Cellular and Molecular Life Sciences

, Volume 68, Issue 13, pp 2255–2266 | Cite as

Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches

  • Andrea Giuliani
  • Andrea C. RinaldiEmail author
Multi-author review


Naturally occurring antimicrobial peptides (AMPs) present several drawbacks that strongly limit their development into therapeutically valuable antibiotics. These include susceptibility to protease degradation and high costs of manufacture. To overcome these problems, researchers have tried to develop mimics or peptidomimetics endowed with better properties, while retaining the basic features of membrane-active natural AMPs such as cationic charge and amphipathic design. Protein epitope mimetics, multimeric (dendrimeric) peptides, oligoacyllysines, ceragenins, synthetic lipidated peptides, peptoids and other foldamers are some of the routes explored so far. The synthetic approach has led to compounds that have already entered clinical evaluation for the treatment of specific conditions, such as Staphylococcus (MRSA) infections. Should these trials be successful, an important proof-of-concept would be established, showing that synthetic oligomers rather than naturally occurring molecules could bring peptide-based antibiotics to clinical practice and the drug market for local and systemic treatment of medical conditions associated with multi-drug resistant pathogens.


Antimicrobial peptides Antimicrobial polymers Synthetic approaches Membrane-active Dendrimeric peptides Lipopeptides 



Antimicrobial peptide


Multiple antigenic peptide




Lipoteichoic acid




Protein epitope mimetic


Ring-opening metathesis polymerization


Synthetic mimic of antimicrobial peptides


Vaccinia virus


Conflict of interest

One of the authors declares competing financial interests. Andrea Giuliani is an executive board member and minor shareholder of Spider Biotech S.r.l. (, which is developing peptide-based anti-infectives.


