Skip to main content

Advertisement

Log in

Biochemistry of the non-mevalonate isoprenoid pathway

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The non-mevalonate pathway of isoprenoid (terpenoid) biosynthesis is essential in many eubacteria including the major human pathogen, Mycobacterium tuberculosis, in apicomplexan protozoa including the Plasmodium spp. causing malaria, and in the plastids of plants. The metabolic route is absent in humans and is therefore qualified as a promising target for new anti-infective drugs and herbicides. Biochemical and structural knowledge about all enzymes involved in the pathway established the basis for discovery and development of inhibitors by high-throughput screening of compound libraries and/or structure-based rational design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767

    PubMed  CAS  Google Scholar 

  2. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    PubMed  CAS  Google Scholar 

  3. Wade MM, Zhang Y (2004) Mechanisms of drug resistance in Mycobacterium tuberculosis. Front Biosci 9:975–994

    PubMed  CAS  Google Scholar 

  4. Morlais I, Mori A, Schneider JR, Severson DW (2003) A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti. Mol Genet Genomics 269:753–764

    PubMed  CAS  Google Scholar 

  5. Wenzel RP (2004) The antibiotic pipeline–challenges, costs, and values. N Engl J Med 351:523–526

    PubMed  CAS  Google Scholar 

  6. De Clercq E (2005) Emerging anti-HIV drugs. Expert Opin Emerg Drugs 10:241–273

    PubMed  Google Scholar 

  7. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    PubMed  CAS  Google Scholar 

  8. Nisimov F (2003) The physics factbook. Number of species. http://hypertextbook.com/facts/2003/FelixNisimov.shtml

  9. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    PubMed  CAS  Google Scholar 

  10. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RPG, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, Neeley DFM (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360:2397–2405

    PubMed  CAS  Google Scholar 

  11. Leeb M (2004) Antibiotics: a shot in the arm. Nature 431:892–893

    PubMed  CAS  Google Scholar 

  12. Schmid MB (2006) Do targets limit antibiotic discovery? Nat Biotechnol 24:419–420

    PubMed  CAS  Google Scholar 

  13. Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440:303–307

    PubMed  CAS  Google Scholar 

  14. Mdluli K, Spigelman M (2006) Novel targets for tuberculosis drug discovery. Curr Opin Pharmacol 6:459–467

    PubMed  CAS  Google Scholar 

  15. Ruzicka L (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367

    PubMed  CAS  Google Scholar 

  16. Qureshi N, Porter JW (1981) Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York, pp 47–94

    Google Scholar 

  17. Bloch K (1992) Sterol molecule: structure, biosynthesis, and function. Steroids 57:378–383

    PubMed  CAS  Google Scholar 

  18. Bach TJ (1995) Some aspects of isoprenoid biosynthesis in plants. Lipids 30:191–202

    PubMed  CAS  Google Scholar 

  19. Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane DE (ed) Comprehensive natural product chemistry, vol 2. Pergamon, Oxford, pp 15–44

    Google Scholar 

  20. Slater EE, MacDonald JS (1988) Mechanism of action and biological profile of HMG CoA reductase inhibitors. A new therapeutic alternative. Drugs 36(Suppl 3):72–82

    PubMed  CAS  Google Scholar 

  21. Stancu C, Sima A (2001) Statins: mechanism of action and effects. J Cell Mol Med 5:378–387

    PubMed  CAS  Google Scholar 

  22. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  23. Schwarz MK (1994) Terpen-Biosynthese in Ginkgo biloba: eine überraschende Geschichte. PhD Thesis, ETH Zürich, Zürich

  24. Broers STJ (1994) Über die frühen Vorstufen der Biosynthese von Isoprenoiden in Escherichia coli. PhD Thesis, ETH Zürich, Zürich

  25. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    PubMed  CAS  Google Scholar 

  26. Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862

    PubMed  CAS  Google Scholar 

  27. Lange BM, Wildung MR, McCaskill D, Croteau R (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci USA 95:2100–2104

    PubMed  CAS  Google Scholar 

  28. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884

    PubMed  CAS  Google Scholar 

  29. Schwarz MK, Arigoni D (1999) Ginkgolide biosynthesis. In: Cane DE (ed) Comprehensive natural product chemistry, vol 2. Pergamon, Oxford, pp 367–399

    Google Scholar 

  30. Rohmer M (1999) A mevalonate-independent route to isopentenyl diphosphate. In: Cane DE (ed) Comprehensive natural product chemistry, vol 2. Pergamon, Oxford, pp 45–68

    Google Scholar 

  31. Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221–R233

    PubMed  CAS  Google Scholar 

  32. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    PubMed  CAS  Google Scholar 

  33. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    PubMed  CAS  Google Scholar 

  34. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  35. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  36. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  37. Boucher Y, Doolittle WF (2000) The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol 37:703–716

