Skip to main content

Advertisement

Log in

Protecting the boundary: the sentinel role of host defense peptides in the skin

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The skin is our primary shield against microbial pathogens and has evolved innate and adaptive strategies to enhance immunity in response to injury or microbial insult. The study of antimicrobial peptide (AMP) production in mammalian skin has revealed several of the elegant strategies that AMPs use to prevent infection. AMPs are inducible by both infection and injury and protect the host by directly killing pathogens and/or acting as multifunctional effector molecules that trigger cellular responses to aid in the anti-infective and repair response. Depending on the specific AMP, these molecules can influence cytokine production, cell migration, cell proliferation, differentiation, angiogenesis and wound healing. Abnormal production of AMPs has been associated with the pathogenesis of several cutaneous diseases and plays a role in determining a patient’s susceptibility to pathogens. This review will discuss current research on the regulation and function of AMPs in the skin and in skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPs:

Antimicrobial peptides

HBDs:

Human beta-defensins

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

MapK:

Mitogen-activated protein kinase

PSMs:

Phenol-soluble modulins

TLR:

Toll-like receptor

VDR:

Vitamin D receptor

References

  1. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, Guy RH, Macgowan AL, Tazi-Ahnini R, Ward SJ (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129:1892–1908

    Article  PubMed  CAS  Google Scholar 

  2. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Article  PubMed  Google Scholar 

  3. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  4. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  5. Gallo RL, Huttner KM (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol 111:739–743

    Article  PubMed  CAS  Google Scholar 

  6. Aberg KM, Man MQ, Gallo RL, Ganz T, Crumrine D, Brown BE, Choi EH, Kim DK, Schroder JM, Feingold KR, Elias PM (2008) Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol 128:917–925

    Article  PubMed  CAS  Google Scholar 

  7. Dorschner RA, Lin KH, Murakami M, Gallo RL (2003) Neonatal skin in mice and humans expresses increased levels of antimicrobial peptides: innate immunity during development of the adaptive response. Pediatr Res 53:566–572

    Article  PubMed  CAS  Google Scholar 

  8. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    Article  PubMed  CAS  Google Scholar 

  9. Brahmachary M, Krishnan SP, Koh JL, Khan AM, Seah SH, Tan TW, Brusic V, Bajic VB (2004) ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res 32:D586–D589

    Article  PubMed  CAS  Google Scholar 

  10. Fjell CD, Hancock RE, Cherkasov A (2007) AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23:1148–1155

    Article  PubMed  CAS  Google Scholar 

  11. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  PubMed  CAS  Google Scholar 

  12. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed  CAS  Google Scholar 

  13. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  PubMed  CAS  Google Scholar 

  14. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  PubMed  CAS  Google Scholar 

  15. Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55:31–49

    Article  PubMed  CAS  Google Scholar 

  16. Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425

    Article  PubMed  CAS  Google Scholar 

  17. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  CAS  Google Scholar 

  18. Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A, Gallo RL (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20:2068–2080

    Article  PubMed  CAS  Google Scholar 

  19. Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077

    PubMed  CAS  Google Scholar 

  20. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173:2909–2912

    PubMed  CAS  Google Scholar 

  21. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  PubMed  CAS  Google Scholar 

  22. Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, Helfrich YR, Kang S, Elalieh HZ, Steinmeyer A, Zugel U, Bikle DD, Modlin RL, Gallo RL (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117:803–811

    Article  PubMed  CAS  Google Scholar 

  23. Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118:509–519

    PubMed  CAS  Google Scholar 

  24. Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, Gennaro R (1997) Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272:13088–13093

    Article  PubMed  CAS  Google Scholar 

  25. Peyssonaux C, Johnson RS (2004) An unexpected role for hypoxic response: oxygenation and inflammation. Cell Cycle 3:168–171

    Article  PubMed  Google Scholar 

  26. Peyssonnaux C, Boutin AT, Zinkernagel AS, Datta V, Nizet V, Johnson RS (2008) Critical role of HIF-1alpha in keratinocyte defense against bacterial infection. J Invest Dermatol 128:1964–1968

    Article  PubMed  CAS  Google Scholar 

  27. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  PubMed  CAS  Google Scholar 

