Skip to main content

Advertisement

Log in

Hypoxia in the regulation of neural stem cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5–5.0% O2) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O2 and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O2 conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dings J, Meixensberger J, Jager A, Roosen K (1998) Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 43(5):1082–1095

    Article  PubMed  CAS  Google Scholar 

  2. Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128(3):263–276

    Article  PubMed  CAS  Google Scholar 

  3. Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167(2):127–145

    Article  PubMed  CAS  Google Scholar 

  4. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36(2):249–266

    Article  PubMed  CAS  Google Scholar 

  5. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  6. Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9(1):135–141

    Article  PubMed  CAS  Google Scholar 

  7. Popa-Wagner A, Buga AM, Kokaia Z (2009) Perturbed cellular response to brain injury during aging. Ageing Res Rev 10(1):71–79

    PubMed  Google Scholar 

  8. Romanko MJ, Rola R, Fike JR, Szele FG, Dizon ML, Felling RJ, Brazel CY, Levison SW (2004) Roles of the mammalian subventricular zone in cell replacement after brain injury. Prog Neurobiol 74(2):77–99

    Article  PubMed  Google Scholar 

  9. Toda H, Takahashi J, Iwakami N, Kimura T, Hoki S, Mozumi-Kitamura K, Ono S, Hashimoto N (2001) Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 316(1):9–12

    Article  PubMed  CAS  Google Scholar 

  10. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):266–271

    Article  PubMed  CAS  Google Scholar 

  11. Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, Lee ST, Kang L, Lee K, Park DK, Kim SU, Roh JK (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016(2):145–153

    Article  PubMed  CAS  Google Scholar 

  12. Jiang Q, Zhang ZG, Ding GL, Zhang L, Ewing JR, Wang L, Zhang R, Li L, Lu M, Meng H, Arbab AS, Hu J, Li QJ, Pourabdollah Nejad DS, Athiraman H, Chopp M (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28(3):698–707

    Article  PubMed  Google Scholar 

  13. Rota Nodari L, Ferrari D, Giani F, Bossi M, Rodriguez-Menendez V, Tredici G, Delia D, Vescovi AL, De Filippis L (2010) Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5(11):e14035

    Article  PubMed  CAS  Google Scholar 

  14. Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 103(35):13174–13179

    Article  PubMed  CAS  Google Scholar 

  15. Emsley JG, Mitchell BD, Magavi SS, Arlotta P, Macklis JD (2004) The repair of complex neuronal circuitry by transplanted and endogenous precursors. NeuroRx 1(4):452–471

    Article  PubMed  Google Scholar 

  16. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2(4):287–293

    Article  PubMed  CAS  Google Scholar 

  17. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  PubMed  CAS  Google Scholar 

  18. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  PubMed  CAS  Google Scholar 

  19. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16(3):1091–1100

    PubMed  CAS  Google Scholar 

  20. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19(9):387–393

    Article  PubMed  CAS  Google Scholar 

  21. De Filippis L, Ferrari D, Rota Nodari L, Amati B, Snyder E, Vescovi AL (2008) Immortalization of human neural stem cells with the c-myc mutant T58A. PLoS One 3(10):e3310

    Article  PubMed  CAS  Google Scholar 

  22. Lundberg C, Martinez-Serrano A, Cattaneo E, McKay RD, Bjorklund A (1997) Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp Neurol 145(2 Pt 1):342–360

    Article  PubMed  CAS  Google Scholar 

  23. Villa A, Snyder EY, Vescovi A, Martinez-Serrano A (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 161(1):67–84

    Article  PubMed  CAS  Google Scholar 

  24. De Filippis L, Lamorte G, Snyder EY, Malgaroli A, Vescovi AL (2007) A novel, immortal, and multipotent human neural stem cell line generating functional neurons and oligodendrocytes. Stem Cells 25(9):2312–2321

    Article  PubMed  CAS  Google Scholar 

  25. Martinez-Serrano A, Rubio FJ, Navarro B, Bueno C, Villa A (2001) Human neural stem and progenitor cells: in vitro and in vivo properties, and potential for gene therapy and cell replacement in the CNS. Curr Gene Ther 1(3):279–299