    PubMed  CAS  Google Scholar 

  38. Smit A, Mushegian A (2000) Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res 10:1468–1484

    PubMed  CAS  Google Scholar 

  39. Grochowski LL, Xu H, White RH (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198

    PubMed  CAS  Google Scholar 

  40. Laupitz R, Hecht S, Amslinger S, Zepeck F, Kaiser J, Richter G, Schramek N, Steinbacher S, Huber R, Arigoni D, Bacher A, Eisenreich W, Rohdich F (2004) Biochemical characterization of Bacillus subtilis type II isopentenyl diphosphate isomerase, and phylogenetic distribution of isoprenoid biosynthesis pathways. Eur J Biochem 271:2658–2669

    PubMed  CAS  Google Scholar 

  41. Adam P, Bacher A, Eisenreich W, Fellermeier M, Hecht S, Rohdich F, Schuhr CA, Wungsintaweekul J, Zenk MH (2001) The non-mevalonate isoprenoid pathway. International Patent WO0194561

  42. Xiang S, Usunow G, Lange G, Busch M, Tong L (2007) Crystal structure of 1-deoxy-d-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. J Biol Chem 282:2676–2682

    PubMed  CAS  Google Scholar 

  43. Sangari FJ, Perez-Gil J, Carretero-Paulet L, Garcia-Lobo JM, Rodriguez-Concepcion M (2010) A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc Natl Acad Sci USA 107:14081–14086

    PubMed  CAS  Google Scholar 

  44. Hoeffler JF, Tritsch D, Grosdemange-Billiard C, Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway. Mechanistic investigations of the 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Eur J Biochem 269:4446–4457

    PubMed  CAS  Google Scholar 

  45. Lauw S, Illarionova V, Bacher A, Eisenreich W, Rohdich F (2007) Biosynthesis of isoprenoids: studies on the mechanism of 2C-methyl-d-erythritol 4-phosphate synthase. FEBS J 275:4060–4073

    Google Scholar 

  46. Wong U, Cox RJ (2007) The chemical mechanism of d-1-deoxyxylulose-5-phosphate reductoisomerase from Escherichia coli. Angew Chem Int Ed Engl 46:4926–4929

    PubMed  CAS  Google Scholar 

  47. Munos JW, Pu X, Mansoorabadi SO, Kim HJ, Liu H-W (2009) A secondary kinetic isotope effect study of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase-catalyzed reaction: evidence for a retroaldol-aldol rearrangement. J Am Chem Soc 131:2048–2049

    PubMed  CAS  Google Scholar 

  48. Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916

    CAS  Google Scholar 

  49. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    PubMed  CAS  Google Scholar 

  50. Kuemmerle HP, Murakawa T, Sakamoto H, Sato N, Konishi T, De Santis F (1985) Fosmidomycin, a new phosphonic acid antibiotic. Part II: 1. Human pharmacokinetics. 2. Preliminary early phase IIa clinical studies. Int J Clin Pharmacol Ther Toxicol 23:521–528

    PubMed  CAS  Google Scholar 

  51. Behrendt CT, Kunfermann A, Illarionova V, Matheeussen A, Gräwert T, Groll M, Rohdich F, Bacher A, Eisenreich W, Fischer M, Maes L, Kurz T (2010) Synthesis and antiplasmodial activity of highly active reverse analogues of the antimalarial drug candidate fosmidomycin. ChemMedChem 5:1673–1676

    PubMed  CAS  Google Scholar 

  52. Giessmann D, Heidler P, Haemers T, Van Calenbergh S, Reichenberg A, Jomaa H, Weidemeyer C, Sanderbrand S, Wiesner J, Link A (2008) Towards new antimalarial drugs: synthesis of non-hydrolyzable phosphate mimics as feed for a predictive QSAR study on 1-deoxy-d-xylulose-5-phosphate reductoisomerase inhibitors. Chem Biodivers 5:643–656

    PubMed  CAS  Google Scholar 

  53. Zingle C, Kuntz L, Tritsch D, Grosdemange-Billiard C, Rohmer M (2010) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase. J Org Chem 75:3203–3207

    PubMed  CAS  Google Scholar 

  54. Kuntz L, Tritsch D, Grosdemange-Billiard C, Hemmerlin A, Willem A, Bach TJ, Rohmer M (2005) Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase. Biochem J 386:127–135

    PubMed  CAS  Google Scholar 

  55. Steinbacher S, Kaiser J, Eisenreich W, Huber R, Bacher A, Rohdich F (2003) Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-d-erythritol 4-phosphate synthase (IspC). Implications for the catalytic mechanism and anti-malaria drug development. J Biol Chem 278:18401–18407

    PubMed  CAS  Google Scholar 

  56. Wiesner J, Borrmann S, Jomaa H (2003) Fosmidomycin for the treatment of malaria. Parasitol Res 90(Suppl 2):S71–S76

    PubMed  Google Scholar 

  57. Lell B, Ruangweerayut R, Wiesner J, Missinou MA, Schindler A, Baranek T, Hintz M, Hutchinson D, Jomaa H, Kremsner PG (2003) Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother 47:735–738