  28. Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76:1436–1439

    Article  PubMed  CAS  Google Scholar 

  29. Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63:389–406

    Article  PubMed  CAS  Google Scholar 

  30. Selsted ME, Szklarek D, Ganz T, Lehrer RI (1985) Activity of rabbit leukocyte peptides against Candida albicans. Infect Immun 49:202–206

    PubMed  CAS  Google Scholar 

  31. Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun 45:150–154

    PubMed  CAS  Google Scholar 

  32. Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    PubMed  CAS  Google Scholar 

  33. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269

    PubMed  CAS  Google Scholar 

  34. Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  PubMed  CAS  Google Scholar 

  35. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, Ryan AF, Di Nardo A, Gallo RL (2010) Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis Increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 130:2211–2221

    Article  PubMed  CAS  Google Scholar 

  36. Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26:3358–3363

    Article  PubMed  CAS  Google Scholar 

  37. Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784

    Article  PubMed  CAS  Google Scholar 

  38. Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64

    Article  PubMed  CAS  Google Scholar 

  39. Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, Mahata SK, O’Connor DT, Gallo RL (2008) The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol 128:1525–1534

    Article  PubMed  CAS  Google Scholar 

  40. Weitzman I, Summerbell RC (1995) The dermatophytes. Clin Microbiol Rev 8:240–259

    PubMed  CAS  Google Scholar 

  41. Wakabayashi H, Uchida K, Yamauchi K, Teraguchi S, Hayasawa H, Yamaguchi H (2000) Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J Antimicrob Chemother 46:595–602

    Article  PubMed  CAS  Google Scholar 

  42. Franzke CW, Baici A, Bartels J, Christophers E, Wiedow O (1996) Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation. J Biol Chem 271:21886–21890

    Article  PubMed  CAS  Google Scholar 

  43. Wiedow O, Harder J, Bartels J, Streit V, Christophers E (1998) Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun 248:904–909

    Article  PubMed  CAS  Google Scholar 

  44. Ashcroft GS, Lei K, Jin W, Longenecker G, Kulkarni AB, Greenwell-Wild T, Hale-Donze H, McGrady G, Song XY, Wahl SM (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med 6:1147–1153

    Article  PubMed  CAS  Google Scholar 

  45. Lee DY, Huang CM, Nakatsuji T, Thiboutot D, Kang SA, Monestier M, Gallo RL (2009) Histone H4 is a major component of the antimicrobial action of human sebocytes. J Invest Dermatol 129:2489–2496

    Article  PubMed  CAS  Google Scholar 

  46. Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137

    Article  PubMed  CAS  Google Scholar 

  47. Flad T, Bogumil R, Tolson J, Schittek B, Garbe C, Deeg M, Mueller CA, Kalbacher H (2002) Detection of dermcidin-derived peptides in sweat by ProteinChip technology. J Immunol Methods 270:53–62

    PubMed  CAS  Google Scholar 

  48. Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, Gallo RL (2010) Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol 130:192–200

    Article  PubMed  CAS  Google Scholar 

  49. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    Article  PubMed  CAS  Google Scholar 

  50. Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM (1999) Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 67:6084–6089

    PubMed  CAS  Google Scholar 

  51. Morrison G, Kilanowski F, Davidson D, Dorin J (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70:3053–3060

    Article  PubMed  CAS  Google Scholar 

  52. Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Kluver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306:257–264

    Article  PubMed  CAS  Google Scholar 

  53. Menzies BE, Kenoyer A (2006) Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human beta-defensin 3 in skin keratinocytes. Infect Immun 74:6847–6854

    Article  PubMed  CAS  Google Scholar 

  54. Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77:451–459

    Article  PubMed  CAS  Google Scholar 

  55. Gallo RL, Murakami M, Ohtake T, Zaiou M (2002) Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol 110:823–831

    Article  PubMed  CAS  Google Scholar 

  56. Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14:421–426

    Article  PubMed  CAS  Google Scholar 

  57. Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111:273–281

    Article  PubMed  CAS  Google Scholar 

  58. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  59. Soruri A, Grigat J, Forssmann U, Riggert J, Zwirner J (2007) beta-Defensins chemoattract macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved. Eur J Immunol 37:2474–2486

    Article  PubMed  CAS  Google Scholar 

  60. Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H (2005) The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol 175:1776–1784

