher R, Udenfriend S (1982) Rimorphin, a unique, naturally occurring [Leu]enkephalin-containing peptide found in association with dynorphin and alpha-neo-endorphin. Proc Natl Acad Sci USA 79:6480–6483

    Article  PubMed  CAS  Google Scholar 

  14. Nakao K, Suda M, Sakamoto M, Yoshimasa T, Morii N, Ikeda Y, Yanaihara C, Yanaihara N, Numa S, Imura H (1983) Leumorphin is a novel endogenous opioid peptide derived from preproenkephalin B. Biochem Biophys Res Commun 117:695–701. pii: 0006-291X(83)91653-4

    Article  PubMed  CAS  Google Scholar 

  15. Naqvi T, Haq W, Mathur KB (1998) Structure-activity relationship studies of dynorphin A and related peptides. Peptides 19:1277–1292. pii: S0196-9781(98)00042-4

    Article  PubMed  CAS  Google Scholar 

  16. Chen Y, Chen C, Liu-Chen LY (2007) Dynorphin peptides differentially regulate the human kappa opioid receptor. Life Sci 80:1439–1448. doi:10.1016/j.lfs.2007.01.018

    Article  PubMed  CAS  Google Scholar 

  17. Shukla VK, Lemaire S (1994) Non-opioid effects of dynorphins: possible role of the NMDA receptor. Trends Pharmacol Sci 15:420–424

    Article  PubMed  CAS  Google Scholar 

  18. Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS (2005) Pathobiology of dynorphins in trauma and disease. Front Biosci 10:216–235. pii: 1522

    Article  PubMed  CAS  Google Scholar 

  19. Sherwood TW, Askwith CC (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 29:14371–14380. doi:10.1523/JNEUROSCI.2186-09.2009

    Article  PubMed  CAS  Google Scholar 

  20. Weber E, Evans CJ, Barchas JD (1982) Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature 299:77–79

    Article  PubMed  CAS  Google Scholar 

  21. Ramsdell CD, Meador-Woodruff JH (1993) Expression of prodynorphin-derived peptides and mRNA in guinea-pig cortex. Neuropeptides 25:131–138. pii: 0143-4179(93)90093-P

    Article  PubMed  CAS  Google Scholar 

  22. Healy DJ, Meador-Woodruff JH (1994) Prodynorphin-derived peptide expression in primate cortex and striatum. Neuropeptides 27:277–284

    Article  PubMed  CAS  Google Scholar 

  23. Berman Y, Mzhavia N, Polonskaia A, Furuta M, Steiner DF, Pintar JE, Devi LA (2000) Defective prodynorphin processing in mice lacking prohormone convertase PC2. J Neurochem 75:1763–1770

    Article  PubMed  CAS  Google Scholar 

  24. Boudarine M, Yegorov O, Sterling-Dubrovsky A, Devi LA, Berman Y (2002) Developmental changes in opioid peptides and their receptors in Cpe(fat)/Cpe(fat) mice lacking peptide processing enzyme carboxypeptidase E. J Pharmacol Exp Ther 303:1317–1324. doi:10.1124/jpet.102.037663

    Article  PubMed  CAS  Google Scholar 

  25. Minokadeh A, Funkelstein L, Toneff T, Hwang SR, Beinfeld M, Reinheckel T, Peters C, Zadina J, Hook V (2010) Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Mol Cell Neurosci 43:98–107. doi:10.1016/j.mcn.2009.10.001

    Article  PubMed  CAS  Google Scholar 

  26. Day R, Lazure C, Basak A, Boudreault A, Limperis P, Dong W, Lindberg I (1998) Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J Biol Chem 273:829–836

    Article  PubMed  CAS  Google Scholar 

  27. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 48:393–423. doi:10.1146/annurev.pharmtox.48.113006.094812

    Article  PubMed  CAS  Google Scholar 

  28. Yakovleva T, Bazov I, Cebers G, Marinova Z, Hara Y, Ahmed A, Vlaskovska M, Johansson B, Hochgeschwender U, Singh IN, Bruce-Keller AJ, Hurd YL, Kaneko T, Terenius L, Ekstrom TJ, Hauser KF, Pickel VM, Bakalkin G (2006) Prodynorphin storage and processing in axon terminals and dendrites. FASEB J 20:2124–2126. doi:10.1096/fj.06-6174fje

    Article  PubMed  CAS  Google Scholar 

  29. Reed B, Zhang Y, Chait BT, Kreek MJ (2003) Dynorphin A(1–17) biotransformation in striatum of freely moving rats using microdialysis and matrix-assisted laser desorption/ionization mass spectrometry. J Neurochem 86:815–823. pii: 1859

    Article  PubMed  CAS  Google Scholar 

  30. Sandin J, Tan-No K, Kasakov L, Nylander I, Winter A, Silberring J, Terenius L (1997) Differential metabolism of dynorphins in substantia nigra, striatum, and hippocampus. Peptides 18:949–956. pii: S0196-9781(97)00025-9

    Article  PubMed  CAS  Google Scholar 

  31. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  32. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949

    Article  PubMed  CAS  Google Scholar 

  33. Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 32:317–320

    Article  CAS  Google Scholar 

  34. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacology, XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    PubMed  CAS  Google Scholar 

  35. Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990. doi:10.1146/annurev.biochem.73.011303.073940

    Article  PubMed  CAS  Google Scholar 

  36. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430. doi:10.1146/annurev.pharmtox.40.1.389

    Article  PubMed  CAS  Google Scholar 

  37. Grudt TJ, Williams JT (1993) Kappa-opioid receptors also increase potassium conductance. Proc Natl Acad Sci USA 90:11429–11432

    Article  PubMed  CAS  Google Scholar 

  38. Gross RA, Moises HC, Uhler MD, Macdonald RL (1990) Dynorphin A and cAMP-dependent protein kinase independently regulate neuronal calcium currents. Proc Natl Acad Sci USA 87:7025–7029

    Article  PubMed  CAS  Google Scholar 

  39. Iremonger KJ, Bains JS (2009) Retrograde opioid signaling regulates glutamatergic transmission in the hypothalamus. J Neurosci 29:7349–7358. doi:10.1523/JNEUROSCI.0381-09.2009

    Article  PubMed  CAS  Google Scholar 

  40. Crain SM, Shen KF (1996) Modulatory effects of Gs-coupled excitatory opioid receptor functions on opioid analgesia, tolerance, and dependence. Neurochem Res 21:1347–1351

    Article  PubMed  CAS  Google Scholar 

  41. Kam AY, Chan AS, Wong YH (2004) Kappa-opioid receptor signals through Src and focal adhesion kinase to stimulate c-Jun N-terminal kinases in transfected COS-7 cells and human monocytic THP-1 cells. J Pharmacol Exp Ther 310:301–310. doi:10.1124/jpet.104.065078jpet

    Article  PubMed  CAS  Google Scholar 

  42. Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–18089. doi:10.1074/jbc.M513640200

    Article  PubMed  CAS  Google Scholar 

  43. Liu-Chen LY (2004) Agonist-induced regulation and trafficking of kappa opioid receptors. Life Sci 75:511–536. doi:10.1016/j.lfs.2003.10.041

    Article  PubMed  CAS  Google Scholar 

  44. Blake AD, Bot G, Li S, Freeman JC, Reisine T (1997) Differential agonist regulation of the human kappa-opioid receptor. J Neurochem 68:1846–1852

    Article  PubMed  CAS  Google Scholar 

  45. Wang Y, Tang K, Inan S, Siebert D, Holzgrabe U, Lee DY, Huang P, Li JG, Cowan A, Liu-Chen LY (2005) Comparison of pharmacological activities of three distinct kappa ligands (Salvinorin A, TRK-820 and 3FLB) on kappa opioid receptors in vitro and their antipruritic and antinociceptive activities in vivo. J Pharmacol Exp Ther 312:220–230. doi:10.1124/jpet.104.073668jpet

    Article  PubMed  CAS  Google Scholar 

  46. Chen Y, Chen C, Wang Y, Liu-Chen LY (2006) Ligands regulate cell surface level of the human kappa opioid receptor by activation-induced down-regulation and pharmacological chaperone-mediated enhancement: differential effects of nonpeptide and peptide agonists. J Pharmacol Exp Ther 319:765–775. doi:10.1124/jpet.106.107987

    Article  PubMed  CAS  Google Scholar 

  47. Chen Y, Liu-Chen LY (2009) Chaperone-like effects of cell-permeant ligands on opioid receptors. Front Biosci 14:634–643. pii: 3269