    PubMed  CAS  Google Scholar 

  58. Missinou MA, Borrmann S, Schindler A, Issifou S, Adegnika AA, Matsiegui PB, Binder R, Lell B, Wiesner J, Baranek T, Jomaa H, Kremsner PG (2002) Fosmidomycin for malaria. Lancet 360:1941–1942

    PubMed  CAS  Google Scholar 

  59. Borrmann S, Issifou S, Esser G, Adegnika AA, Ramharter M, Matsiegui PB, Oyakhirome S, Mawili-Mboumba DP, Missinou MA, Kun JF, Jomaa H, Kremsner PG (2004) Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. J Infect Dis 190:1534–1540

    PubMed  CAS  Google Scholar 

  60. Borrmann S, Adegnika AA, Matsiegui PB, Issifou S, Schindler A, Mawili-Mboumba DP, Baranek T, Wiesner J, Jomaa H, Kremsner PG (2004) Fosmidomycin-clindamycin for Plasmodium falciparum Infections in African children. J Infect Dis 189:901–908

    PubMed  CAS  Google Scholar 

  61. Borrmann S, Lundgren I, Oyakhirome S, Impouma B, Matsiegui PB, Adegnika AA, Issifou S, Kun JF, Hutchinson D, Wiesner J, Jomaa H, Kremsner PG (2006) Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother 50:2713–2718

    PubMed  CAS  Google Scholar 

  62. Kurz T, Behrendt C, Pein M, Kaula U, Bergmann B, Walter RD (2007) γ-Substituted bis(pivaloyloxymethyl)ester analogues of fosmidomycin and FR900098. Arch Pharm 340:661–666

    CAS  Google Scholar 

  63. Kurz T, Schlüter K, Pein M, Behrendt C, Bergmann B, Walter RD (2007) Conformationally restrained aromatic analogues of fosmidomycin and FR900098. Arch Pharm 340:339–344

    CAS  Google Scholar 

  64. Devreux V, Wiesner J, Jomaa H, Van der Eycken J, Van Calenbergh S (2007) Synthesis and evaluation of α,β-unsaturated α-aryl-substituted fosmidomycin analogues as DXR inhibitors. Bioorg Med Chem Lett 17:4920–4923

    PubMed  CAS  Google Scholar 

  65. Devreux V, Wiesner J, Jomaa H, Rozenski J, Van der Eycken J, Van Calenbergh S (2007) Divergent strategy for the synthesis of α-Aryl-substituted fosmidomycin analogues. J Org Chem 72:3783–3789

    PubMed  CAS  Google Scholar 

  66. Ortmann R, Wiesner J, Silber K, Klebe G, Jomaa H, Schlitzer M (2007) Novel deoxyxylulosephosphate-reductoisomerase inhibitors: fosmidomycin derivatives with spacious acyl residues. Arch Pharm 340:483–490

    CAS  Google Scholar 

  67. Devreux V, Wiesner J, Goeman JL, Van der Eycken J, Jomaa H, Van Calenbergh S (2006) Synthesis and biological evaluation of cyclopropyl analogues of fosmidomycin as potent Plasmodium falciparum growth inhibitors. J Med Chem 49:2656–2660

    PubMed  CAS  Google Scholar 

  68. Haemers T, Wiesner J, Van Poecke S, Goeman J, Henschker D, Beck E, Jomaa H, Van Calenbergh S (2006) Synthesis of alpha-substituted fosmidomycin analogues as highly potent Plasmodium falciparum growth inhibitors. Bioorg Med Chem Lett 16:1888–1891

    PubMed  CAS  Google Scholar 

  69. Ortmann R, Wiesner J, Reichenberg A, Henschker D, Beck E, Jomaa H, Schlitzer M (2005) Alkoxycarbonyloxyethyl ester prodrugs of FR900098 with improved in vivo antimalarial activity. Arch Pharm 338:305–314

    CAS  Google Scholar 

  70. Illarionova V, Kaiser J, Ostrojenkova E, Bacher A, Eisenreich W, Rohdich F (2006) Non-mevalonate terpene biosynthesis enzymes as antiinfective drug targets. Substrate synthesis and high throughput screening methods. J Org Chem 71:8824–8834

    PubMed  CAS  Google Scholar 

  71. Rohdich F, Bacher A, Eisenreich W (2005) Isoprenoid biosynthetic pathways as anti-infective drug targets. Biochem Soc Trans 33:785–791

    PubMed  CAS  Google Scholar 

  72. Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz S, Kis K, Eisenreich W, Bacher A, Zenk MH (1999) Cytidine 5’-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96:11758–11763

    PubMed  CAS  Google Scholar 

  73. Lüttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, Schuhr CA, Fellermeier M, Sagner S, Zenk MH, Bacher A, Eisenreich W (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-d-erythritol. Proc Natl Acad Sci USA 97:1062–1067

    PubMed  Google Scholar 

  74. Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Lüttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490

    PubMed  CAS  Google Scholar 

  75. Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    PubMed  CAS  Google Scholar 

  76. Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    PubMed  CAS  Google Scholar 

  77. Rohdich F, Kis K, Bacher A, Eisenreich W (2001) The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr Opin Chem Biol 5:535–540