    PubMed  CAS  Google Scholar 

  61. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604

    Article  PubMed  CAS  Google Scholar 

  62. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029

    Article  PubMed  CAS  Google Scholar 

  63. De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  Google Scholar 

  64. Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol 174:6257–6265

    PubMed  CAS  Google Scholar 

  65. Di Nardo A, Vitiello A, Gallo RL (2003) Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol 170:2274–2278

    PubMed  CAS  Google Scholar 

  66. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146–1156

    PubMed  CAS  Google Scholar 

  67. Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2007) Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol 157:1124–1131

    Article  PubMed  CAS  Google Scholar 

  68. Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106:20–26

    Article  PubMed  CAS  Google Scholar 

  69. Kandler K, Shaykhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C, Bals R (2006) The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol 18:1729–1736

    Article  PubMed  CAS  Google Scholar 

  70. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176:2455–2464

    PubMed  CAS  Google Scholar 

  71. Mookherjee N, Wilson HL, Doria S, Popowych Y, Falsafi R, Yu JJ, Li Y, Veatch S, Roche FM, Brown KL, Brinkman FS, Hokamp K, Potter A, Babiuk LA, Griebel PJ, Hancock RE (2006) Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. J Leukoc Biol 80:1563–1574

    Article  PubMed  CAS  Google Scholar 

  72. Di Nardo A, Braff MH, Taylor KR, Na C, Granstein RD, McInturff JE, Krutzik S, Modlin RL, Gallo RL (2007) Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J Immunol 178:1829–1834

    PubMed  CAS  Google Scholar 

  73. Morioka Y, Yamasaki K, Leung D, Gallo RL (2008) Cathelicidin antimicrobial peptides inhibit hyaluronan-induced cytokine release and modulate chronic allergic dermatitis. J Immunol 181:3915–3922

    PubMed  CAS  Google Scholar 

  74. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    Article  PubMed  CAS  Google Scholar 

  75. Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, Garbe C, Schittek B (2005) Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol 174:8003–8010

    PubMed  CAS  Google Scholar 

  76. Leung DY (2003) Infection in atopic dermatitis. Curr Opin Pediatr 15:399–404

    Article  PubMed  Google Scholar 

  77. Machura E, Mazur B, Golemiec E, Pindel M, Halkiewicz F (2008) Staphylococcus aureus skin colonization in atopic dermatitis children is associated with decreased IFN-gamma production by peripheral blood CD4+ and CD8+ T cells. Pediatr Allergy Immunol 19:37–45

    PubMed  Google Scholar 

  78. Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DY (2006) Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 24:341–348

    Article  PubMed  CAS  Google Scholar 

  79. Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE, Wong C, Pavicic T, Boguniewicz M, Leung DY (2006) Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 117:836–841

    Article  PubMed  CAS  Google Scholar 

  80. Wollenberg A, Wetzel S, Burgdorf WH, Haas J (2003) Viral infections in atopic dermatitis: pathogenic aspects and clinical management. J Allergy Clin Immunol 112:667–674

    Article  PubMed  Google Scholar 

  81. Howell MD, Novak N, Bieber T, Pastore S, Girolomoni G, Boguniewicz M, Streib J, Wong C, Gallo RL, Leung DY (2005) Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol 125:738–745

    Article  PubMed  CAS  Google Scholar 

  82. Homey B, Steinhoff M, Ruzicka T, Leung DY (2006) Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118:178–189

    Article  PubMed  CAS  Google Scholar 

  83. Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, Leung DY (2006) Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 121:332–338

    Article  PubMed  CAS  Google Scholar 

  84. Kaburagi Y, Shimada Y, Nagaoka T, Hasegawa M, Takehara K, Sato S (2001) Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis. Arch Dermatol Res 293:350–355

    Article  PubMed  CAS  Google Scholar 

  85. Campbell JJ, Butcher EC (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 12:336–341

    Article  PubMed  CAS  Google Scholar 

  86. Jeong CW, Ahn KS, Rho NK, Park YD, Lee DY, Lee JH, Lee ES, Yang JM (2003) Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy 33:1717–1724

    Article  PubMed  CAS  Google Scholar 

  87. Schwarz T (2008) 25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells. Photochem Photobiol 84:10–18

    Article  PubMed  CAS  Google Scholar 

  88. Lehmann B, Genehr T, Knuschke P, Pietzsch J, Meurer M (2001) UVB-induced conversion of 7-dehydrocholesterol to 1alpha, 25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J Invest Dermatol 117:1179–1185