    Article  PubMed  CAS  Google Scholar 

  26. Anderson DJ, Gage FH, Weissman IL (2001) Can stem cells cross lineage boundaries? Nat Med 7(4):393–395

    Article  PubMed  CAS  Google Scholar 

  27. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87(10):2183–2200

    Article  PubMed  CAS  Google Scholar 

  28. Chavali PL, Saini RK, Matsumoto Y, Agren H, Funa K (2010) Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia. J Biol Chem 286(11):9393–9404

    PubMed  Google Scholar 

  29. Cui XP, Xing Y, Chen JM, Dong SW, Ying DJ, Yew DT (2010) Wnt/beta-catenin is involved in the proliferation of hippocampal neural stem cells induced by hypoxia. Ir J Med Sci 180(2):387–393

    PubMed  Google Scholar 

  30. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013

    Article  PubMed  CAS  Google Scholar 

  31. Pistollato F, Rampazzo E, Persano L, Abbadi S, Frasson C, Denaro L, D’Avella D, Panchision DM, Della Puppa A, Scienza R, Basso G (2010) Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 28(11):1918–1929

    Article  PubMed  CAS  Google Scholar 

  32. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296

    Article  PubMed  CAS  Google Scholar 

  33. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102(13):4783–4788

    Article  PubMed  CAS  Google Scholar 

  34. D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39(3):513–522

    Article  PubMed  CAS  Google Scholar 

  35. Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358(3):948–953

    Article  PubMed  CAS  Google Scholar 

  36. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063

    Article  PubMed  CAS  Google Scholar 

  37. Santilli G, Lamorte G, Carlessi L, Ferrari D, Rota Nodari L, Binda E, Delia D, Vescovi AL, De Filippis L (2009) Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS One 5(1):e8575

    Google Scholar 

  38. Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsch A, Schwarz J (2001) Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 170(2):317–325

    Article  PubMed  CAS  Google Scholar 

  39. Semenza GL (2002) Involvement of hypoxia-inducible factor 1 in human cancer. Intern Med 41(2):79–83

    Article  PubMed  CAS  Google Scholar 

  40. Pistollato F, Chen HL, Schwartz PH, Basso G, Panchision DM (2007) Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci 35(3):424–435

    Article  PubMed  CAS  Google Scholar 

  41. Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20(19):7377–7383

    PubMed  CAS  Google Scholar 

  42. Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20(19):7370–7376

    PubMed  CAS  Google Scholar 

  43. Milosevic J, Schwarz SC, Krohn K, Poppe M, Storch A, Schwarz J (2005) Low atmospheric oxygen avoids maturation, senescence and cell death of murine mesencephalic neural precursors. J Neurochem 92(4):718–729

    Article  PubMed  CAS  Google Scholar 

  44. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    Article  PubMed  CAS  Google Scholar 

  45. Chen HL, Pistollato F, Hoeppner DJ, Ni HT, McKay RD, Panchision DM (2007) Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25(9):2291–2301

    Article  PubMed  Google Scholar 

  46. Smith J, Ladi E, Mayer-Proschel M, Noble M (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 97(18):10032–10037

    Article  PubMed  CAS  Google Scholar 

  47. Carlessi L, De Filippis L, Lecis D, Vescovi A, Delia D (2009) DNA-damage response, survival and differentiation in vitro of a human neural stem cell line in relation to ATM expression. Cell Death Differ 16(6):795–806

    Article  PubMed  CAS  Google Scholar 

  48. Francis KR, Wei L (2010) Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis 1(2):e22

    Article  PubMed  CAS  Google Scholar 

  49. Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, Yu SP (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210(2):656–670

    Article  PubMed  CAS  Google Scholar 

  50. Gilca M, Stoian I, Atanasiu V, Virgolici B (2007) The oxidative hypothesis of senescence. J Postgrad Med 53(3):207–213