    Article  PubMed  Google Scholar 

  48. Li JG, Chen C, Liu-Chen LY (2007) N-Glycosylation of the human kappa opioid receptor enhances its stability but slows its trafficking along the biosynthesis pathway. Biochemistry 46:10960–10970. doi:10.1021/bi700443j

    Article  PubMed  CAS  Google Scholar 

  49. Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl) 210:137–147. doi:10.1007/s00213-010-1806-y

    Article  CAS  Google Scholar 

  50. Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S (2002) Guidelines for human gene nomenclature. Genomics 79:464–470

    Article  PubMed  CAS  Google Scholar 

  51. Douglass J, McMurray CT, Garrett JE, Adelman JP, Calavetta L (1989) Characterization of the rat prodynorphin gene. Mol Endocrinol 3:2070–2078

    Article  PubMed  CAS  Google Scholar 

  52. Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H, Kubo T, Hirose T, Inayama S, Hayashida H et al (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306:611–614

    Article  PubMed  CAS  Google Scholar 

  53. Sharifi N, Ament M, Brennan MB, Hochgeschwender U (1999) Isolation and characterization of the mouse homolog of the preprodynorphin (Pdyn) gene. Neuropeptides 33:236–238. doi:10.1054/npep.1999.0023

    Article  PubMed  CAS  Google Scholar 

  54. Nikoshkov A, Hurd YL, Yakovleva T, Bazov I, Marinova Z, Cebers G, Pasikova N, Gharibyan A, Terenius L, Bakalkin G (2005) Prodynorphin transcripts and proteins differentially expressed and regulated in the adult human brain. FASEB J 19:1543–1545. doi:10.1096/fj.05-3743fje

    PubMed  CAS  Google Scholar 

  55. Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (2006) Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 16:55–65. doi:10.1101/gr.4039406

    Article  PubMed  CAS  Google Scholar 

  56. Geijer T, Telkov M, Terenius L (1995) Characterization of human prodynorphin gene transcripts. Biochem Biophys Res Commun 215:881–888. doi:10.1006/bbrc.1995.2546

    Article  PubMed  CAS  Google Scholar 

  57. Telkov M, Geijer T, Terenius L (1998) Human prodynorphin gene generates several tissue-specific transcripts. Brain Res 804:284–295. pii: S0006-8993(98)00706-9

    Article  PubMed  CAS  Google Scholar 

  58. Liu HC, Lu S, Augustin LB, Felsheim RF, Chen HC, Loh HH, Wei LN (1995) Cloning and promoter mapping of mouse kappa opioid receptor gene. Biochem Biophys Res Commun 209:639–647. pii: S0006291X85715471

    Article  PubMed  CAS  Google Scholar 

  59. Yakovlev AG, Krueger KE, Faden AI (1995) Structure and expression of a rat kappa opioid receptor gene. J Biol Chem 270:6421–6424

    Article  PubMed  CAS  Google Scholar 

  60. Yuferov V, Fussell D, LaForge KS, Nielsen DA, Gordon D, Ho A, Leal SM, Ott J, Kreek MJ (2004) Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. Pharmacogenetics 14:793–804. pii: 00008571-200412000-00002

    Article  PubMed  CAS  Google Scholar 

  61. Lu S, Loh HH, Wei LN (1997) Studies of dual promoters of mouse kappa-opioid receptor gene. Mol Pharmacol 52:415–420

    PubMed  CAS  Google Scholar 

  62. Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424–436. doi:10.1038/nrg2026

    Article  PubMed  CAS  Google Scholar 

  63. Zimprich A, Kraus J, Woltje M, Mayer P, Rauch E, Hollt V (2000) An allelic variation in the human prodynorphin gene promoter alters stimulus-induced expression. J Neurochem 74:472–477

    Article  PubMed  CAS  Google Scholar 

  64. Babbitt CC, Silverman JS, Haygood R, Reininga JM, Rockman MV, Wray GA (2010) Multiple functional variants in cis modulate PDYN expression. Mol Biol Evol 27:465–479. doi:10.1093/molbev/msp276

    Article  PubMed  CAS  Google Scholar 

  65. Rouault M, Nielsen DA, Ho A, Kreek MJ, Yuferov V (2010) Cell-specific effects of variants of the 68-base pair tandem repeat on prodynorphin gene promoter activity. Addict Biol. doi:10.1111/j.1369-1600.2010.00248.x

  66. Geijer T, Jonsson E, Neiman J, Gyllander A, Sedvall G, Rydberg U, Terenius L (1997) Prodynorphin allelic distribution in Scandinavian chronic alcoholics. Alcohol Clin Exp Res 21:1333–1336. pii: 00000374-199710000-00025

    Article  PubMed  CAS  Google Scholar 

  67. Cirulli ET, Goldstein DB (2007) In vitro assays fail to predict in vivo effects of regulatory polymorphisms. Hum Mol Genet 16:1931–1939. doi:10.1093/hmg/ddm140

    Article  PubMed  CAS  Google Scholar 

  68. Naranjo JR, Mellstrom B, Achaval M, Sassone-Corsi P (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron 6:607–617. pii: 0896-6273(91)90063-6

    Article  PubMed  CAS  Google Scholar 

  69. Yuferov V, Ji F, Nielsen DA, Levran O, Ho A, Morgello S, Shi R, Ott J, Kreek MJ (2009) A functional haplotype implicated in vulnerability to develop cocaine dependence is associated with reduced PDYN expression in human brain. Neuropsychopharmacology 34:1185–1197. doi:10.1038/npp.2008.187

    Article  PubMed  CAS  Google Scholar 

  70. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502. doi:10.1126/science.1141319

    Article  PubMed  CAS  Google Scholar 

  71. Henriksson R, Bäckman CM, Harvey BK, Bakalkin G, Shippenberg T (2010) Regulation of human prodynorphin gene (PDYN) expression by REST and miR-9 Soc Neurosci Abstr 167.5

  72. Rockman MV, Hahn MW, Soranzo N, Zimprich F, Goldstein DB, Wray GA (2005) Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol 3:e387. doi:10.1371/journal.pbio.0030387

    Article  PubMed  CAS  Google Scholar 

  73. Edenberg HJ, Wang J, Tian H, Pochareddy S, Xuei X, Wetherill L, Goate A, Hinrichs T, Kuperman S, Nurnberger JI Jr, Schuckit M, Tischfield JA, Foroud T (2008) A regulatory variation in OPRK1, the gene encoding the kappa-opioid receptor, is associated with alcohol dependence. Hum Mol Genet 17:1783–1789. doi:10.1093/hmg/ddn068

    Article  PubMed  CAS  Google Scholar 

  74. Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE 3rd, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ (2009) Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62:335–348. doi:10.1016/j.neuron.2009.03.026

    Article  PubMed  CAS  Google Scholar 

  75. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282. pii: 0022-2836(87)90689-9

    Article  PubMed  CAS  Google Scholar 

  76. Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056. doi:10.1101/gr.088773.108

    Article  PubMed  CAS  Google Scholar 

  77. Yuferov V, Nielsen DA, Levran O, Randesi M, Hamon S, Ho A, Morgello S, Kreek MJ (2010) Tissue-specific DNA methylation of the human prodynorphin gene in post-mortem brain tissues and PBMCs. Pharmacogenet Genom. doi:10.1097/FPC.0b013e32833eecbc

  78. Wei LN, Loh HH (2010) Transcriptional and epigenetic regulation of opioid receptor genes— present and future. Annu Rev Pharmacol Toxicol. doi:10.1146/annurev-pharmtox-010510-100605

  79. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903. doi:10.1038/ng.154

    Article  PubMed  CAS  Google Scholar 

  80. Dulac C (2010) Brain function and chromatin plasticity. Nature 465:728–735. doi:10.1038/nature09231

    Article  PubMed  CAS  Google Scholar 

  81. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Ohara O, Isogai T, Sugano S (2004) Complete sequencing and characterization of 21, 243 full-length human cDNAs. Nat Genet 36:40–45. doi:10.1038/ng1285

    Article  PubMed  Google Scholar 

  82. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. doi:10.1038/nrg2521

    Article  PubMed  CAS  Google Scholar 

  83. Soranzo N, Spector TD, Mangino M, Kuhnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight BF, Burns P, Laskowski RA, Xue Y, Menzel S, Altshuler D, Bradley JR, Bumpstead S, Burnett MS, Devaney J, Doring A, Elosua R, Epstein SE, Erber W, Falchi M, Garner SF, Ghori MJ, Goodall AH, Gwilliam R, Hakonarson HH, Hall AS, Hammond N, Hengstenberg C, Illig T, Konig IR, Knouff CW, McPherson R, Melander O, Mooser V, Nauck M, Nieminen MS, O’Donnell CJ, Peltonen L, Potter SC, Prokisch H, Rader DJ, Rice CM, Roberts R, Salomaa V, Sambrook J, Schreiber S, Schunkert H, Schwartz SM, Serbanovic-Canic J, Sinisalo J, Siscovick DS, Stark K, Surakka I, Stephens J, Thompson JR, Volker U, Volzke H, Watkins NA, Wells GA, Wichmann HE, Van Heel DA, Tyler-Smith C, Thein SL, Kathiresan S, Perola M, Reilly MP, Stewart AF, Erdmann J, Samani NJ, Meisinger C, Greinacher A, Deloukas P, Ouwehand WH, Gieger C (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41:1182–1190. doi:10.1038/ng.467