  1. 1.
    Giuliani A, Rinaldi AC (2010) Antimicrobial peptides. Methods and protocols. Methods in molecular biology, vol 618. Humana Press, New YorkGoogle Scholar
  2. 2.
    van ‘t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV (2001) Antimicrobial peptides: properties and applicability. Biol Chem 382:597–619CrossRefGoogle Scholar
  3. 3.
    Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592PubMedCrossRefGoogle Scholar
  4. 4.
    Tzeng Y-L, Ambrose KA, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396PubMedCrossRefGoogle Scholar
  5. 5.
    Kraus D, Peschel A (2006) Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr Top Microbiol Immunol 306:231–250PubMedCrossRefGoogle Scholar
  6. 6.
    Kraus D, Peschel A (2008) Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol 3:437–451PubMedCrossRefGoogle Scholar
  7. 7.
    Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-d-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155PubMedCrossRefGoogle Scholar
  8. 8.
    Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460PubMedCrossRefGoogle Scholar
  9. 9.
    Tam JP, Spetzler JC (2001) Synthesis and application of peptide dendrimers as protein mimetics. Curr Protoc Protein Sci. Chapter 18:Unit 18.5Google Scholar
  10. 10.
    Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high density multiple antigenic peptide system. Proc Natl Acad Sci USA 85:5409–5413PubMedCrossRefGoogle Scholar
  11. 11.
    Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, Rossolini GM, Bracci L (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49:2665–2672PubMedCrossRefGoogle Scholar
  12. 12.
    Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MA, Casu M, Rinaldi AC (2010) Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Peptides 31:1459–1467PubMedCrossRefGoogle Scholar
  13. 13.
    Pini A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S, Rossolini GM, Bracci L (2010) A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 24:1015–1022PubMedCrossRefGoogle Scholar
  14. 14.
    Falciani C, Lozzi L, Pini A, Corti F, Fabbrini M, Bernini A, Lelli B, Niccolai N, Bracci L (2007) Molecular basis of branched peptides resistance to enzyme proteolysis. Chem Biol Drug Des 69:216–221PubMedCrossRefGoogle Scholar
  15. 15.
    Luganini A, Giuliani A, Pirri G, Pizzuto L, Landolfo S, Gribaudo G (2010) Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulphate. Antiviral Res 85:532–540PubMedCrossRefGoogle Scholar
  16. 16.
    Obrecht D, Robinson JA, Bernardini F, Bisang C, DeMarco SJ, Moehle K, Gombert FO (2009) Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics. Curr Med Chem 16:42–65PubMedCrossRefGoogle Scholar
  17. 17.
    Lou K (2010) A new spin on protegrin. SciBX 3: doi: 10.1038/scibx.2010.265
  18. 18.
    Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Käch A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013PubMedCrossRefGoogle Scholar
  19. 19.
    Jiang L, Moehle K, Dhanapal B, Obrecht D, Robinson JA (2000) Combinatorial biomimetic chemistry: parallel synthesis of a small library of β-hairpin mimetics based on loop III from human platelet-derived growth factor. Helv Chim Acta 83:3097–3112CrossRefGoogle Scholar
  20. 20.
    Robinson JA, Demarco S, Gombert F, Moehle K, Obrecht D (2008) The design, structures and therapeutic potential of protein epitope mimetics. Drug Discov Today 13:944–951PubMedCrossRefGoogle Scholar
  21. 21.
    Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2007) Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25:657–659PubMedCrossRefGoogle Scholar
  22. 22.
    Rotem S, Radzishevsky IS, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2008) Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. FASEB J 22:2652–2661PubMedCrossRefGoogle Scholar
  23. 23.
    Rotem S, Raz N, Kashi Y, Mor A (2010) Bacterial capture by peptide-mimetic oligoacyllysine surfaces. Appl Environ Microbiol 76:3301–3307PubMedCrossRefGoogle Scholar
  24. 24.
    Sarig H, Livne L, Held-Kuznetsov V, Zaknoon F, Ivankin A, Gidalevitz D, Mor A (2010) A miniature mimic of host defense peptides with systemic antibacterial efficacy. FASEB J 24:1904–1913PubMedCrossRefGoogle Scholar
  25. 25.
    Sarig H, Rotem S, Ziserman L, Danino D, Mor A (2008) Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers. Antimicrob Agents Chemother 52:4308–4314PubMedCrossRefGoogle Scholar
  26. 26.
    Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN Jr, McCrimmon D, Zasloff M (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 90:1354–1358PubMedCrossRefGoogle Scholar
  27. 27.
    Epand RF, Savage PB, Epand RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta 1768:2500–2509PubMedCrossRefGoogle Scholar
  28. 28.
    Savage PB, Li C, Taotafa U, Ding B, Guan Q (2002) Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett 217:1–7PubMedCrossRefGoogle Scholar
  29. 29.
    Isogai E, Isogai H, Takahashi K, Okumura K, Savage PB (2009) Ceragenin CSA-13 exhibits antimicrobial activity against cariogenic and periodontopathic bacteria. Oral Microbiol Immunol 24:170–172PubMedCrossRefGoogle Scholar
  30. 30.
    Leszczyńska K, Namiot A, Fein DE, Wen Q, Namiot Z, Savage PB, Diamond S, Janmey PA, Bucki R (2009) Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice. BMC Microbiol 9:187PubMedCrossRefGoogle Scholar
  31. 31.
    Graham DY, Shiotani A (2008) New concepts of resistance in the treatment of Helicobacter pylori infections. Nat Clin Pract Gastroenterol Hepatol 5:321–331PubMedCrossRefGoogle Scholar
  32. 32.