    PubMed  CAS  Google Scholar 

  78. Rohdich F, Hecht S, Bacher A, Eisenreich W (2003) Deoxyxylulose phosphate pathway of isoprenoid biosynthesis. Discovery and function of ispDEFGH genes and their cognate enzymes. Pure Appl Chem 75:393–405

    CAS  Google Scholar 

  79. Richard SB, Lillo AM, Tetzlaff CN, Bowman ME, Noel JP, Cane DE (2004) Kinetic analysis of Escherichia coli 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids. Biochemistry 43:12189–12197

    PubMed  CAS  Google Scholar 

  80. Sgraja T, Kemp LE, Ramsden N, Hunter WN (2005) A double mutation of Escherichia coli 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphate. Acta Crystallogr Sect F 61:625–629

    Google Scholar 

  81. Steinbacher S, Kaiser J, Wungsintaweekul J, Hecht S, Eisenreich W, Gerhardt S, Bacher A, Rohdich F (2002) Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. J Mol Biol 316:79–88

    PubMed  CAS  Google Scholar 

  82. Kalinowska-Tluscik J, Miallau L, Gabrielsen M, Leonard GA, McSweeney SM, Hunter WN (2010) A triclinic crystal form of Escherichia coli 4-diphosphocytidyl-2C-methyl-d-erythritol kinase and reassessment of the quaternary structure. Acta Crystallogr Sect F 66:237–241

    Google Scholar 

  83. Geist JG, Lauw S, Illarionova V, Illarionov B, Fischer M, Gräwert T, Rohdich F, Eisenreich W, Kaiser J, Groll M, Scheurer C, Wittlin S, Alonso-Gomez JL, Schweizer WB, Bacher A, Diederich F (2010) Thiazolopyrimidine inhibitors of 2-methylerythritol 2,4-cyclodiphosphate synthase (IspF) from Mycobacterium tuberculosis and Plasmodium falciparum. ChemMedChem 5:1092–1101

    PubMed  CAS  Google Scholar 

  84. Hirsch AK, Alphey MS, Lauw S, Seet M, Barandun L, Eisenreich W, Rohdich F, Hunter WN, Bacher A, Diederich F (2008) Inhibitors of the kinase IspE: structure-activity relationships and co-crystal structure analysis. Org Biomol Chem 6:2719–2730

    PubMed  CAS  Google Scholar 

  85. Crane CM, Hirsch AK, Alphey MS, Sgraja T, Lauw S, Illarionova V, Rohdich F, Eisenreich W, Hunter WN, Bacher A, Diederich F (2008) Synthesis and characterization of cytidine derivatives that inhibit the kinase IspE of the non-mevalonate pathway for isoprenoid biosynthesis. ChemMedChem 3:91–101

    PubMed  CAS  Google Scholar 

  86. Zürcher M, Diederich F (2008) Structure-based drug design: exploring the proper filling of apolar pockets at enzyme active sites. J Org Chem 73:4345–4361

    PubMed  Google Scholar 

  87. Crane CM, Kaiser J, Ramsden NL, Lauw S, Rohdich F, Eisenreich W, Hunter WN, Bacher A, Diederich F (2006) Fluorescent inhibitors for IspF, an enzyme in the non-mevalonate pathway for isoprenoid biosynthesis and a potential target for antimalarial therapy. Angew Chem Int Ed Engl 45:1069–1074

    PubMed  CAS  Google Scholar 

  88. Hirsch AK, Lauw S, Gersbach P, Schweizer WB, Rohdich F, Eisenreich W, Bacher A, Diederich F (2007) Nonphosphate inhibitors of IspE protein, a kinase in the non-mevalonate pathway for isoprenoid biosynthesis and a potential target for antimalarial therapy. ChemMedChem 2:806–810

    PubMed  CAS  Google Scholar 

  89. Baumgartner C, Eberle C, Lauw S, Rohdich F, Eisenreich W, Bacher A, Diederich F (2007) Structure-based design and synthesis of the first week non-phosphate inhibitors for IspF, an enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. Helv Chim Acta 90:1043–1068

    CAS  Google Scholar 

  90. Ramsden NL, Buetow L, Dawson A, Kemp LA, Ulaganathan V, Brenk R, Klebe G, Hunter WN (2009) A structure-based approach to ligand discovery for 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase: a target for antimicrobial therapy. J Med Chem 52:2531–2542

    PubMed  CAS  Google Scholar 

  91. Campos N, Rodríguez-Concepción M, Seemann M, Rohmer M, Boronat A (2001) Identification of gcpE as a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis in Escherichia coli. FEBS Lett 488:170–173

    PubMed  CAS  Google Scholar 

  92. Altincicek B, Kollas AK, Sanderbrand S, Wiesner J, Hintz M, Beck E, Jomaa H (2001) GcpE is involved in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. J Bacteriol 183:2411–2416

    PubMed  CAS  Google Scholar 

  93. Altincicek B, Kollas A, Eberl M, Wiesner J, Sanderbrand S, Hintz M, Beck E, Jomaa H (2001) LytB, a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. FEBS Lett 499:37–40