    Article  PubMed  CAS  Google Scholar 

  84. Kim JM, Lee KH, Jeon YJ, Oh JH, Jeong SY, Song IS, Lee DS, Kim NS (2006) Identification of genes related to Parkinson’s disease using expressed sequence tags. DNA Res 13:275–286. doi:10.1093/dnares/dsl016

    Article  PubMed  CAS  Google Scholar 

  85. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245. doi:10.1016/j.cell.2006.12.048

    Article  PubMed  CAS  Google Scholar 

  86. Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT (2010) A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 20:578–588. doi:10.1101/gr.100479.109

    Article  PubMed  CAS  Google Scholar 

  87. Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211. doi:10.1016/j.cell.2009.06.001

    Article  PubMed  Google Scholar 

  88. Bakalkin G, Yakovleva T, Terenius L (1994) Prodynorphin gene expression relates to NF-kappa B factors. Brain Res Mol Brain Res 24:301–312

    Article  PubMed  CAS  Google Scholar 

  89. Bakalkin G, Telkov M, Yakovleva T, Terenius L (1995) [Leu5]enkephalin-encoding sequences are targets for a specific DNA-binding factor. Proc Natl Acad Sci USA 92:9024–9028

    Article  PubMed  CAS  Google Scholar 

  90. Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, Myers RM (2009) Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res 19:2163–2171. doi:10.1101/gr.097022.109

    Article  PubMed  CAS  Google Scholar 

  91. Thai L, Lee PH, Ho J, Suh H, Hong JS (1992) Regulation of prodynorphin gene expression in the hippocampus by glucocorticoids. Brain Res Mol Brain Res 16:150–157

    Article  PubMed  CAS  Google Scholar 

  92. Persson S, Schafer MK, Nohr D, Ekstrom G, Post C, Nyberg F, Weihe E (1994) Spinal prodynorphin gene expression in collagen-induced arthritis: influence of the glucocorticosteroid budesonide. Neuroscience 63:313–326. pii: 0306-4522(94)90026-4

    Article  PubMed  CAS  Google Scholar 

  93. Thai L, Hong JS, Wiley RG, Gallagher M (1996) The regulation of hippocampal dynorphin by neural/neuroendocrine pathways: models for effects of aging on an opioid peptide system. Neuroscience 70:661–671. pii: S0306-4522(96)83005-3

    Article  PubMed  CAS  Google Scholar 

  94. Pan Y, Tsai CJ, Ma B, Nussinov R (2009) How do transcription factors select specific binding sites in the genome? Nat Struct Mol Biol 16:1118–1120. doi:10.1038/nsmb1109-1118

    Article  PubMed  CAS  Google Scholar 

  95. Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145. doi:10.1152/physrev.00017.2008

    Article  PubMed  CAS  Google Scholar 

  96. Mellstrom B, Savignac M, Gomez-Villafuertes R, Naranjo JR (2008) Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol Rev 88:421–449. doi:10.1152/physrev.00041.2005

    Article  PubMed  CAS  Google Scholar 

  97. Carrion AM, Mellstrom B, Luckman SM, Naranjo JR (1998) Stimulus-specific hierarchy of enhancer elements within the rat prodynorphin promoter. J Neurochem 70:914–921

    Article  PubMed  CAS  Google Scholar 

  98. Carrion AM, Mellstrom B, Naranjo JR (1998) Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer element. Mol Cell Biol 18:6921–6929

    PubMed  CAS  Google Scholar 

  99. Ledo F, Carrion AM, Link WA, Mellstrom B, Naranjo JR (2000) DREAM-alphaCREM interaction via leucine-charged domains derepresses downstream regulatory element-dependent transcription. Mol Cell Biol 20:9120–9126

    Article  PubMed  CAS  Google Scholar 

  100. Ledo F, Kremer L, Mellstrom B, Naranjo JR (2002) Ca2+-dependent block of CREB-CBP transcription by repressor DREAM. EMBO J 21:4583–4592

    Article  PubMed  CAS  Google Scholar 

  101. Collins-Hicok J, Lin L, Spiro C, Laybourn PJ, Tschumper R, Rapacz B, McMurray CT (1994) Induction of the rat prodynorphin gene through Gs-coupled receptors may involve phosphorylation-dependent derepression and activation. Mol Cell Biol 14:2837–2848

    PubMed  CAS  Google Scholar 

  102. Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823. pii: 0896-6273(95)90225-2

    Article  PubMed  CAS  Google Scholar 

  103. Zachariou V, Bolanos CA, Selley DE, Theobald D, Cassidy MP, Kelz MB, Shaw-Lutchman T, Berton O, Sim-Selley LJ, Dileone RJ, Kumar A, Nestler EJ (2006) An essential role for DeltaFosB in the nucleus accumbens in morphine action. Nat Neurosci 9:205–211. doi:10.1038/nn1636

    Article  PubMed  CAS  Google Scholar 

  104. McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci 6:1208–1215. doi:10.1038/nn1143

    Article  PubMed  CAS  Google Scholar 

  105. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102:4459–4464. doi:10.1073/pnas.0501076102

    Article  PubMed  CAS  Google Scholar 

  106. Hartzell DD, Trinklein ND, Mendez J, Murphy N, Aldred SF, Wood K, Urh M (2009) A functional analysis of the CREB signaling pathway using HaloCHIP-chip and high-throughput reporter assays. BMC Genomic 10:497. doi:10.1186/1471-2164-10-497

    Article  CAS  Google Scholar 

  107. Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27:66–75. doi:10.1038/nbt.1518

    Article  PubMed  CAS  Google Scholar 

  108. Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, t Hoen PA (2010) Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 38:5396–5408. doi:10.1093/nar/gkq184

    Article  PubMed  CAS  Google Scholar 

  109. Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J, Sarosi I, Woodgett JR, Oliveira-dos-Santos AJ, Ikura M, van der Kooy D, Salter MW, Penninger JM (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108:31–43. pii: S0092867401006298

    Article  PubMed  CAS  Google Scholar 

  110. Cheng HY, Laviolette SR, van der Kooy D, Penninger JM (2004) DREAM ablation selectively alters THC place aversion and analgesia but leaves intact the motivational and analgesic effects of morphine. Eur J Neurosci 19:3033–3041. doi:10.1111/j.0953-816X.2004.03435.x

    Article  PubMed  Google Scholar 

  111. Sakamuro D, Prendergast GC (1999) New Myc-interacting proteins: a second Myc network emerges. Oncogene 18:2942–2954. doi:10.1038/sj.onc.1202725

    Article  PubMed  CAS  Google Scholar 

  112. Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699. doi:10.1146/annurev.cellbio.16.1

    Article  PubMed  CAS  Google Scholar 

  113. Georgopoulos K (2002) Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2:162–174. doi:10.1038/nri747

    Article  PubMed  CAS  Google Scholar 

  114. Damberg M, Garpenstrand H, Hallman J, Oreland L (2001) Genetic mechanisms of behavior–don’t forget about the transcription factors. Mol Psychiatry 6:503–510. doi:10.1038/sj.mp.4000935

    Article  PubMed  CAS  Google Scholar 

  115. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129. doi:10.1101/gad.1067003

    Article  PubMed  CAS  Google Scholar 

  116. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839. doi:10.1073/pnas.0604129103

    Article  PubMed  CAS  Google Scholar 

  117. Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW, MacIsaac KD, Rolfe PA, Conboy CM, Gifford DK, Fraenkel E (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39:730–732. doi:10.1038/ng2047

    Article  PubMed  CAS  Google Scholar 

  118. Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8:544–554. doi:10.1038/nrg2100

    Article  PubMed  CAS  Google Scholar 

  119. Bruce AW, Lopez-Contreras AJ, Flicek P, Down TA, Dhami P, Dillon SC, Koch CM, Langford CF, Dunham I, Andrews RM, Vetrie D (2009) Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level. Genome Res 19:994–1005. doi:10.1101/gr.089086.108

    Article  PubMed  CAS  Google Scholar 

  120. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Xu M, Haidar JN, Yu Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816. doi:10.1038/nature05874

