Cellular and Molecular Life Sciences

, Volume 68, Issue 24, pp 3971–3981 | Cite as

Androgen receptor and its splice variants in prostate cancer

Review

Abstract

Androgen receptor (AR) is a transcription factor that becomes active upon binding to androgens via its ligand-binding domain (LBD) or in response to signaling cascades initiated by growth factors and cytokines. The activity of AR requires regions within the N-terminal domain (NTD) in a manner that is distinct from the activation of related steroid hormone receptors. Unequivocal evidence has been amassed to consider that the AR axis is the most critical pathway for the progression of prostate cancer. Qualitatively distinct insights into AR pathobiology have been garnered including that AR-regulated gene expression is stage-specifically modulated during disease progression and that the ligand requirement for AR activity could be rendered dispensable because of the expression of constitutively active AR splice variants that are devoid of LBD. The recent appreciation of the clinical challenge that stems from non-gonadal androgens that are not inhibited by traditional hormonal therapies has been tangibly translated into the development of more potent drugs that can potentially lead towards achieving an androgen-free environment. The pre-clinical evidence that proves that AR NTD is a druggable target also forecasts a further paradigm shift in the management of advanced prostate cancer. These advancements together with the identification of more robust AR antagonists and their promising clinical outcome have renewed the hope that targeting the AR pathway remains a sound strategy in the clinical management of prostate cancer. Here, we address these developments with a greater emphasis on the rapidly growing literature on AR splice variants.

Keywords

Androgen receptor Splice variants Castration-resistant prostate cancer CRPC NTD Amino-terminus LBD Prostate cancer 