    Article  PubMed  CAS  Google Scholar 

  51. Park KI, Hack MA, Ourednik J, Yandava B, Flax JD, Stieg PE, Gullans S, Jensen FE, Sidman RL, Ourednik V, Snyder EY (2006) Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal “reporter” neural stem cells. Exp Neurol 199(1):156–178

    Article  PubMed  Google Scholar 

  52. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer’s disease. Arch Pharm Res 33(10):1539–1556

    Article  PubMed  CAS  Google Scholar 

  53. Schmidt OI, Heyde CE, Ertel W, Stahel PF (2005) Closed head injury—an inflammatory disease? Brain Res Brain Res Rev 48(2):388–399

    Article  PubMed  Google Scholar 

  54. Worthmann H, Tryc AB, Deb M, Goldbecker A, Ma YT, Tountopoulou A, Lichtinghagen R, Weissenborn K (2010) Linking infection and inflammation in acute ischemic stroke. Ann NY Acad Sci 1207:116–122

    Article  PubMed  CAS  Google Scholar 

  55. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  PubMed  CAS  Google Scholar 

  56. Lossinsky AS, Shivers RR (2004) Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Histol Histopathol 19(2):535–564

    PubMed  CAS  Google Scholar 

  57. Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44(5):999–1010

    Article  PubMed  CAS  Google Scholar 

  58. Ghirnikar RS, Lee YL, Eng LF (1998) Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res 23(3):329–340

    Article  PubMed  CAS  Google Scholar 

  59. Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, Williamson KS (2006) On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal 8(11–12):2075–2087

    Article  PubMed  CAS  Google Scholar 

  60. Jander S, Schroeter M, Stoll G (2002) Interleukin-18 expression after focal ischemia of the rat brain: association with the late-stage inflammatory response. J Cereb Blood Flow Metab 22(1):62–70

    Article  PubMed  CAS  Google Scholar 

  61. Stoll G, Schroeter M, Jander S, Siebert H, Wollrath A, Kleinschnitz C, Bruck W (2004) Lesion-associated expression of transforming growth factor-beta-2 in the rat nervous system: evidence for down-regulating the phagocytic activity of microglia and macrophages. Brain Pathol 14(1):51–58

    PubMed  CAS  Google Scholar 

  62. Stoll G, Jander S, Schroeter M (2002) Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 513:87–113

    PubMed  CAS  Google Scholar 

  63. Latov N, Nilaver G, Zimmerman EA, Johnson WG, Silverman AJ, Defendini R, Cote L (1979) Fibrillary astrocytes proliferate in response to brain injury: a study combining immunoperoxidase technique for glial fibrillary acidic protein and radioautography of tritiated thymidine. Dev Biol 72(2):381–384

    Article  PubMed  CAS  Google Scholar 

  64. Miyake T, Hattori T, Fukuda M, Kitamura T, Fujita S (1988) Quantitative studies on proliferative changes of reactive astrocytes in mouse cerebral cortex. Brain Res 451(1–2):133–138

    Article  PubMed  CAS  Google Scholar 

  65. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308

    Article  PubMed  CAS  Google Scholar 

  66. Li Q, Ford MC, Lavik EB, Madri JA (2006) Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res 84(8):1656–1668

    Article  PubMed  CAS  Google Scholar 

  67. Madri JA (2009) Modeling the neurovascular niche: implications for recovery from CNS injury. J Physiol Pharmacol 60(Suppl 4):95–104

    PubMed  Google Scholar 

  68. Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279(32):33538–33546

    Article  PubMed  CAS  Google Scholar 

  69. Li Q, Michaud M, Stewart W, Schwartz M, Madri JA (2008) Modeling the neurovascular niche: murine strain differences mimic the range of responses to chronic hypoxia in the premature newborn. J Neurosci Res 86(6):1227–1242

    Article  PubMed  CAS  Google Scholar 

  70. Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB, Madri JA, Ment LR (2002) Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277(13):11410–11415

    Article  PubMed  CAS  Google Scholar 

  71. Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR (2000) Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 119(1):139–153