    Google Scholar 

  121. Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24:183–209. doi:10.1146/annurev.cellbio.24.110707.175235

    Article  PubMed  CAS  Google Scholar 

  122. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229. doi:10.1126/science.1153252

    Article  PubMed  CAS  Google Scholar 

  123. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427. doi:10.1073/pnas.0511041103

    Article  PubMed  CAS  Google Scholar 

  124. Mortazavi A, Leeper Thompson EC, Garcia ST, Myers RM, Wold B (2006) Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genome Res 16:1208–1221. doi:10.1101/gr.4997306

    Article  PubMed  CAS  Google Scholar 

  125. Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7:R85. doi:10.1186/gb-2006-7-9-r85

    Article  PubMed  CAS  Google Scholar 

  126. Qiang M, Rani CS, Ticku MK (2005) Neuron-restrictive silencer factor regulates the N-methyl-d-aspartate receptor 2B subunit gene in basal and ethanol-induced gene expression in fetal cortical neurons. Mol Pharmacol 67:2115–2125. doi:10.1124/mol.104.010751

    Article  PubMed  CAS  Google Scholar 

  127. Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287. doi:10.1016/j.neuron.2008.05.032

    Article  PubMed  CAS  Google Scholar 

  128. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ (2010) Striatal microRNA controls cocaine intake through CREB signalling. Nature 466:197–202. doi:10.1038/nature09202

    Article  PubMed  CAS  Google Scholar 

  129. Im HI, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127. doi:10.1038/nn.2615

    Article  PubMed  CAS  Google Scholar 

  130. Day R, Schafer MK, Collard MW, Watson SJ, Akil H (1991) Atypical prodynorphin gene expression in corticosteroid-producing cells of the rat adrenal gland. Proc Natl Acad Sci USA 88:1320–1324

    Article  PubMed  CAS  Google Scholar 

  131. Law PY, Loh HH, Wei LN (2004) Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacology 47 (Suppl 1):300–311. doi:10.1016/j.neuropharm.2004.07.013

  132. Bakalkin G, Ponomariev D, Sarkisyan RA, Terenius L (1991) Sequence similarity between opioid peptide precursors and DNA-binding proteins. FEBS Lett 282:175–177

    Article  PubMed  CAS  Google Scholar 

  133. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504. doi:10.1093/nar/gki025

    Article  PubMed  CAS  Google Scholar 

  134. Wei LN, Hu X, Bi J, Loh H (2000) Post-transcriptional regulation of mouse kappa-opioid receptor expression. Mol Pharmacol 57:401–408

    PubMed  CAS  Google Scholar 

  135. Hu X, Bi J, Loh HH, Wei LN (2002) Regulation of mouse kappa opioid receptor gene expression by different 3′-untranslated regions and the effect of retinoic acid. Mol Pharmacol 62:881–887

    Article  PubMed  CAS  Google Scholar 

  136. Tsai NP, Lin YL, Tsui YC, Wei LN (2010) Dual action of epidermal growth factor: extracellular signal-stimulated nuclear-cytoplasmic export and coordinated translation of selected messenger RNA. J Cell Biol 188:325–333. doi:10.1083/jcb.200910083

    Article  PubMed  CAS  Google Scholar 

  137. Tsai NP, Bi J, Loh HH, Wei LN (2006) Netrin-1 signaling regulates de novo protein synthesis of kappa opioid receptor by facilitating polysomal partition of its mRNA. J Neurosci 26:9743–9749. doi:10.1523/JNEUROSCI.3014-06.2006

    Article  PubMed  CAS  Google Scholar 

  138. Tsai NP, Bi J, Wei LN (2007) The adaptor Grb7 links netrin-1 signaling to regulation of mRNA translation. EMBO J 26:1522–1531. doi:10.1038/sj.emboj.7601598

    Article  PubMed  CAS  Google Scholar 

  139. Tsai NP, Tsui YC, Pintar JE, Loh HH, Wei LN (2010) Kappa opioid receptor contributes to EGF-stimulated neurite extension in development. Proc Natl Acad Sci USA 107:3216–3221. doi:10.1073/pnas.0912367107

    Article  PubMed  CAS  Google Scholar 

  140. Bi J, Hu X, Loh HH, Wei LN (2003) Mouse kappa-opioid receptor mRNA differential transport in neurons. Mol Pharmacol 64:594–599. doi:10.1124/mol.64.3.594

    Article  PubMed  CAS  Google Scholar 

  141. Bi J, Tsai NP, Lin YP, Loh HH, Wei LN (2006) Axonal mRNA transport and localized translational regulation of kappa-opioid receptor in primary neurons of dorsal root ganglia. Proc Natl Acad Sci USA 103:19919–19924. doi:10.1073/pnas.0607394104

    Article  PubMed  CAS  Google Scholar 

  142. Bi J, Tsai NP, Lu HY, Loh HH, Wei LN (2007) Copb1-facilitated axonal transport and translation of kappa opioid-receptor mRNA. Proc Natl Acad Sci USA 104:13810–13815. doi:10.1073/pnas.0703805104

    Article  PubMed  CAS  Google Scholar 

  143. Wei LN (2010) The RNA superhighway: axonal RNA trafficking of kappa opioid receptor mRNA for neurite growth. Integr Biol (Camb). doi:10.1039/c0ib00107d

  144. Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249:293–336. doi:10.1002/cne.902490302

    Article  PubMed  CAS  Google Scholar 

  145. Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47. doi:10.1038/npp.2009.93

    Article  PubMed  Google Scholar 

  146. Mansour A, Fox CA, Meng F, Akil H, Watson SJ (1994) Kappa 1 receptor mRNA distribution in the rat CNS: comparison to kappa receptor binding and prodynorphin mRNA. Mol Cell Neurosci 5:124–144. doi:10.1006/mcne.1994.1015

    Article  PubMed  CAS  Google Scholar 

  147. Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    Article  PubMed  CAS  Google Scholar 

  148. Xie GX, Meng F, Mansour A, Thompson RC, Hoversten MT, Goldstein A, Watson SJ, Akil H (1994) Primary structure and functional expression of a guinea pig kappa opioid (dynorphin) receptor. Proc Natl Acad Sci USA 91:3779–3783

    Article  PubMed  CAS  Google Scholar 

  149. Svingos AL, Colago EE, Pickel VM (1999) Cellular sites for dynorphin activation of kappa-opioid receptors in the rat nucleus accumbens shell. J Neurosci 19:1804–1813

    PubMed  CAS  Google Scholar 

  150. Svingos AL, Chavkin C, Colago EE, Pickel VM (2001) Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse 42:185–192. doi:10.1002/syn.10005

    Article  PubMed  CAS  Google Scholar 

  151. Ma J, Ye N, Lange N, Cohen BM (2003) Dynorphinergic GABA neurons are a target of both typical and atypical antipsychotic drugs in the nucleus accumbens shell, central amygdaloid nucleus and thalamic central medial nucleus. Neuroscience 121:991–998. pii: S030645220300397X

    Article  PubMed  CAS  Google Scholar 

  152. Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123:60–76

    Article  PubMed  CAS  Google Scholar 

  153. Meshul CK, McGinty JF (2000) Kappa opioid receptor immunoreactivity in the nucleus accumbens and caudate-putamen is primarily associated with synaptic vesicles in axons. Neuroscience 96:91–99. pii: S0306-4522(99)90481-5

    Article  PubMed  CAS  Google Scholar 

  154. Chefer VI, Czyzyk T, Bolan EA, Moron J, Pintar JE, Shippenberg TS (2005) Endogenous kappa-opioid receptor systems regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine. J Neurosci 25:5029–5037. doi:10.1523/JNEUROSCI.0854-05.2005

    Article  PubMed  CAS  Google Scholar 

  155. Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 89:2046–2050

    Article  PubMed  CAS  Google Scholar 

  156. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  CAS  Google Scholar 

  157. Zhang Y, Butelman ER, Schlussman SD, Ho A, Kreek MJ (2005) Effects of the plant-derived hallucinogen salvinorin A on basal dopamine levels in the caudate putamen and in a conditioned place aversion assay in mice: agonist actions at kappa opioid receptors. Psychopharmacology (Berl) 179:551–558. doi:10.1007/s00213-004-2087-0

    Article  CAS  Google Scholar 

  158. Maisonneuve IM, Archer S, Glick SD (1994) U50, 488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci Lett 181:57–60

    Article  PubMed  CAS  Google Scholar 

  159. You ZB, Herrera-Marschitz M, Terenius L (1999) Modulation of neurotransmitter release in the basal ganglia of the rat brain by dynorphin peptides. J Pharmacol Exp Ther 290:1307–1315