    PubMed  CAS  Google Scholar 

  94. Cunningham FX Jr, Lafond TP, Gantt E (2000) Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. J Bacteriol 182:5841–5848

    PubMed  CAS  Google Scholar 

  95. Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D, Rohdich F (2001) Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98:14837–14842

    PubMed  CAS  Google Scholar 

  96. Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163

    PubMed  CAS  Google Scholar 

  97. Wungsintaweekul J, Herz S, Hecht S, Eisenreich W, Feicht R, Rohdich F, Bacher A, Zenk MH (2001) Phosphorylation of 1-deoxy-d-xylulose by d-xylulokinase of Escherichia coli. Eur J Biochem 268:310–316

    PubMed  CAS  Google Scholar 

  98. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas AK, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett 509:317–322

    PubMed  CAS  Google Scholar 

  99. Wolff M, Seemann M, Grosdemange-Billiard C, Tritsch D, Campos N, Rodriguez-Concepción M, Boronat A, Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway. (E)-4-Hydroxy-3-methylbut-2-enyl diphosphate: chemical synthesis and formation from methylertyhritol cyclodiphosphate by a cell-free system from Escherichia coli. Tetrahedron Lett 43:2555–2559

    CAS  Google Scholar 

  100. Zepeck F, Gräwert T, Kaiser J, Eisenreich W, Rohdich F (2005) Biosynthesis of isoprenoids. Purification and properties of IspG protein from Escherichia coli. J Org Chem 70:9168–9174

    PubMed  CAS  Google Scholar 

  101. Puan KJ, Wang H, Dairi T, Kuzuyama T, Morita CT (2005) fldA is an essential gene required in the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. FEBS Lett 579:3802–3806

    PubMed  CAS  Google Scholar 

  102. Sancho J (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci 63:855–864

    PubMed  CAS  Google Scholar 

  103. Gräwert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S, Schramek N, Schleicher E, Weber S, Haslbeck M, Buchner J, Rieder C, Arigoni D, Bacher A, Eisenreich W, Rohdich F (2004) IspH protein of Escherichia coli: studies on iron–sulfur cluster implementation and catalysis. J Am Chem Soc 126:12847–12855

    PubMed  Google Scholar 

  104. Seemann M, Bui BT, Wolff M, Tritsch D, Campos N, Boronat A, Marquet A, Rohmer M (2002) Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. Angew Chem Int Ed Engl 41:4337–4339

    PubMed  CAS  Google Scholar 

  105. Kollas AK, Duin EC, Eberl M, Altincicek B, Hintz M, Reichenberg A, Henschker D, Henne A, Steinbrecher I, Ostrovsky DN, Hedderich R, Beck E, Jomaa H, Wiesner J (2002) Functional characterization of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoid biosynthesis. FEBS Lett 532:432–436

    PubMed  CAS  Google Scholar 

  106. Seemann M, Wegner P, Schünemann V, Bui BT, Wolff M, Marquet A, Trautwein AX, Rohmer M (2005) Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe–4S] protein. J Biol Inorg Chem 10:131–137

    PubMed  CAS  Google Scholar 

  107. Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas AK, Hintz M, Wagner S, Wiesner J, Beck E, Jomaa H (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532:437–440

    PubMed  CAS  Google Scholar 

  108. Wolff M, Seemann M, Bui BT, Frapart Y, Tritsch D, Garcia Estrabot A, Rodríguez-Concepción M, Boronat A, Marquet A, Rohmer M (2003) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe–4S] protein. FEBS Lett 541:115–120

    PubMed  CAS  Google Scholar 

  109. Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Gräwert T, Amslinger S, Eisenreich W, Bacher A, Arigoni D (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100:1586–1591

    PubMed  CAS  Google Scholar 

  110. Brandt W, Dessoy MA, Fulhorst M, Gao W, Zenk MH, Wessjohann LA (2004) A proposed mechanism for the reductive ring opening of the cyclodiphosphate MEcPP, a crucial transformation in the new DXP/MEP pathway to isoprenoids based on modeling studies and feeding experiments. Chem Bio Chem 5:311–323

    PubMed  CAS  Google Scholar 

  111. Xu W, Lees NS, Adedeji D, Wiesner J, Jomaa H, Hoffman BM, Duin EC (2010) Paramagnetic intermediates of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE/IspG) under steady-state and pre-steady-state conditions. J Am Chem Soc 132:14509–14520

    PubMed  CAS  Google Scholar 

  112. Nyland RL 2nd, Xiao Y, Liu P, Freel Meyers CL (2009) IspG converts an epoxide substrate analogue to (E)-4-hydroxy-3-methylbut-2-enyl diphosphate: implications for IspG catalysis in isoprenoid biosynthesis. J Am Chem Soc 131:17734–17735

    PubMed  CAS  Google Scholar 

  113. Xiao Y, Zahariou G, Sanakis Y, Liu P (2009) IspG enzyme activity in the deoxyxylulose phosphate pathway: roles of the iron–sulfur cluster. Biochemistry 48:10483–10485