    Article  PubMed  CAS  Google Scholar 

  72. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell 3(3):289–300

    Article  PubMed  CAS  Google Scholar 

  73. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    Article  PubMed  CAS  Google Scholar 

  74. Schmidt NO, Koeder D, Messing M, Mueller FJ, Aboody KS, Kim SU, Black PM, Carroll RS, Westphal M, Lamszus K (2009) Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res 1268:24–37

    Article  PubMed  CAS  Google Scholar 

  75. Curristin SM, Cao A, Stewart WB, Zhang H, Madri JA, Morrow JS, Ment LR (2002) Disrupted synaptic development in the hypoxic newborn brain. Proc Natl Acad Sci USA 99(24):15729–15734

    Article  PubMed  CAS  Google Scholar 

  76. Bacigaluppi M, Pluchino S, Peruzzotti Jametti L, Kilic E, Kilic U, Salani G, Brambilla E, West MJ, Comi G, Martino G, Hermann DM (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132(Pt 8):2239–2251

    Article  PubMed  Google Scholar 

  77. Wang L, Shi J, van Ginkel FW, Lan L, Niemeyer G, Martin DR, Snyder EY, Cox NR (2009) Neural stem/progenitor cells modulate immune responses by suppressing T lymphocytes with nitric oxide and prostaglandin E2. Exp Neurol 216(1):177–183

    Article  PubMed  CAS  Google Scholar 

  78. Fagel DM, Ganat Y, Silbereis J, Ebbitt T, Stewart W, Zhang H, Ment LR, Vaccarino FM (2006) Cortical neurogenesis enhanced by chronic perinatal hypoxia. Exp Neurol 199(1):77–91

    Article  PubMed  Google Scholar 

  79. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353(15):1574–1584

    Article  PubMed  CAS  Google Scholar 

  80. Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J Neurosurg 77(2):169–184

    PubMed  CAS  Google Scholar 

  81. Sugawara T, Noshita N, Lewen A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 22(1):209–217

    PubMed  CAS  Google Scholar 

  82. Homi HM, Freitas JJ, Curi R, Velasco IT, Junior BA (2002) Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett 333(1):37–40

    Article  PubMed  CAS  Google Scholar 

  83. Horie N, So K, Moriya T, Kitagawa N, Tsutsumi K, Nagata I, Shinohara K (2008) Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell Mol Neurobiol 28(6):833–845

    Article  PubMed  CAS  Google Scholar 

  84. Park KI, Himes BT, Stieg PE, Tessler A, Fischer I, Snyder EY (2006) Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp Neurol 199(1):179–190

    Article  PubMed  CAS  Google Scholar 

  85. Cramer SC, Chopp M (2000) Recovery recapitulates ontogeny. Trends Neurosci 23(6):265–271

    Article  PubMed  CAS  Google Scholar 

  86. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41(3):516–523

    Article  PubMed  Google Scholar 

  87. Ishibashi S, Sakaguchi M, Kuroiwa T, Yamasaki M, Kanemura Y, Shizuko I, Shimazaki T, Onodera M, Okano H, Mizusawa H (2004) Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res 78(2):215–223

    Article  PubMed  CAS  Google Scholar 

  88. Olstorn H, Moe MC, Roste GK, Bueters T, Langmoen IA (2007) Transplantation of stem cells from the adult human brain to the adult rat brain. Neurosurgery 60(6):1089–1098 (discussion 1098–1099)

    PubMed  Google Scholar 

  89. Sinden JD, Rashid-Doubell F, Kershaw TR, Nelson A, Chadwick A, Jat PS, Noble MD, Hodges H, Gray JA (1997) Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischaemia-lesioned hippocampus. Neuroscience 81(3):599–608