    PubMed  CAS  Google Scholar 

  160. Hjelmstad GO, Fields HL (2003) Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms. J Neurophysiol 89:2389–2395. doi:10.1152/jn.01115.2002

    Article  PubMed  CAS  Google Scholar 

  161. Hjelmstad GO, Fields HL (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J Neurophysiol 85:1153–1158

    PubMed  CAS  Google Scholar 

  162. Rawls SM, McGinty JF (1998) Kappa receptor activation attenuates L-trans-pyrrolidine-2, 4-dicarboxylic acid-evoked glutamate levels in the striatum. J Neurochem 70:626–634

    Article  PubMed  CAS  Google Scholar 

  163. Rawls SM, McGinty JF, Terrian DM (1999) Presynaptic kappa-opioid and muscarinic receptors inhibit the calcium-dependent component of evoked glutamate release from striatal synaptosomes. J Neurochem 73:1058–1065

    Article  PubMed  CAS  Google Scholar 

  164. Gray AM, Rawls SM, Shippenberg TS, McGinty JF (1999) The kappa-opioid agonist, U-69593, decreases acute amphetamine-evoked behaviors and calcium-dependent dialysate levels of dopamine and glutamate in the ventral striatum. J Neurochem 73:1066–1074

    Article  PubMed  CAS  Google Scholar 

  165. Hill MP, Brotchie JM (1999) Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Br J Pharmacol 127:275–283. doi:10.1038/sj.bjp.0702523

    Article  PubMed  CAS  Google Scholar 

  166. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572. doi:10.1038/nrn2515

    Article  PubMed  CAS  Google Scholar 

  167. Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372–1376. doi:10.1001/archneur.63.10.1372

    Article  PubMed  Google Scholar 

  168. Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233. doi:10.1523/JNEUROSCI.1754-10.2010

    Article  PubMed  CAS  Google Scholar 

  169. Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656. doi:10.1016/j.neuron.2010.02.012

    Article  PubMed  CAS  Google Scholar 

  170. Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30:7105–7110. doi:10.1523/JNEUROSCI.0265-10.2010

    Article  PubMed  CAS  Google Scholar 

  171. Floresco SB, Yang CR, Phillips AG, Blaha CD (1998) Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. Eur J Neurosci 10:1241–1251

    Article  PubMed  CAS  Google Scholar 

  172. Mogenson GJ, Yang CR, Yim CY (1988) Influence of dopamine on limbic inputs to the nucleus accumbens. Ann N Y Acad Sci 537:86–100

    Article  PubMed  CAS  Google Scholar 

  173. O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429–435. pii: 2463

    Article  PubMed  Google Scholar 

  174. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235. doi:10.1016/j.tins.2007.03.008

    Article  PubMed  CAS  Google Scholar 

  175. Hara Y, Yakovleva T, Bakalkin G, Pickel VM (2006) Dopamine D1 receptors have subcellular distributions conducive to interactions with prodynorphin in the rat nucleus accumbens shell. Synapse 60:1–19. doi:10.1002/syn.20273

    Article  PubMed  CAS  Google Scholar 

  176. Drake CT, Chavkin C, Milner TA (2007) Opioid systems in the dentate gyrus. Prog Brain Res 163:245–263. doi:10.1016/S0079-6123(07)63015-5

    Article  PubMed  CAS  Google Scholar 

  177. Brown CH, Scott V, Ludwig M, Leng G, Bourque CW (2007) Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochem Soc Trans 35:1236–1242. doi:10.1042/BST0351236

    Article  PubMed  CAS  Google Scholar 

  178. Tallent MK (2008) Presynaptic inhibition of glutamate release by neuropeptides: use-dependent synaptic modification. Results Probl Cell Differ 44:177–200. doi:10.1007/400_2007_037

    Article  PubMed  CAS  Google Scholar 

  179. Zhang L, Lou D, Jiao H, Zhang D, Wang X, Xia Y, Zhang J, Xu M (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J Neurosci 24:3344–3354. doi:10.1523/JNEUROSCI.0060-04.2004

    Article  PubMed  CAS  Google Scholar 

  180. You ZB, Herrera-Marschitz M, Nylander I, Goiny M, O’Connor WT, Ungerstedt U, Terenius L (1994) The striatonigral dynorphin pathway of the rat studied with in vivo microdialysis-II. Effects of dopamine D1 and D2 receptor agonists. Neuroscience 63:427–434. pii: 0306-4522(94)90540-1

    Google Scholar 

  181. Drago J, Gerfen CR, Westphal H, Steiner H (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74:813–823. pii: 0306-4522(96)00145-5

    Article  PubMed  CAS  Google Scholar 

  182. Wang JQ, McGinty JF (1999) Glutamate-dopamine interactions mediate the effects of psychostimulant drugs. Addict Biol 4:141–150. doi:10.1080/13556219971641

    Article  PubMed  CAS  Google Scholar 

  183. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159. doi:10.1016/j.biopsych.2005.09.018

    Article  PubMed  CAS  Google Scholar 

  184. Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116:306–321. doi:10.1016/j.pharmthera.2007.06.011

    Article  PubMed  CAS  Google Scholar 

  185. Thompson AC, Zapata A, Justice JB Jr, Vaughan RA, Sharpe LG, Shippenberg TS (2000) Kappa-opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine. J Neurosci 20:9333–9340. pii: 20/24/9333

    PubMed  CAS  Google Scholar 

  186. Shippenberg TS, Chefer VI SR (2009) K-opioid receptor agonists up-regulate dopamine transporter (DAT) function and produce aversive effects via an ERK-dependent mechanism. Soc Neurosci Abstr 618:22

    Google Scholar 

  187. Acri JB, Thompson AC, Shippenberg T (2001) Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593. Synapse 39:343–350. doi:10.1002/1098-2396(20010315)39:4<343:AID-SYN1018>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  188. Ferre S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci 30:440–446. doi:10.1016/j.tins.2007.07.001

    Article  PubMed  CAS  Google Scholar 

  189. Fuxe K, Marcellino D, Leo G, Agnati LF (2010) Molecular integration via allosteric interactions in receptor heteromers. A working hypothesis. Curr Opin Pharmacol 10:14–22. doi:10.1016/j.coph.2009.10.010

    Article  PubMed  CAS  Google Scholar 

  190. Fallon JH, Leslie FM, Cone RI (1985) Dynorphin-containing pathways in the substantia nigra and ventral tegmentum: a double labeling study using combined immunofluorescence and retrograde tracing. Neuropeptides 5:457–460. pii: 0143-4179(85)90053-8

    Article  PubMed  CAS  Google Scholar 

  191. Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M, Saper CB, Scammell TE (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci. pii: 21:RC168. 20015644

  192. Borgland SL, Ungless MA, Bonci A (2010) Convergent actions of orexin/hypocretin and CRF on dopamine neurons: emerging players in addiction. Brain Res 1314:139–144. doi:10.1016/j.brainres.2009.10.068

    Article  PubMed  CAS  Google Scholar 

  193. Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908–8913. doi:10.1523/JNEUROSCI.1526-08.2008

    Article  PubMed  CAS  Google Scholar 

  194. Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006) Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci USA 103:2938–2942. doi:10.1073/pnas.0511159103

    Article  PubMed  CAS  Google Scholar 

  195. Devine DP, Leone P, Pocock D, Wise RA (1993) Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J Pharmacol Exp Ther 266:1236–1246

    PubMed  CAS  Google Scholar 

  196. Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788–2797. doi:10.1523/JNEUROSCI.4331-05.2006

    Article  PubMed  CAS  Google Scholar 

  197. Margolis EB, Hjelmstad GO, Bonci A, Fields HL (2005) Both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons. J Neurophysiol 93:3086–3093. doi:10.1152/jn.00855.2004

    Article  PubMed  CAS  Google Scholar 

  198. Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 493:99–110. doi:10.1002/cne.20723

    Article  PubMed  CAS  Google Scholar 

  199. Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287. doi:10.1146/annurev.neuro.051508.135535

    Article  PubMed  CAS  Google Scholar 

  200. Reyes BA, Johnson AD, Glaser JD, Commons KG, Van Bockstaele EJ (2007) Dynorphin-containing axons directly innervate noradrenergic neurons in the rat nucleus locus coeruleus. Neuroscience 145:1077–1086. doi:10.1016/j.neuroscience.2006.12.056

    Article  PubMed  CAS  Google Scholar 

  201. Reyes BA, Chavkin C, van Bockstaele EJ (2009) Subcellular targeting of kappa-opioid receptors in the rat nucleus locus coeruleus. J Comp Neurol 512:419–431. doi:10.1002/cne.21880