    Article  PubMed  CAS  Google Scholar 

  89. Mallbris L, Edstrom DW, Sundblad L, Granath F, Stahle M (2005) UVB upregulates the antimicrobial protein hCAP18 mRNA in human skin. J Invest Dermatol 125:1072–1074

    PubMed  CAS  Google Scholar 

  90. Hata T (2010) History of eczema herpeticum is associated with the inability to induced HBD-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol 163:659–661

    Article  PubMed  CAS  Google Scholar 

  91. Nickoloff BJ, Nestle FO (2004) Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest 113:1664–1675

    PubMed  CAS  Google Scholar 

  92. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PC, Traupe H, de Jongh G, den Heijer M, Reis A, Armour JA, Schalkwijk J (2008) Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 40:23–25

    Article  PubMed  CAS  Google Scholar 

  93. Huh WK, Oono T, Shirafuji Y, Akiyama H, Arata J, Sakaguchi M, Huh NH, Iwatsuki K (2002) Dynamic alteration of human beta-defensin 2 localization from cytoplasm to intercellular space in psoriatic skin. J Mol Med 80:678–684

    Article  PubMed  CAS  Google Scholar 

  94. Harder J, Schroder JM (2005) Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 77:476–486

    Article  PubMed  CAS  Google Scholar 

  95. Schauber J, Gallo RL (2009) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 124:R13–R18

    Article  PubMed  CAS  Google Scholar 

  96. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  PubMed  CAS  Google Scholar 

  97. Crawford GH, Pelle MT, James WD (2004) Rosacea: I. Etiology, pathogenesis, and subtype classification. J Am Acad Dermatol 51:327–341 (quiz 342–324)

    Article  PubMed  Google Scholar 

  98. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980

    Article  PubMed  CAS  Google Scholar 

  99. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    PubMed  CAS  Google Scholar 

  100. Jansen T, Krug S, Kind P, Plewig G, Messer G (2004) BsmI polymorphism of the vitamin D receptor gene in patients with the fulminant course of rosacea conglobata (Rosacea fulminans). J Dermatol 31:244–246

    PubMed  CAS  Google Scholar 

  101. Degitz K, Placzek M, Borelli C, Plewig G (2007) Pathophysiology of acne. J Dtsch Dermatol Ges 5:316–323

    Article  PubMed  Google Scholar 

  102. Toyoda M, Morohashi M (2001) Pathogenesis of acne. Med Electron Microsc 34:29–40

    Article  PubMed  CAS  Google Scholar 

  103. Philpott MP (2003) Defensins and acne. Mol Immunol 40:457–462

    Article  PubMed  CAS  Google Scholar 

  104. Oono T, Huh WK, Shirafuji Y, Akiyama H, Iwatsuki K (2003) Localization of human beta-defensin-2 and human neutrophil peptides in superficial folliculitis. Br J Dermatol 148:188–191

    Article  PubMed  CAS  Google Scholar 

  105. Gambichler T, Skrygan M, Huyn J, Bechara FG, Sand M, Altmeyer P, Kreuter A (2006) Pattern of mRNA expression of beta-defensins in basal cell carcinoma. BMC Cancer 6:163

    Article  PubMed  CAS  Google Scholar 

  106. Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117:91–97

    Article  PubMed  CAS  Google Scholar 

  107. Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120:379–389

    Article  PubMed  CAS  Google Scholar 

  108. Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Liden S, Jornvall H, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237:86–92

    Article  PubMed  CAS  Google Scholar 

  109. Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufano MA, Carriero MV (2009) Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 30:267–272

    Article  PubMed  CAS  Google Scholar 

  110. Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, Bernfield M (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91:11035–11039

    Article  PubMed  CAS  Google Scholar 

  111. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668

    PubMed  CAS  Google Scholar 

  112. Yin J, Yu FS (2010) LL-37 promotes high glucose-attenuated epithelial wound healing via EGFR transactivation in organ cultured corneas. Invest Ophthalmol Vis Sci 51:1891–1897

    Article  PubMed  Google Scholar 

  113. Carretero M, Escamez MJ, Garcia M, Duarte B, Holguin A, Retamosa L, Jorcano JL, Rio MD, Larcher F (2008) In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol 128:223–236

    Article  PubMed  CAS  Google Scholar 

  114. Park HJ, Cho DH, Kim HJ, Lee JY, Cho BK, Bang SI, Song SY, Yamasaki K, Di Nardo A, Gallo RL (2009) Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Invest Dermatol 129:843–850