References

  1. 1.
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL (2004) Molecular determinants of resistance to anti-androgen therapy. Nat Med 10(1):33–39PubMedCrossRefGoogle Scholar
  2. 2.
    Hu R, Isaacs WB, Luo J (2011) A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. The Prostate. doi:10.1002/pros.21382
  3. 3.
    Ostling P, Leivonen SK, Aakula A, Kohonen P, Makela R, Hagman Z, Edsjo A, Kangaspeska S, Edgren H, Nicorici D et al (2011) Systematic analysis of MicroRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 71(5):1956–1967PubMedCrossRefGoogle Scholar
  4. 4.
    Knudsen KE, Scher HI (2009) Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res 15(15):4792–4798PubMedCrossRefGoogle Scholar
  5. 5.
    Dehm SM, Tindall DJ (2007) Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 21(12):2855–2863PubMedCrossRefGoogle Scholar
  6. 6.
    Wang G, Sadar MD (2006) Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. J Cell Biochem 98(1):36–53PubMedCrossRefGoogle Scholar
  7. 7.
    Niu Y, Chang TM, Yeh S, Ma WL, Wang YZ, Chang C (2010) Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 29(25):3593–3604PubMedCrossRefGoogle Scholar
  8. 8.
    Labrie F, Cusan L, Gomez JL, Martel C, Berube R, Belanger P, Belanger A, Vandenput L, Mellstrom D, Ohlsson C (2009) Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J Steroid Biochem Mol Biol 113(1–2):52–56PubMedCrossRefGoogle Scholar
  9. 9.
    Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, Ettinger SL, Gleave ME, Nelson CC (2008) Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 68(15):6407–6415PubMedCrossRefGoogle Scholar
  10. 10.
    Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68(11):4447–4454PubMedCrossRefGoogle Scholar
  11. 11.
    Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66(5):2815–2825PubMedCrossRefGoogle Scholar
  12. 12.
    Hofland J, van Weerden WM, Dits NF, Steenbergen J, van Leenders GJ, Jenster G, Schroder FH, de Jong FH (2010) Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res 70(3):1256–1264PubMedCrossRefGoogle Scholar
  13. 13.
    Attard G, Richards J, de Bono JS (2011) New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway. Clin Cancer Res 17(7):1649–1657PubMedCrossRefGoogle Scholar
  14. 14.
    Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon D et al (2009) Development of a second-generation anti-androgen for treatment of advanced prostate cancer. Science 324(5928):787–790PubMedCrossRefGoogle Scholar
  15. 15.
    Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, Rathkopf D, Shelkey J, Yu EY (2010) Alumkal J et al.: Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375(9724):1437–1446PubMedCrossRefGoogle Scholar
  16. 16.
    Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO (1991) Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5(10):1396–1404PubMedCrossRefGoogle Scholar
  17. 17.
    Gregory CW, He B, Wilson EM (2001) The putative androgen receptor-A form results from in vitro proteolysis. J Mol Endocrinol 27(3):309–319PubMedCrossRefGoogle Scholar
  18. 18.
    Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF, Pretlow TG, Kung HJ (2002) Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 62(22):6606–6614PubMedGoogle Scholar
  19. 19.
    Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68(13):5469–5477PubMedCrossRefGoogle Scholar
  20. 20.
    Jagla M, Feve M, Kessler P, Lapouge G, Erdmann E, Serra S, Bergerat JP, Ceraline J (2007) A splicing variant of the androgen receptor detected in a metastatic prostate cancer exhibits exclusively cytoplasmic actions. Endocrinology 148(9):4334–4343PubMedCrossRefGoogle Scholar
  21. 21.
    Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, Kim K, Sawyers CL (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 107(39):16759–16765PubMedCrossRefGoogle Scholar
  22. 22.
    Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, Page ST, Coleman IM, Nguyen HM, Sun H et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120(8):2715–2730PubMedCrossRefGoogle Scholar
  23. 23.
    Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J, Tepper CG et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69(6):2305–2313PubMedCrossRefGoogle Scholar
  24. 24.
    Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69(1):16–22PubMedCrossRefGoogle Scholar
  25. 25.
    Li Y, Alsagabi M, Fan D, Bova GS, Tewfik AH, Dehm SM (2011) Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res 71(6):2108–2117PubMedCrossRefGoogle Scholar
  26. 26.
    Hornberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A, Bergh A, Wikstrom P (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6(4):e19059PubMedCrossRefGoogle Scholar
  27. 27.
    Mashima T, Okabe S, Seimiya H (2010) Pharmacological targeting of constitutively active truncated androgen receptor by nigericin and suppression of hormone-refractory prostate cancer cell growth. Mol Pharmacol 78(5):846–854PubMedCrossRefGoogle Scholar
  28. 28.
    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, Chen Z, Beroukhim R, Wang H, Lupien M et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2):245–256PubMedCrossRefGoogle Scholar
  29. 29.
    Heemers HV, Schmidt LJ, Sun Z, Regan KM, Anderson SK, Duncan K, Wang D, Liu S, Ballman KV, Tindall DJ (2011) Identification of a clinically relevant androgen-dependent gene signature in prostate cancer. Cancer Res 71(5):1978–1988PubMedCrossRefGoogle Scholar
  30. 30.
    Libertini SJ, Tepper CG, Rodriguez V, Asmuth DM, Kung HJ (2007) Mudryj M: Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res 67(19):9001–9005PubMedCrossRefGoogle Scholar
  31. 31.
    Chen H, Libertini SJ, Wang Y, Kung HJ, Ghosh P, Mudryj M (2010) ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J Biol Chem 285(4):2368–2374PubMedCrossRefGoogle Scholar
  32. 32.
    Sivanandam A, Murthy S, Chinnakannu K, Bai U, Kim SH, Barrack ER, Menon M, Reddy GP (2011) Calmodulin protects androgen receptor from calpain-mediated breakdown in prostate cancer cells. J Cell Physiol 226(7):1889–1896PubMedCrossRefGoogle Scholar
  33. 33.
    Bastus NC, Boyd LK, Mao X, Stankiewicz E, Kudahetti SC, Oliver RT, Berney DM, Lu YJ (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70(23):9544–9548PubMedCrossRefGoogle Scholar
  34. 34.
    Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083PubMedCrossRefGoogle Scholar
  35. 35.
    Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N, Chinnaiyan AM (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326(5957):1230Google Scholar
  36. 36.
    Steinkamp MP, O’Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA et al (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69(10):4434–4442PubMedCrossRefGoogle Scholar
  37. 37.
    Wickert L, Selbig J (2002) Structural analysis of the DNA-binding domain of alternatively spliced steroid receptors. J Endocrinol 173(3):429–436PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou ZX, Sar M, Simental JA, Lane MV, Wilson EM (1994) A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J Biol Chem 269(18):13115–13123PubMedGoogle Scholar
  39. 39.
    Kaku N, Matsuda K, Tsujimura A, Kawata M (2008) Characterization of nuclear import of the domain-specific androgen receptor in association with the importin alpha/beta and Ran-guanosine 5′-triphosphate systems. Endocrinology 149(8):3960–3969PubMedCrossRefGoogle Scholar
  40. 40.
    Saporita AJ, Zhang Q, Navai N, Dincer Z, Hahn J, Cai X, Wang Z (2003) Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem 278(43):41998–42005PubMedCrossRefGoogle Scholar
  41. 41.
    Quayle SN, Mawji NR, Wang J, Sadar MD (2007) Androgen receptor decoy molecules block the growth of prostate cancer. Proc Natl Acad Sci USA 104(4):1331–1336PubMedCrossRefGoogle Scholar
  42. 42.
    Ueda T, Mawji NR, Bruchovsky N, Sadar MD (2002) Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem 277(41):38087–38094PubMedCrossRefGoogle Scholar
  43. 43.
    Ueda T, Bruchovsky N, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277(9):7076–7085PubMedCrossRefGoogle Scholar
  44. 44.
    Sadar MD (1999) Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J Biol Chem 274(12):7777–7783PubMedCrossRefGoogle Scholar
  45. 45.
    Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK, Watt K, Tam T, Yang YC, Banuelos CA et al (2010) Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17(6):535–546PubMedCrossRefGoogle Scholar
  46. 46.
    Sadar MD, Williams DE, Mawji NR, Patrick BO, Wikanta T, Chasanah E, Irianto HE, Soest RV, Andersen RJ (2008) Sintokamides A to E, chlorinated peptides from the sponge Dysidea sp. that inhibit transactivation of the N-terminus of the androgen receptor in prostate cancer cells. Org Lett 10(21):4947–4950PubMedCrossRefGoogle Scholar
  47. 47.
    Sadar MD (2011) Small molecule inhibitors targeting the “Achilles’ Heel” of androgen receptor activity. Cancer Res 71(4):1208–1213PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Genome Sciences CenterBC Cancer AgencyVancouverCanada

Personalised recommendations