    Article  PubMed  CAS  Google Scholar 

  202. Pinnock RD (1992) A highly selective kappa-opioid receptor agonist, CI-977, reduces excitatory synaptic potentials in the rat locus coeruleus in vitro. Neuroscience 47:87–94

    Article  PubMed  CAS  Google Scholar 

  203. McFadzean I, Lacey MG, Hill RG, Henderson G (1987) Kappa opioid receptor activation depresses excitatory synaptic input to rat locus coeruleus neurons in vitro. Neuroscience 20:231–239. pii: 0306-4522(87)90015-7

    Article  PubMed  CAS  Google Scholar 

  204. Kreibich A, Reyes BA, Curtis AL, Ecke L, Chavkin C, Van Bockstaele EJ, Valentino RJ (2008) Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system. J Neurosci 28:6516–6525. doi:10.1523/JNEUROSCI.0390-08.2008

    Article  PubMed  CAS  Google Scholar 

  205. Reyes BA, Drolet G, Van Bockstaele EJ (2008) Dynorphin and stress-related peptides in rat locus coeruleus: contribution of amygdalar efferents. J Comp Neurol 508:663–675. doi:10.1002/cne.21683

    Article  PubMed  CAS  Google Scholar 

  206. Marchant NJ, Densmore VS, Osborne PB (2007) Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 504:702–715. doi:10.1002/cne.21464

    Article  PubMed  CAS  Google Scholar 

  207. Khachaturian H, Lewis ME, Haber SN, Houghten RA, Akil H, Watson SJ (1985) Prodynorphin peptide immunocytochemistry in rhesus monkey brain. Peptides 6(Suppl 2):155–166

    Google Scholar 

  208. Vincent SR, Hokfelt T, Christensson I, Terenius L (1982) Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci Lett 33:185–190. pii: 0304-3940(82)90249-X

    Article  PubMed  CAS  Google Scholar 

  209. Mansour A, Burke S, Pavlic RJ, Akil H, Watson SJ (1996) Immunohistochemical localization of the cloned kappa 1 receptor in the rat CNS and pituitary. Neuroscience 71:671–690. pii: 0306-4522(95)00464-5

    Article  PubMed  CAS  Google Scholar 

  210. George SR, Zastawny RL, Briones-Urbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS, O’Dowd BF (1994) Distinct distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun 205:1438–1444. pii: S0006291X84728269

    Article  PubMed  CAS  Google Scholar 

  211. Peckys D, Landwehrmeyer GB (1999) Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88:1093–1135. pii: S0306-4522(98)00251-6

    Article  PubMed  CAS  Google Scholar 

  212. Svingos AL, Colago EE (2002) Kappa-opioid and NMDA glutamate receptors are differentially targeted within rat medial prefrontal cortex. Brain Res 946:262–271. pii: S0006899302028949

    Article  PubMed  CAS  Google Scholar 

  213. Grilli M, Neri E, Zappettini S, Massa F, Bisio A, Romussi G, Marchi M, Pittaluga A (2009) Salvinorin A exerts opposite presynaptic controls on neurotransmitter exocytosis from mouse brain nerve terminals. Neuropharmacology 57:523–530. doi:10.1016/j.neuropharm.2009.07.023

    Article  PubMed  CAS  Google Scholar 

  214. Heijna MH, Padt M, Hogenboom F, Portoghese PS, Mulder AH, Schoffelmeer AN (1990) Opioid receptor-mediated inhibition of dopamine and acetylcholine release from slices of rat nucleus accumbens, olfactory tubercle and frontal cortex. Eur J Pharmacol 181:267–278

    Article  PubMed  CAS  Google Scholar 

  215. Sbrenna S, Marti M, Morari M, Calo G, Guerrini R, Beani L, Bianchi C (1999) L-glutamate and gamma-aminobutyric acid efflux from rat cerebrocortical synaptosomes: modulation by kappa- and mu- but not delta- and opioid receptor like-1 receptors. J Pharmacol Exp Ther 291:1365–1371

    PubMed  CAS  Google Scholar 

  216. Berger B, Rothmaier AK, Wedekind F, Zentner J, Feuerstein TJ, Jackisch R (2006) Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br J Pharmacol 148:795–806. doi:10.1038/sj.bjp.0706782

    Article  PubMed  CAS  Google Scholar 

  217. Tejeda HA, Schultz K, Chefer V, Shippenberg T (2010) Modulation of mesocortical dopamine transmission by mu- and kappa-opioid receptors. Soc Neurosci Abstr 368.24

  218. Carboni E, Silvagni A (2004) Dopamine reuptake by norepinephrine neurons: exception or rule? Crit Rev Neurobiol 16:121–128. pii: 54f83f6510f9db32,38cfa8086853b01f

    Article  PubMed  CAS  Google Scholar 

  219. Chavkin C, Shoemaker WJ, McGinty JF, Bayon A, Bloom FE (1985) Characterization of the prodynorphin and proenkephalin neuropeptide systems in rat hippocampus. J Neurosci 5:808–816

    PubMed  CAS  Google Scholar 

  220. McGinty JF, Henriksen SJ, Goldstein A, Terenius L, Bloom FE (1983) Dynorphin is contained within hippocampal mossy fibers: immunochemical alterations after kainic acid administration and colchicine-induced neurotoxicity. Proc Natl Acad Sci USA 80:589–593

    Article  PubMed  CAS  Google Scholar 

  221. Castillo PE, Salin PA, Weisskopf MG, Nicoll RA (1996) Characterizing the site and mode of action of dynorphin at hippocampal mossy fiber synapses in the guinea pig. J Neurosci 16:5942–5950

    PubMed  CAS  Google Scholar 

  222. Salin PA, Weisskopf MG, Nicoll RA (1995) A comparison of the role of dynorphin in the hippocampal mossy fiber pathway in guinea pig and rat. J Neurosci 15:6939–6945

    PubMed  CAS  Google Scholar 

  223. Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 365:188. doi:10.1038/365188a0

    PubMed  CAS  Google Scholar 

  224. Wagner JJ, Terman GW, Chavkin C (1993) Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363:451–454. doi:10.1038/363451a0

    Article  PubMed  CAS  Google Scholar 

  225. Drake CT, Terman GW, Simmons ML, Milner TA, Kunkel DD, Schwartzkroin PA, Chavkin C (1994) Dynorphin opioids present in dentate granule cells may function as retrograde inhibitory neurotransmitters. J Neurosci 14:3736–3750

    PubMed  CAS  Google Scholar 

  226. Schoultz BW, Hjornevik T, Willoch F, Marton J, Noda A, Murakami Y, Miyoshi S, Nishimura S, Arstad E, Drzezga A, Matsunari I, Henriksen G (2010) Evaluation of the kappa-opioid receptor-selective tracer [(11)C]GR103545 in awake rhesus macaques. Eur J Nucl Med Mol Imaging 37:1174–1180. doi:10.1007/s00259-010-1384-6

    Article  PubMed  CAS  Google Scholar 

  227. Talbot PS, Narendran R, Butelman ER, Huang Y, Ngo K, Slifstein M, Martinez D, Laruelle M, Hwang DR (2005) 11C-GR103545, a radiotracer for imaging kappa-opioid receptors in vivo with PET: synthesis and evaluation in baboons. J Nucl Med 46:484–494. pii: 46/3/484

    PubMed  CAS  Google Scholar 

  228. Poisnel G, Oueslati F, Dhilly M, Delamare J, Perrio C, Debruyne D, Barre L (2008) [11C]-MeJDTic: a novel radioligand for kappa-opioid receptor positron emission tomography imaging. Nucl Med Biol 35:561–569. doi:10.1016/j.nucmedbio.2008.02.010

    Article  PubMed  CAS  Google Scholar 

  229. Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776

    Article  PubMed  CAS  Google Scholar 

  230. Walsh SL, Strain EC, Abreu ME, Bigelow GE (2001) Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl) 157:151–162

    Article  CAS  Google Scholar 

  231. Ur E, Wright DM, Bouloux PM, Grossman A (1997) The effects of spiradoline (U-62066E), a kappa-opioid receptor agonist, on neuroendocrine function in man. Br J Pharmacol 120:781–784. doi:10.1038/sj.bjp.0700971

    Article  PubMed  CAS  Google Scholar 

  232. Rimoy GH, Wright DM, Bhaskar NK, Rubin PC (1994) The cardiovascular and central nervous system effects in the human of U-62066E. A selective opioid receptor agonist. Eur J Clin Pharmacol 46:203–207

    Article  PubMed  CAS  Google Scholar 

  233. Chappell PB, Leckman JF, Scahill LD, Hardin MT, Anderson G, Cohen DJ (1993) Neuroendocrine and behavioral effects of the selective kappa agonist spiradoline in Tourette’s syndrome: a pilot study. Psychiatry Res 47:267–280