    Article  PubMed  CAS  Google Scholar 

  90. Wong AM, Hodges H, Horsburgh K (2005) Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res 1063(2):140–150

    Article  PubMed  CAS  Google Scholar 

  91. Chu K, Kim M, Jeong SW, Kim SU, Yoon BW (2003) Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 343(2):129–133

    Article  PubMed  CAS  Google Scholar 

  92. Chu K, Park KI, Lee ST, Jung KH, Ko SY, Kang L, Sinn DI, Lee YS, Kim SU, Kim M, Roh JK (2005) Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res 53(4):384–390

    Article  PubMed  CAS  Google Scholar 

  93. Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34(9):2258–2263

    Article  PubMed  Google Scholar 

  94. Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25(5):1204–1212

    Article  PubMed  CAS  Google Scholar 

  95. Lee HJ, Kim KS, Park IH, Kim SU (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2(1):e156

    Article  PubMed  CAS  Google Scholar 

  96. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131(Pt 3):616–629

    Article  PubMed  Google Scholar 

  97. Englund U, Bjorklund A, Wictorin K (2002) Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Brain Res Dev Brain Res 134(1–2):123–141

    Article  PubMed  CAS  Google Scholar 

  98. Englund U, Fricker-Gates RA, Lundberg C, Bjorklund A, Wictorin K (2002) Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp Neurol 173(1):1–21

    Article  PubMed  CAS  Google Scholar 

  99. Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11(12):4159–4170

    Article  PubMed  CAS  Google Scholar 

  100. Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P (2002) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22(4):393–403

    Article  PubMed  CAS  Google Scholar 

  101. Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21(24):9733–9743

    PubMed  CAS  Google Scholar 

  102. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48(3):285–296

    Article  PubMed  CAS  Google Scholar 

  103. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16(11):1033–1039

    PubMed  CAS  Google Scholar 

  104. Busuttil RA, Rubio M, Dolle ME, Campisi J, Vijg J (2003) Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell 2(6):287–294

    Article  PubMed  CAS  Google Scholar 

  105. Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82(7):2031–2037

    PubMed  CAS  Google Scholar 

  106. Eliasson P, Jonsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222(1):17–22

    Article  PubMed  CAS  Google Scholar 

  107. Lekli I, Gurusamy N, Ray D, Tosaki A, Das DK (2009) Redox regulation of stem cell mobilization. Can J Physiol Pharmacol 87(12):989–995

    Article  PubMed  CAS  Google Scholar 

  108. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161

    Article  PubMed  CAS  Google Scholar 

  109. Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD (2010) Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139(1):85–97

    Article  PubMed  CAS  Google Scholar 

  110. Moreno-Manzano V, Rodriguez-Jimenez FJ, Acena-Bonilla JL, Fustero-Lardies S, Erceg S, Dopazo J, Montaner D, Stojkovic M, Sanchez-Puelles JM (2010) FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. J Biol Chem 285(2):1333–1342

    Article  PubMed  CAS  Google Scholar 

  111. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35(9):505–513

    Article  PubMed  CAS  Google Scholar 

  112. Bell EL, Chandel NS (2007) Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem 43:17–27

    Article  PubMed  CAS  Google Scholar 

  113. Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS (2007) Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol 27(16):5737–5745

    Article  PubMed  CAS  Google Scholar 

  114. Chu K, Jung KH, Kim SJ, Lee ST, Kim J, Park HK, Song EC, Kim SU, Kim M, Lee SK, Roh JK (2008) Transplantation of human neural stem cells protect against ischemia in a preventive mode via hypoxia-inducible factor-1alpha stabilization in the host brain. Brain Res 1207:182–192

    Article  PubMed  CAS  Google Scholar 

  115. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

    Article  PubMed  CAS  Google Scholar 

  116. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  PubMed  CAS  Google Scholar 

  117. Zhang Y, Chan DC (2007) New insights into mitochondrial fusion. FEBS Lett 581(11):2168–2173

    Article  PubMed  CAS  Google Scholar 

  118. Baloh RH, Schmidt RE, Pestronk A, Milbrandt J (2007) Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 27(2):422–430