    PubMed  CAS  Google Scholar 

  114. Xiao Y, Nyland RL 2nd, Meyers CL, Liu P (2010) Methylerythritol cyclodiphosphate (MEcPP) in deoxyxylulose phosphate pathway: synthesis from an epoxide and mechanisms. Chem Commun 46:7220–7222

    CAS  Google Scholar 

  115. Wang W, Li J, Wang K, Huang C, Zhang Y, Oldfield E (2010) Organometallic mechanism of action and inhibition of the 4Fe–4S isoprenoid biosynthesis protein GcpE (IspG). Proc Natl Acad Sci USA 107:11189–11193

    PubMed  CAS  Google Scholar 

  116. Lee M, Grawert T, Quitterer F, Rohdich F, Eppinger J, Eisenreich W, Bacher A, Groll M (2010) Biosynthesis of isoprenoids: crystal structure of the [4Fe–4S] cluster protein IspG. J Mol Biol 404:600–610

    PubMed  CAS  Google Scholar 

  117. McAteer S, Coulson A, McLennan N, Masters M (2001) The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis. J Bacteriol 183:7403–7407

    PubMed  CAS  Google Scholar 

  118. Gräwert T, Span I, Eisenreich W, Rohdich F, Eppinger J, Bacher A, Groll M (2010) Probing the reaction mechanism of IspH protein by x-ray structure analysis. Proc Natl Acad Sci USA 107:1077–1081

    PubMed  Google Scholar 

  119. Gräwert T, Rohdich F, Span I, Bacher A, Eisenreich W, Eppinger J, Groll M (2009) Structure of active IspH enzyme from Escherichia coli provides mechanistic insights into substrate reduction. Angew Chem Int Ed Engl 48:5756–5759

    PubMed  Google Scholar 

  120. Rekittke I, Wiesner J, Rohrich R, Demmer U, Warkentin E, Xu W, Troschke K, Hintz M, No JH, Duin EC, Oldfield E, Jomaa H, Ermler U (2008) Structure of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase, the terminal enzyme of the non-mevalonate pathway. J Am Chem Soc 130:17206–17207

    PubMed  CAS  Google Scholar 

  121. Gräwert T, Span I, Bacher A, Groll M (2010) Reductive dehydroxylation of allyl alcohols by IspH protein. Angew Chem Int Ed Engl 49:8802–8809

    PubMed  Google Scholar 

  122. Seemann M, Janthawornpong K, Schweizer J, Bottger LH, Janoschka A, Ahrens-Botzong A, Tambou EN, Rotthaus O, Trautwein AX, Rohmer M (2009) Isoprenoid biosynthesis via the MEP pathway: in vivo Mößbauer spectroscopy identifies a [4Fe–4S]2+ center with unusual coordination sphere in the LytB protein. J Am Chem Soc 131:13184–13185

    PubMed  CAS  Google Scholar 

  123. Xiao Y, Zhao ZK, Liu P (2008) Mechanistic studies of IspH in the deoxyxylulose phosphate pathway: heterolytic C–O bond cleavage at C4 position. J Am Chem Soc 130:2164–2165

    PubMed  CAS  Google Scholar 

  124. Oldfield E (2010) Targeting isoprenoid biosynthesis for drug discovery: bench to bedside. Acc Chem Res 43:1216–1226

    PubMed  CAS  Google Scholar 

  125. Wang K, Wang W, No JH, Zhang Y, Oldfield E (2010) Inhibition of the Fe(4)S(4)-cluster-containing protein IspH (LytB): electron paramagnetic resonance, metallacycles, and mechanisms. J Am Chem Soc 132:6719–6727

    PubMed  CAS  Google Scholar 

  126. Wang W, Wang K, Liu YL, No JH, Li J, Nilges MJ, Oldfield E (2010) Bioorganometallic mechanism of action, and inhibition, of IspH. Proc Natl Acad Sci USA 107:4522–4527

    PubMed  CAS  Google Scholar 

  127. Rohdich F, Schuhr CA, Hecht S, Herz S, Wungsintaweekul J, Eisenreich W, Zenk MH, Bacher A (2000) Biosynthesis of Isoprenoids. A rapid method for the preparation of isotope-labeled 4-diphosphocytidyl-2C-methyl-d-erythritol. J Am Chem Soc 122:9571–9594

    CAS  Google Scholar 

  128. Schuhr CA, Hecht S, Kis K, Eisenreich W, Wungsintaweekul J, Bacher A, Rohdich F (2001) Studies on the non-mevalonate pathway—preparation and properties of isotope-labeled 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Eur J Org Chem 17:3221–3226

    Google Scholar 

  129. Hecht S, Kis K, Eisenreich W, Amslinger S, Wungsintaweekul J, Herz S, Rohdich F, Bacher A (2001) Enzyme-assisted preparation of isotope-labeled 1-deoxy-d-xylulose 5-phosphate. J Org Chem 66:3948–3952