    Howell MD, Streib JE, Kim BE, Lesley LJ, Dunlap AP, Geng D, Feng Y, Savage PB, Leung DY (2009) Ceragenins: a class of antiviral compounds to treat orthopox infections. J Invest Dermatol 129:2668–2675PubMedCrossRefGoogle Scholar
  33. 33.
    Liu DH, Choi S, Chen B, Doerksen RJ, Clements DJ, Winkler JD, Klein ML, DeGrado WF (2004) Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Ed 43:1158–1162CrossRefGoogle Scholar
  34. 34.
    Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19:620–627PubMedCrossRefGoogle Scholar
  35. 35.
    Ishitsuka Y, Arnt L, Majewski J, Frey S, Ratajczek M, Kjaer K, Tew GN, Lee KYC (2006) Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial peptide membrane disordering effect by membrane insertion. J Am Chem Soc 128:13123–13129PubMedCrossRefGoogle Scholar
  36. 36.
    Lienkamp K, Madkour AE, Kumar KN, Nüsslein K, Tew GN (2009) Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation. Chemistry 15:11715–11722PubMedCrossRefGoogle Scholar
  37. 37.
    Lienkamp K, Tew GN (2009) Synthetic mimics of antimicrobial peptides–a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers. Chemistry 15:11784–11800PubMedCrossRefGoogle Scholar
  38. 38.
    Haug BE, Stensen W, Kalaaij M, Rekdal Ø, Svendsen JS (2008) Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem 51:4306–4314PubMedCrossRefGoogle Scholar
  39. 39.
    Flemming K, Klingenberg C, Cavanagh JP, Sletteng M, Stensen W, Svendsen JS, Flaegstad T (2009) High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. J Antimicrob Chemother 63:136–145PubMedCrossRefGoogle Scholar
  40. 40.
    Shalev DE, Rotems S, Fish A, Mor A (2006) Consequences of N-acylation on structure and membrane binding properties of dermaseptin derivative K4–S4-(1–13). J Biol Chem 281:9432–9438PubMedCrossRefGoogle Scholar
  41. 41.
    Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103:15997–16002PubMedCrossRefGoogle Scholar
  42. 42.
    Vallon-Eberhard A, Makovitzki A, Beauvais A, Latgé JP, Jung S, Shai Y (2008) Efficient clearance of Aspergillus fumigatus in murine lungs by an ultrashort antimicrobial lipopeptide, palmitoyl-Lys-Ala-dAla-Lys. Antimicrob Agents Chemother 52:3118–3126PubMedCrossRefGoogle Scholar
  43. 43.
    Laverty G, McLaughlin M, Shaw C, Gorman SP, Gilmore BF (2010) Antimicrobial activity of short, synthetic cationic lipopeptides. Chem Biol Drug Des 75:563–569PubMedCrossRefGoogle Scholar
  44. 44.
    Zuckermann RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 114:10646–10647CrossRefGoogle Scholar
  45. 45.
    Olsen CA (2010) Peptoid–peptide hybrid backbone architectures. Chem Bio Chem 11:152–160PubMedGoogle Scholar
  46. 46.
    Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 105:2794–2799PubMedCrossRefGoogle Scholar
  47. 47.
    Uchida M, McDermott G, Wetzler M, Le Gros MA, Myllys M, Knoechel C, Barron AE, Larabell CA (2009) Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans. Proc Natl Acad Sci USA 106:19375–19380PubMedCrossRefGoogle Scholar
  48. 48.
    Ryge TS, Frimodt-Møller N, Hansen PR (2008) Antimicrobial activities of twenty lysine-peptoid hybrids against clinically relevant bacteria and fungi. Chemotherapy 54:152–156PubMedCrossRefGoogle Scholar
  49. 49.
    Schmitt MA, Weisblum B, Gellman SH (2004) Unexpected relationships between structure and function in alpha, beta-peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc 126:6848–6849PubMedCrossRefGoogle Scholar
  50. 50.
    Schmitt MA, Weisblum B, Gellman SH (2007) Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides. J Am Chem Soc 129:417–428PubMedCrossRefGoogle Scholar
  51. 51.
    Mowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B, Stahl SS, Gellman SH (2007) Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc 129:15474–15476PubMedCrossRefGoogle Scholar
  52. 52.
    Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM (2008) Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J Mol Biol 379:38–50PubMedCrossRefGoogle Scholar
  53. 53.
    Li X, Li Y, Han H, Miller DW, Wang G (2006) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128:5776–5785PubMedCrossRefGoogle Scholar
  54. 54.
    Mowery BP, Lindner AH, Weisblum B, Stahl SS, Gellman SH (2009) Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J Am Chem Soc 131:9735–9745PubMedCrossRefGoogle Scholar
  55. 55.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250PubMedCrossRefGoogle Scholar
  56. 56.
    Hale JD, Hancock REW (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959PubMedCrossRefGoogle Scholar
  57. 57.
    Cho JH, Kim SC (2010) Non-membrane targets of antimicrobial peptides: novel therapeutic opportunities? In: Wang G (ed) Antimicrobial peptides: discovery, design and novel therapeutic strategies. Oxfordshire, England, pp 128–140CrossRefGoogle Scholar
  58. 58.
    Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nüsslein K, Tew GN (2008) Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 9:2980–2983PubMedCrossRefGoogle Scholar
  59. 59.
    Hennig A, Gabriel GJ, Tew GN, Matile S (2008) Stimuli-responsive polyguanidino-oxanorbornene membrane transporters as multicomponent sensors in complex matrices. J Am Chem Soc 130:10338–10344PubMedCrossRefGoogle Scholar
  60. 60.
    Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2:1–33CrossRefGoogle Scholar
  61. 61.
    Ross NT, Katt WP, Hamilton AD (2010) Synthetic mimetics of protein secondary structure domains. Phil Trans R Soc A 368:989–1008PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Spider Biotech S.r.lColleretto GiacosaItaly
  2. 2.Department of Biomedical Sciences and TechnologiesUniversity of CagliariMonserratoItaly

Personalised recommendations