    Article  PubMed  CAS  Google Scholar 

  115. Hirsch T, Spielmann M, Zuhaili B, Fossum M, Metzig M, Koehler T, Steinau HU, Yao F, Onderdonk AB, Steinstraesser L, Eriksson E (2009) Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 11:220–228

    Article  PubMed  CAS  Google Scholar 

  116. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  117. Steinstraesser L, Kraneburg UM, Hirsch T, Kesting M, Steinau HU, Jacobsen F, Al-Benna S (2009) Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int J Mol Sci 10:3951–3970

    Article  PubMed  CAS  Google Scholar 

  118. Liu L, Roberts AA, Ganz T (2003) By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J Immunol 170:575–580

    PubMed  CAS  Google Scholar 

  119. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  PubMed  CAS  Google Scholar 

  120. Cumberbatch M, Dearman RJ, Uribe-Luna S, Headon DR, Ward PP, Conneely OM, Kimber I (2000) Regulation of epidermal Langerhans cell migration by lactoferrin. Immunology 100:21–28

    Article  PubMed  CAS  Google Scholar 

  121. Marchini G, Lindow S, Brismar H, Stabi B, Berggren V, Ulfgren AK, Lonne-Rahm S, Agerberth B, Gudmundsson GH (2002) The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br J Dermatol 147:1127–1134

    Article  PubMed  CAS  Google Scholar 

  122. Wingens M, van Bergen BH, Hiemstra PS, Meis JF, van Vlijmen-Willems IM, Zeeuwen PL, Mulder J, Kramps HA, van Ruissen F, Schalkwijk J (1998) Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. J Invest Dermatol 111:996–1002

    Article  PubMed  CAS  Google Scholar 

  123. Simpson AJ, Maxwell AI, Govan JR, Haslett C, Sallenave JM (1999) Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett 452:309–313

    Article  PubMed  CAS  Google Scholar 

  124. Meyer-Hoffert U, Wichmann N, Schwichtenberg L, White PC, Wiedow O (2003) Supernatants of Pseudomonas aeruginosa induce the Pseudomonas-specific antibiotic elafin in human keratinocytes. Exp Dermatol 12:418–425

    Article  PubMed  CAS  Google Scholar 

  125. Cutuli M, Cristiani S, Lipton JM, Catania A (2000) Antimicrobial effects of alpha-MSH peptides. J Leukoc Biol 67:233–239

    PubMed  CAS  Google Scholar 

  126. Schauer E, Trautinger F, Kock A, Schwarz A, Bhardwaj R, Simon M, Ansel JC, Schwarz T, Luger TA (1994) Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J Clin Invest 93:2258–2262

    Article  PubMed  CAS  Google Scholar 

  127. Ali RS, Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG (2001) Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol 117:106–111

    Article  PubMed  CAS  Google Scholar 

  128. Oono T, Matsuura H, Morizane S, Yamasaki O, Iwatsuki K (2006) A case of infectious eccrine hidradenitis. J Dermatol 33:142–145

    Article  PubMed  Google Scholar 

  129. Chronnell CM, Ghali LR, Ali RS, Quinn AG, Holland DB, Bull JJ, Cunliffe WJ, McKay IA, Philpott MP, Muller-Rover S (2001) Human beta defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J Invest Dermatol 117:1120–1125

    Article  PubMed  CAS  Google Scholar 

  130. Harwig SS, Ganz T, Lehrer RI (1994) Neutrophil defensins: purification, characterization, and antimicrobial testing. Methods Enzymol 236:160–172

    Article  PubMed  CAS  Google Scholar 

  131. Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, Jirillo E (2002) Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 8:403–417

    PubMed  CAS  Google Scholar 

  132. Belaaouaj A, Kim KS, Shapiro SD (2000) Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 289:1185–1188

    Article  PubMed  CAS  Google Scholar 

  133. Tang YQ, Yeaman MR, Selsted ME (2002) Antimicrobial peptides from human platelets. Infect Immun 70:6524–6533

    Article  PubMed  CAS  Google Scholar 

  134. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melian A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Gallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, J.J., Gallo, R.L. Protecting the boundary: the sentinel role of host defense peptides in the skin. Cell. Mol. Life Sci. 68, 2189–2199 (2011). https://doi.org/10.1007/s00018-011-0712-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0712-8

Keywords

Navigation