    PubMed  CAS  Google Scholar 

  130. Hecht S, Wungsintaweekul J, Rohdich F, Kis K, Radykewicz T, Schuhr CA, Eisenreich W, Richter G, Bacher A (2001) Biosynthesis of terpenoids: efficient multistep biotransformation procedures affording isotope-labeled 2C-methyl-d-erythritol 4-phosphate using recombinant 2C-methyl-d-erythritol 4-phosphate synthase. J Org Chem 66:7770–7775

    PubMed  CAS  Google Scholar 

  131. Argyrou A, Blanchard JS (2004) Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate isomeroreductase. Biochemistry 43:4375–4384

    PubMed  CAS  Google Scholar 

  132. Yin X, Proteau PJ (2003) Characterization of native and histidine-tagged deoxyxylulose 5-phosphate reductoisomerase from the cyanobacterium Synechocystis sp. PCC6803. Biochim Biophys Acta 1652:75–81

    PubMed  CAS  Google Scholar 

  133. Yajima S, Nonaka T, Kuzuyama T, Seto H, Ohsawa K (2002) Crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase complexed with cofactors: implications of a flexible loop movement upon substrate binding. J Biochem 131:313–317

    PubMed  CAS  Google Scholar 

  134. Yajima S, Hara K, Iino D, Sasaki Y, Kuzuyama T, Ohsawa K, Seto H (2007) Structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in a quaternary complex with a magnesium ion, NADPH and the antimalarial drug fosmidomycin. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:466–470

    PubMed  Google Scholar 

  135. Mac Sweeney A, Lange R, Fernandes RP, Schulz H, Dale GE, Douangamath A, Proteau PJ, Oefner C (2005) The crystal structure of E. coli 1-deoxy-d-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. J Mol Biol 345:115–127

    PubMed  CAS  Google Scholar 

  136. Reuter K, Sanderbrand S, Jomaa H, Wiesner J, Steinbrecher I, Beck E, Hintz M, Klebe G, Stubbs MT (2002) Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem 277:5378–5384

    PubMed  CAS  Google Scholar 

  137. Henriksson LM, Unge T, Carlsson J, Aqvist J, Mowbray SL, Jones TA (2007) Structures of Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase provide new insights into catalysis. J Biol Chem 282:19905–19916

    PubMed  CAS  Google Scholar 

  138. Henriksson LM, Bjorkelid C, Mowbray SL, Unge T (2006) The 1.9 A resolution structure of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate reductoisomerase, a potential drug target. Acta Crystallogr D Biol Crystallogr 62:807–813

    PubMed  Google Scholar 

  139. Umeda T, Tanaka N, Kusakabe Y, Nakanishi M, Kitade Y, Nakamura KT (2010) Crystallization and preliminary X-ray crystallographic study of 1-deoxy-d-xylulose 5-phosphate reductoisomerase from Plasmodium falciparum. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:330–332

    PubMed  Google Scholar 

  140. Takenoya M, Ohtaki A, Noguchi K, Endo K, Sasaki Y, Ohsawa K, Yajima S, Yohda M (2010) Crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase from the hyperthermophile Thermotoga maritima for insights into the coordination of conformational changes and an inhibitor binding. J Struct Biol 170:532–539

    PubMed  CAS  Google Scholar 

  141. Ricagno S, Grolle S, Bringer-Meyer S, Sahm H, Lindqvist Y, Schneider G (2004) Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase from Zymomonas mobilis at 1.9-A resolution. Biochim Biophys Acta 1698:37–44

    PubMed  CAS  Google Scholar 

  142. Eoh H, Brown AC, Buetow L, Hunter WN, Parish T, Kaur D, Brennan PJ, Crick DC (2007) Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-d-erythritol synthase: potential for drug development. J Bacteriol 189:8922–8927

    PubMed  CAS  Google Scholar 

  143. Shi W, Feng J, Zhang M, Lai X, Xu S, Zhang X, Wang H (2007) Biosynthesis of isoprenoids: characterization of a functionally active recombinant 2-C-methyl-d-erythritol 4-phosphate cytidyltransferase (IspD) from Mycobacterium tuberculosis H37Rv. J Biochem Mol Biol 40:911–920

    PubMed  Google Scholar 

  144. Gabrielsen M, Kaiser J, Rohdich F, Eisenreich W, Laupitz R, Bacher A, Bond CS, Hunter WN (2006) The crystal structure of a plant 2C-methyl-d-erythritol 4-phosphate cytidylyltransferase exhibits a distinct quaternary structure compared to bacterial homologues and a possible role in feedback regulation for cytidine monophosphate. FEBS J 273:1065–1073

    PubMed  CAS  Google Scholar 

  145. Richard SB, Bowman ME, Kwiatkowski W, Kang I, Chow C, Lillo AM, Cane DE, Noel JP (2001) Structure of 4-diphosphocytidyl-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis. Nat Struct Biol 8:641–648

    PubMed  CAS  Google Scholar 

  146. Kemp LE, Bond CS, Hunter WN (2001) Crystallization and preliminary X-ray diffraction studies of recombinant Escherichia coli 4-diphosphocytidyl-2-C-methyl-d-erythritol synthetase. Acta Crystallogr D Biol Crystallogr 57:1189–1191