    Article  PubMed  CAS  Google Scholar 

  119. Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130(3):548–562

    Article  PubMed  CAS  Google Scholar 

  120. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879

    Article  PubMed  CAS  Google Scholar 

  121. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518

    Article  PubMed  CAS  Google Scholar 

  122. Arduino DM, Esteves AR, Cardoso SM (2011) Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinsons Dis 2011:767230

    PubMed  Google Scholar 

  123. Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69(3):481–492

    Article  PubMed  CAS  Google Scholar 

  124. Ienco EC, Simoncini C, Orsucci D, Petrucci L, Filosto M, Mancuso M, Siciliano G (2011) May “mitochondrial eve” and mitochondrial haplogroups play a role in neurodegeneration and Alzheimer’s disease? Int J Alzheimers Dis 2011:709061

    PubMed  Google Scholar 

  125. Huttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion (in press)

  126. Ienco EC, Logerfo A, Carlesi C, Orsucci D, Ricci G, Mancuso M, Siciliano G (2011) Oxidative stress treatment for clinical trials in neurodegenerative diseases. J Alzheimers Dis (in press)

  127. Pizzuti A, Petrucci S (2011) Mitochondrial disfunction as a cause of ALS. Arch Ital Biol 149(1):113–119

    PubMed  Google Scholar 

  128. Cheah BC, Vucic S, Krishnan AV, Kiernan MC (2010) Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17(18):199–1942

    Google Scholar 

  129. Demaurex N, Scorrano L (2009) Reactive oxygen species are NOXious for neurons. Nat Neurosci 12(7):819–820

    Article  PubMed  CAS  Google Scholar 

  130. Afifi AK, Aleu FP, Goodgold J, MacKay B (1966) Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology 16(5):475–481

    PubMed  CAS  Google Scholar 

  131. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157

    Article  PubMed  CAS  Google Scholar 

  132. Einstein O, Ben-Hur T (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol 65(4):452–456

    Article  PubMed  Google Scholar 

  133. Miljan EA, Sinden JD (2009) Stem cell treatment of ischemic brain injury. Curr Opin Mol Ther 11(4):394–403

    PubMed  CAS  Google Scholar 

  134. Zhao B, Zhong M, Jin K (2008) Neurogenesis and neurodegenerative diseases in human. Panminerva Med 50(1):55–64

    PubMed  CAS  Google Scholar 

  135. Carpentier PA, Palmer TD (2009) Immune influence on adult neural stem cell regulation and function. Neuron 64(1):79–92

    Article  PubMed  CAS  Google Scholar 

  136. Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111(4):769–781

    Article  PubMed  CAS  Google Scholar 

  137. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  138. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  139. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  140. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5(3):237–241

    Article  PubMed  CAS  Google Scholar 

  141. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20(5):557–570

    Article  PubMed  CAS  Google Scholar 

  142. Giese A-K, Frahm J, Hübner R, Luo J, Wree A, Frech MJ, Rolfs A, Ortinau A (2010) Erythropoietin and the effect of oxygen during proliferation and differentiation of human neural progenitor cells. BMC Cell Biol 11:94

    Google Scholar 

  143. Chavez JC, LaManna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22:8922–8931

    Google Scholar 

  144. Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 97:10242–10247

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Telethon grant GGP 10066 (to D.D.) and by the no-profit Foundations Neurothon, Cellule Staminali (Terni, Italy) and Borgonovo, the research Institute Casa Sollievo della Sofferenza (S.Giovanni Rotondo, Italy), Stem Cell Factory (Ospedale S.Maria, Terni), which are funding and providing the necessary support to start up the clinical trial for ALS patients in Italy (information available at the site: http://www.adottaunacellula.org). A special thank you to Luigi Carlessi, Cristina Zalfa, Elena Fusar Poli and Guido Santilli for their precious technical and scientific support. Prof. Angelo Vescovi supported us with important suggestions and critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia De Filippis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Filippis, L., Delia, D. Hypoxia in the regulation of neural stem cells. Cell. Mol. Life Sci. 68, 2831–2844 (2011). https://doi.org/10.1007/s00018-011-0723-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0723-5

Keywords

Navigation