    Article  PubMed  CAS  Google Scholar 

  234. Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA 99:11934–11939 10.1073/pnas.182234399

    Article  PubMed  CAS  Google Scholar 

  235. Lange JE, Daniel J, Homer K, Reed MB, Clapp JD (2010) Salvia divinorum: effects and use among YouTube users. Drug Alcohol Depend 108:138–140. doi:10.1016/j.drugalcdep.2009.11.010

    Article  PubMed  Google Scholar 

  236. Gonzalez D, Riba J, Bouso JC, Gomez-Jarabo G, Barbanoj MJ (2006) Pattern of use and subjective effects of Salvia divinorum among recreational users. Drug Alcohol Depend 85:157–162. doi:10.1016/j.drugalcdep.2006.04.001

    Article  PubMed  Google Scholar 

  237. Malone DT, Hill MN, Rubino T (2010) Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models. Br J Pharmacol 160:511–522. doi:10.1111/j.1476-5381.2010.00721.x

    Article  PubMed  CAS  Google Scholar 

  238. Fernandez-Espejo E, Viveros MP, Nunez L, Ellenbroek BA, Rodriguez de Fonseca F (2009) Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology (Berl) 206:531–549. doi:10.1007/s00213-009-1612-6

    Article  CAS  Google Scholar 

  239. Przekop P, Lee T (2009) Persistent psychosis associated with Salvia divinorum use. Am J Psychiatry 166:832. doi:10.1176/appi.ajp.2009.08121759

    Article  PubMed  Google Scholar 

  240. Paulzen M, Grunder G (2008) Toxic psychosis after intake of the hallucinogen salvinorin A. J Clin Psychiatry 69:1501–1502. pii: ej6909letters

    Article  PubMed  Google Scholar 

  241. Singh S (2007) Adolescent salvia substance abuse. Addiction 102:823–824. doi:10.1111/j.1360-0443.2007.01810.x

    Article  PubMed  Google Scholar 

  242. Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology (Berl) 86:274–280

    Article  CAS  Google Scholar 

  243. Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    PubMed  CAS  Google Scholar 

  244. Braida D, Limonta V, Capurro V, Fadda P, Rubino T, Mascia P, Zani A, Gori E, Fratta W, Parolaro D, Sala M (2008) Involvement of kappa-opioid and endocannabinoid system on Salvinorin A-induced reward. Biol Psychiatry 63:286–292. doi:10.1016/j.biopsych.2007.07.020

    Article  PubMed  CAS  Google Scholar 

  245. Carlezon WA Jr, Beguin C, DiNieri JA, Baumann MH, Richards MR, Todtenkopf MS, Rothman RB, Ma Z, Lee DY, Cohen BM (2006) Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 316:440–447. doi:10.1124/jpet.105.092304

    Article  PubMed  CAS  Google Scholar 

  246. Ebner SR, Roitman MF, Potter DN, Rachlin AB, Chartoff EH (2010) Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 210:241–252. doi:10.1007/s00213-010-1836-5

    Article  CAS  Google Scholar 

  247. Braida D, Capurro V, Zani A, Rubino T, Vigano D, Parolaro D, Sala M (2009) Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol 157:844–853. doi:10.1111/j.1476-5381.2009.00230.x

    Article  PubMed  CAS  Google Scholar 

  248. Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2:2987–2995. doi:10.1038/nprot.2007.441

    Article  PubMed  CAS  Google Scholar 

  249. Negus SS, Morrissey EM, Rosenberg M, Cheng K, Rice KC (2010) Effects of kappa opioids in an assay of pain-depressed intracranial self-stimulation in rats. Psychopharmacology (Berl) 210:149–159. doi:10.1007/s00213-009-1770-6

    Article  CAS  Google Scholar 

  250. Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr (2004) Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology (Berl) 172:463–470. doi:10.1007/s00213-003-1680-y

    Article  CAS  Google Scholar 

  251. Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS, Carlezon WA Jr (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305:323–330. doi:10.1124/jpet.102.046433

    Article  PubMed  CAS  Google Scholar 

  252. Shippenberg TS, Herz A (1987) Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists. Brain Res 436:169–172. pii: 0006-8993(87)91571-X

    Article  PubMed  CAS  Google Scholar 

  253. Shippenberg TS, Bals-Kubik R, Herz A (1993) Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J Pharmacol Exp Ther 265:53–59

    PubMed  CAS  Google Scholar 

  254. Acquas E, Carboni E, Leone P, Di Chiara G (1989) SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology (Berl) 99:151–155

    Article  CAS  Google Scholar 

  255. Liu ZH, Shin R, Ikemoto S (2008) Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology 33:3010–3020. doi:10.1038/npp.2008.4

    Article  PubMed  CAS  Google Scholar 

  256. Land BB, Bruchas MR, Schattauer S, Giardino WJ, Aita M, Messinger D, Hnasko TS, Palmiter RD, Chavkin C (2009) Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci USA 106:19168–19173. doi:10.1073/pnas.0910705106

    Article  PubMed  CAS  Google Scholar 

  257. Tao R, Auerbach SB (2005) mu-Opioids disinhibit and kappa-opioids inhibit serotonin efflux in the dorsal raphe nucleus. Brain Res 1049:70–79. doi:10.1016/j.brainres.2005.04.076

    Article  PubMed  CAS  Google Scholar 

  258. Tao R, Auerbach SB (2002) Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system. J Pharmacol Exp Ther 303:549–556. doi:10.1124/jpet.102.037861

    Article  PubMed  CAS  Google Scholar 

  259. Shippenberg T, Jaligam V, Oz M, Mannangatti P, Jayanthi L, Ramamoorthy S (2010) K-opioid receptor agonists regulate serotonin transporter function, phosphorylation and cell surface expression. Soc Neurosci Abstr 741.16/D34

  260. Ikemoto S (2010) Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 35:129–150. doi:10.1016/j.neubiorev.2010.02.001

    Article  PubMed  CAS  Google Scholar 

  261. Shirayama Y, Ishida H, Iwata M, Hazama GI, Kawahara R, Duman RS (2004) Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects. J Neurochem 90:1258–1268. doi:10.1111/j.1471-4159.2004.02589.x

    Article  PubMed  CAS  Google Scholar 

  262. Nabeshima T, Katoh A, Wada M, Kameyama T (1992) Stress-induced changes in brain Met-enkephalin, Leu-enkephalin and dynorphin concentrations. Life Sci 51:211–217

    Article  PubMed  CAS  Google Scholar 

  263. Goel N, Bale TL (2009) Examining the intersection of sex and stress in modelling neuropsychiatric disorders. J Neuroendocrinol 21:415–420. doi:10.1111/j.1365-2826.2009.01843.x

    Article  PubMed  CAS  Google Scholar 

  264. Sirinathsinghji DJ, Nikolarakis KE, Reimer S, Herz A (1990) Nigrostriatal dopamine mediates the stimulatory effects of corticotropin-releasing factor on methionine-enkephalin and dynorphin release from the rat neostriatum. Brain Res 526:173–176. pii: 0006-8993(90)90268-G

    Article  PubMed  CAS  Google Scholar 

  265. Sirinathsinghji DJ, Nikolarakis KE, Herz A (1989) Corticotropin-releasing factor stimulates the release of methionine-enkephalin and dynorphin from the neostriatum and globus pallidus of the rat: in vitro and in vivo studies. Brain Res 490:276–291. pii: 0006-8993(89)90245-X

    Article  PubMed  CAS  Google Scholar 

  266. Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414. doi:10.1523/JNEUROSCI.4458-07.2008

    Article  PubMed  CAS  Google Scholar 

  267. Carr GV, Bangasser DA, Bethea T, Young M, Valentino RJ, Lucki I (2010) Antidepressant-like effects of kappa-opioid receptor antagonists in Wistar Kyoto rats. Neuropsychopharmacology 35:752–763. doi:10.1038/npp.2009.183

    Article  PubMed  CAS  Google Scholar 

  268. McLaughlin JP, Marton-Popovici M, Chavkin C (2003) Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23:5674–5683. pii: 23/13/5674

    PubMed  CAS  Google Scholar 

  269. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 21:7397–7403. pii: 21/18/7397

    PubMed  CAS  Google Scholar 

  270. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  PubMed  CAS  Google Scholar 

  271. Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169. doi:10.1038/nn.2647

    Article  PubMed  CAS  Google Scholar 

  272. McLaughlin JP, Li S, Valdez J, Chavkin TA, Chavkin C (2006) Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system. Neuropsychopharmacology 31:1241–1248. doi:10.1038/sj.npp.1300872