    PubMed  CAS  Google Scholar 

  147. Sgraja T, Alphey MS, Ghilagaber S, Marquez R, Robertson MN, Hemmings JL, Lauw S, Rohdich F, Bacher A, Eisenreich W, Illarionova V, Hunter WN (2008) Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase—ligand recognition in a template for antimicrobial drug discovery. FEBS J 275:2779–2794

    PubMed  CAS  Google Scholar 

  148. Lherbet C, Pojer F, Richard SB, Noel JP, Poulter CD (2006) Absence of substrate channeling between active sites in the Agrobacterium tumefaciens IspDF and IspE enzymes of the methyl erythritol phosphate pathway. Biochemistry 45:3548–3553

    PubMed  CAS  Google Scholar 

  149. Miallau L, Alphey MS, Kemp LE, Leonard GA, McSweeney SM, Hecht S, Bacher A, Eisenreich W, Rohdich F, Hunter WN (2003) Biosynthesis of isoprenoids: crystal structure of 4-diphosphocytidyl-2C-methyl-d-erythritol kinase. Proc Natl Acad Sci USA 100:9173–9178

    PubMed  CAS  Google Scholar 

  150. Wada T, Kuzuyama T, Satoh S, Kuramitsu S, Yokoyama S, Unzai S, Tame JR, Park SY (2003) Crystal structure of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase, an enzyme in the non-mevalonate pathway of isoprenoid synthesis. J Biol Chem 278:30022–30027

    PubMed  CAS  Google Scholar 

  151. Rohdich F, Eisenreich W, Wungsintaweekul J, Hecht S, Schuhr CA, Bacher A (2001) Biosynthesis of terpenoids. 2C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF) from Plasmodium falciparum. Eur J Biochem 268:3190–3197

    PubMed  CAS  Google Scholar 

  152. Calisto BM, Perez-Gil J, Bergua M, Querol-Audi J, Fita I, Imperial S (2007) Biosynthesis of isoprenoids in plants: structure of the 2C-methyl-d-erithrytol 2,4-cyclodiphosphate synthase from Arabidopsis thaliana. Comparison with the bacterial enzymes. Protein Sci 16:2082–2088

    PubMed  CAS  Google Scholar 

  153. Richard SB, Ferrer JL, Bowman ME, Lillo AM, Tetzlaff CN, Cane DE, Noel JP (2002) Structure and mechanism of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase. An enzyme in the mevalonate-independent isoprenoid biosynthetic pathway. J Biol Chem 277:8667–8672

    PubMed  CAS  Google Scholar 

  154. Kemp LE, Bond CS, Hunter WN (2002) Structure of 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase: an essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development. Proc Natl Acad Sci USA 99:6591–6596

    PubMed  CAS  Google Scholar 

  155. Lehmann C, Lim K, Toedt J, Krajewski W, Howard A, Eisenstein E, Herzberg O (2002) Structure of 2C-methyl-d-erythrol-2,4-cyclodiphosphate synthase from Haemophilus influenzae: activation by conformational transition. Proteins 49:135–138

    PubMed  CAS  Google Scholar 

  156. Kishida H, Wada T, Unzai S, Kuzuyama T, Takagi M, Terada T, Shirouzu M, Yokoyama S, Tame JR, Park SY (2003) Structure and catalytic mechanism of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MECDP) synthase, an enzyme in the non-mevalonate pathway of isoprenoid synthesis. Acta Crystallogr D Biol Crystallogr 59:23–31

    PubMed  Google Scholar 

  157. Buetow L, Brown AC, Parish T, Hunter WN (2007) The structure of Mycobacteria 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery. BMC Struct Biol 7:68

    PubMed  Google Scholar 

  158. Gabrielsen M, Rohdich F, Eisenreich W, Gräwert T, Hecht S, Bacher A, Hunter WN (2004) Biosynthesis of isoprenoids: a bifunctional IspDF enzyme from Campylobacter jejuni. Eur J Biochem 271:3028–3035

    PubMed  CAS  Google Scholar 

  159. Testa CA, Lherbet C, Pojer F, Noel JP, Poulter CD (2006) Cloning and expression of IspDF from Mesorhizobium loti. Characterization of a bifunctional protein that catalyzes non-consecutive steps in the methylerythritol phosphate pathway. Biochim Biophys Acta 1764:85–96

    PubMed  CAS  Google Scholar 

  160. Rekittke I, Nonaka T, Wiesner J, Demmer U, Warkentin E, Jomaa H, Ermler U (2010) Structure of the E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate synthase (GcpE) from Thermus thermophilus. FEBS Lett 585:447–451

    PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft, and the Hans-Fischer-Gesellschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Eisenreich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gräwert, T., Groll, M., Rohdich, F. et al. Biochemistry of the non-mevalonate isoprenoid pathway. Cell. Mol. Life Sci. 68, 3797–3814 (2011). https://doi.org/10.1007/s00018-011-0753-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0753-z

Keywords

Navigation