    Article  PubMed  CAS  Google Scholar 

  273. Matthews K, Robbins TW (2003) Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neurosci Biobehav Rev 27:45–55. pii: S0149763403000083

    Article  PubMed  Google Scholar 

  274. Ploj K, Roman E, Nylander I (2003) Long-term effects of short and long periods of maternal separation on brain opioid peptide levels in male Wistar rats. Neuropeptides 37:149–156. pii: S014341790300043X

    Article  PubMed  CAS  Google Scholar 

  275. Gustafsson L, Oreland S, Hoffmann P, Nylander I (2008) The impact of postnatal environment on opioid peptides in young and adult male Wistar rats. Neuropeptides 42:177–191. doi:10.1016/j.npep.2007.10.006

    Article  PubMed  CAS  Google Scholar 

  276. Michaels CC, Holtzman SG (2008) Early postnatal stress alters place conditioning to both mu- and kappa-opioid agonists. J Pharmacol Exp Ther 325:313–318. doi:10.1124/jpet.107.129908

    Article  PubMed  CAS  Google Scholar 

  277. Hurd YL, Herkenham M (1993) Molecular alterations in the neostriatum of human cocaine addicts. Synapse 13:357–369. doi:10.1002/syn.890130408

    Article  PubMed  CAS  Google Scholar 

  278. Hurd YL, Herman MM, Hyde TM, Bigelow LB, Weinberger DR, Kleinman JE (1997) Prodynorphin mRNA expression is increased in the patch vs matrix compartment of the caudate nucleus in suicide subjects. Mol Psychiatry 2:495–500

    Article  PubMed  CAS  Google Scholar 

  279. Bruchas MR, Land BB, Chavkin C (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55. doi:10.1016/j.brainres.2009.08.062

    Article  PubMed  CAS  Google Scholar 

  280. Peckys D, Hurd YL (2001) Prodynorphin and kappa opioid receptor mRNA expression in the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective disorders. Brain Res Bull 55:619–624. pii: S0361-9230(01)00525-1

    Article  PubMed  CAS  Google Scholar 

  281. Hurd YL (2002) Subjects with major depression or bipolar disorder show reduction of prodynorphin mRNA expression in discrete nuclei of the amygdaloid complex. Mol Psychiatry 7:75–81. doi:10.1038/sj/mp/4000930

    Article  PubMed  CAS  Google Scholar 

  282. Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59:1144–1150. doi:10.1016/j.biopsych.2005.11.003

    Article  PubMed  CAS  Google Scholar 

  283. Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N, Chen J, Neve R, Nestler EJ, Duman RS (2002) Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci 22:10883–10890. pii: 22/24/10883

    PubMed  CAS  Google Scholar 

  284. Dinieri JA, Nemeth CL, Parsegian A, Carle T, Gurevich VV, Gurevich E, Neve RL, Nestler EJ, Carlezon WA Jr (2009) Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci 29:1855–1859. doi:10.1523/JNEUROSCI.5104-08.2009

    Article  PubMed  CAS  Google Scholar 

  285. Knoll AT, Meloni EG, Thomas JB, Carroll FI, Carlezon WA Jr (2007) Anxiolytic-like effects of kappa-opioid receptor antagonists in models of unlearned and learned fear in rats. J Pharmacol Exp Ther 323:838–845. doi:10.1124/jpet.107.127415

    Article  PubMed  CAS  Google Scholar 

  286. Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34:775–785. doi:10.1038/npp.2008.142

    Article  PubMed  CAS  Google Scholar 

  287. Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kieffer BL (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25:195–200. doi:10.1038/76061

    Article  PubMed  CAS  Google Scholar 

  288. Bruchas MR, Land BB, Lemos JC, Chavkin C (2009) CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4:e8528. doi:10.1371/journal.pone.0008528

    Article  PubMed  CAS  Google Scholar 

  289. Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T (2006) Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 31:739–750. doi:10.1038/sj.npp.1300858

    Article  PubMed  CAS  Google Scholar 

  290. Carr GV, Lucki I (2010) Comparison of the kappa-opioid receptor antagonist DIPPA in tests of anxiety-like behavior between Wistar Kyoto and Sprague–Dawley rats. Psychopharmacology (Berl) 210:295–302. doi:10.1007/s00213-010-1832-9

    Article  CAS  Google Scholar 

  291. Koob GF, Le Moal M (2008) Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci 363:3113–3123. doi:10.1098/rstb.2008.0094

    Article  PubMed  Google Scholar 

  292. Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 210:121–135. doi:10.1007/s00213-010-1825-8

    Article  CAS  Google Scholar 

  293. Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412. doi:10.1152/physrev.00005.2009

    Article  PubMed  CAS  Google Scholar 

  294. Gregg L, Barrowclough C, Haddock G (2007) Reasons for increased substance use in psychosis. Clin Psychol Rev 27:494–510. doi:10.1016/j.cpr.2006.09.004

    Article  PubMed  Google Scholar 

  295. Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ (2008) Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology 55:41–46. doi:10.1016/j.neuropharm.2008.04.019

    Article  PubMed  CAS  Google Scholar 

  296. Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ (2007) Brain levels of neuropeptides in human chronic methamphetamine users. Neuropharmacology 53:447–454. doi:10.1016/j.neuropharm.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  297. Wise RA (2006) Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 361:1149–1158. doi:10.1098/rstb.2006.1854

    Article  PubMed  CAS  Google Scholar 

  298. Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76. doi:10.1016/j.coph.2006.11.003

    Article  PubMed  CAS  Google Scholar 

  299. Turchan J, Przewlocka B, Lason W, Przewlocki R (1998) Effects of repeated psychostimulant administration on the prodynorphin system activity and kappa opioid receptor density in the rat brain. Neuroscience 85:1051–1059. pii: S0306-4522(97)00639-8

    Article  PubMed  CAS  Google Scholar 

  300. Tzaferis JA, McGinty JF (2001) Kappa opioid receptor stimulation decreases amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. Brain Res Mol Brain Res 93:27–35. pii: S0169328X01001784

    Article  PubMed  CAS  Google Scholar 

  301. Spangler R, Zhou Y, Maggos CE, Schlussman SD, Ho A, Kreek MJ (1997) Prodynorphin, proenkephalin and kappa opioid receptor mRNA responses to acute “binge” cocaine. Brain Res Mol Brain Res 44:139–142. pii: S0169328X96002495

    Article  PubMed  CAS  Google Scholar 

  302. Moratalla R, Xu M, Tonegawa S, Graybiel AM (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci USA 93:14928–14933

    Article  PubMed  CAS  Google Scholar 

  303. Hanson GR, Singh N, Merchant K, Johnson M, Gibb JW (1995) The role of NMDA receptor systems in neuropeptide responses to stimulants of abuse. Drug Alcohol Depend 37:107–110. pii: 037687169401065S

    Article  PubMed  CAS  Google Scholar 

  304. Fagergren P, Smith HR, Daunais JB, Nader MA, Porrino LJ, Hurd YL (2003) Temporal upregulation of prodynorphin mRNA in the primate striatum after cocaine self-administration. Eur J Neurosci 17:2212–2218. pii: 2636

    Article  PubMed  CAS  Google Scholar 

  305. Ziolkowska B, Stefanski R, Mierzejewski P, Zapart G, Kostowski W, Przewlocki R (2006) Contingency does not contribute to the effects of cocaine self-administration on prodynorphin and proenkephalin gene expression in the rat forebrain. Brain Res 1069:1–9. doi:10.1016/j.brainres.2005.11.042

    Article  PubMed  CAS  Google Scholar 

  306. Daunais JB, McGinty JF (1996) The effects of D1 or D2 dopamine receptor blockade on zif/268 and preprodynorphin gene expression in rat forebrain following a short-term cocaine binge. Brain Res Mol Brain Res 35:237–248

    Article  PubMed  CAS  Google Scholar 

  307. Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hokfelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654. pii: 1171

    Article  PubMed  CAS  Google Scholar 

  308. Carlezon WA, Jr., Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132. doi:10.1016/j.neuropharm.2008.06.075

    Google Scholar 

  309. Bailey A, Yoo JH, Racz I, Zimmer A, Kitchen I (2007) Preprodynorphin mediates locomotion and D2 dopamine and mu-opioid receptor changes induced by chronic ‘binge’ cocaine administration. J Neurochem 102:1817–1830. doi:10.1111/j.1471-4159.2007.04661.x

    Article  PubMed  CAS  Google Scholar 

  310. Bailey A, Gianotti R, Ho A, Kreek MJ (2007) Downregulation of kappa-opioid receptors in basolateral amygdala and septum of rats withdrawn for 14 days from an escalating dose “binge” cocaine administration paradigm. Synapse 61:820–826. doi: