Skip to main content
Log in

Dynamics of the interaction of γδ T cells with their neighbors in vivo

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

γδ T cells are a diverse component of the immune system in humans and mice with presumably important but still largely unknown functions. Understanding the dynamic interaction of γδ T cells with their neighbors should help to understand their physiological role. This review addresses recent advances and strategies to visualize the dynamic interactions of γδ T cells with their neighbors in vivo. Current knowledge regarding the dynamic contacts of tissue resident γδ T cells and epithelial cells, but also of the communication between circulating γδ T cells and DCs, monocytes and FoxP3+ regulatory T cells is revisited with emphasis on the role of γδ T cell motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pardoll DM, Fowlkes BJ, Bluestone JA, Kruisbeek A, Maloy WL, Coligan JE, Schwartz RH (1987) Differential expression of two distinct T-cell receptors during thymocyte development. Nature 326:79–81

    Article  PubMed  CAS  Google Scholar 

  2. Chen ZW Immune biology of Ag-specific γδ T cells in infections. Cell Mol Life Sci. doi:10.1007/s00018-011-0703-9

  3. Wesch D, Peters C, Oberg H-H, Pietschmann K, Kabelitz D Modulation of γδ T cell responses by TLR ligand. Cell Mol Life Sci. doi:10.1007/s00018-011-0699-1

  4. Capietto A-H, Martinet L, Fournié J-J How tumors might withstand γδ T-cell attack. Cell Mol Life Sci. doi:10.1007/s00018-011-0705-7

  5. Castella B, Vitale C, Coscia M, Massaia M Vγ9Vδ2 T cell-based immunotherapy in hematological malignancies: from bench to bedside. Cell Mol Life Sci. doi:10.1007/s00018-011-0704-8

  6. Toiyama Y, Mizoguchi A, Okugawa Y, Koike Y, Morimoto Y, Araki T, Uchida K, Tanaka K, Nakashima H, Hibi M et al (2010) Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy. J Gastroenterol 45:544–553

    Article  PubMed  Google Scholar 

  7. Gebert A, von Smolinski D, Blessenohl M, Schueth A, Orzekowsky-Schroeder R, Klinger A, Huettmann G (2009) WSB 15 – Leucocyte trafficking. In: 2nd European Congress of Immunology; European Journal of Immunology Wiley, Berlin, S583–S585

  8. Shires J, Theodoridis E, Hayday AC (2001) Biological insights into TCRgammadelta + and TCRalphabeta + intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15:419–434

    Article  PubMed  CAS  Google Scholar 

  9. Chennupati V, Worbs T, Liu X, Malinarich FH, Schmitz S, Haas JD, Malissen B, Forster R, Prinz I (2010) Intra- and intercompartmental movement of gammadelta T cells: intestinal intraepithelial and peripheral gammadelta T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J Immunol 185:5160–5168

    Article  PubMed  CAS  Google Scholar 

  10. Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M, Malissen B (2006) Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat Immunol 7:995–1003

    Article  PubMed  CAS  Google Scholar 

  11. Davodeau F, Difilippantonio M, Roldan E, Malissen M, Casanova JL, Couedel C, Morcet JF, Merkenschlager M, Nussenzweig A, Bonneville M et al (2001) The tight interallelic positional coincidence that distinguishes T-cell receptor Jalpha usage does not result from homologous chromosomal pairing during ValphaJalpha rearrangement. EMBO J 20:4717–4729

    Article  PubMed  CAS  Google Scholar 

  12. Boucontet L, Sepulveda N, Carneiro J, Pereira P (2005) Mechanisms controlling termination of V-J recombination at the TCRgamma locus: implications for allelic and isotypic exclusion of TCRgamma chains. J Immunol 174:3912–3919

    PubMed  CAS  Google Scholar 

  13. Sarukhan A, Garcia C, Lanoue A, von Boehmer H (1998) Allelic inclusion of T cell receptor alpha genes poses an autoimmune hazard due to low-level expression of autospecific receptors. Immunity 8:563–570

    Article  PubMed  CAS  Google Scholar 

  14. Sleckman BP, Khor B, Monroe R, Alt FW (1998) Assembly of productive T cell receptor delta variable region genes exhibits allelic inclusion. J Exp Med 188:1465–1471

    Article  PubMed  CAS  Google Scholar 

  15. Krangel MS (2009) Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol 21:133–139

    Article  PubMed  CAS  Google Scholar 

  16. Mombaerts P, Clarke AR, Rudnicki MA, Iacomini J, Itohara S, Lafaille JJ, Wang L, Ichikawa Y, Jaenisch R, Hooper ML et al (1992) Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360:225–231

    Article  PubMed  CAS  Google Scholar 

  17. Malinarich FH, Grabski E, Worbs T, Chennupati V, Haas JD, Schmitz S, Candia E, Quera R, Malissen B, Forster R et al (2010) Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial gammadelta T cells is functional in vivo. Eur J Immunol 40:3378–3388

    Article  PubMed  CAS  Google Scholar 

  18. Worbs T, Forster R (2009) T cell migration dynamics within lymph nodes during steady state: an overview of extracellular and intracellular factors influencing the basal intranodal T cell motility. Curr Top Microbiol Immunol 334:71–105

    Article  PubMed  CAS  Google Scholar 

  19. Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    Article  PubMed  CAS  Google Scholar 

  20. Jameson JM, Cauvi G, Witherden DA, Havran WL (2004) A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J Immunol 172:3573–3579

    PubMed  CAS  Google Scholar 

  21. Girardi M, Lewis JM, Filler RB, Hayday AC, Tigelaar RE (2006) Environmentally responsive and reversible regulation of epidermal barrier function by gammadelta T cells. J Invest Dermatol 126:808–814

    Article  PubMed  CAS  Google Scholar 

  22. Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, Havran WL (2002) A role for skin gammadelta T cells in wound repair. Science 296:747–749

    Article  PubMed  CAS  Google Scholar 

  23. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609

    Article  PubMed  CAS  Google Scholar 

  24. Tigelaar R, Nixon-Fulton J, Takashima A, Kuziel W, Takijiri C, Lewis J, Tucker P, Bergstresser P (1988) Effect of keratinocyte cytokines on Thy-1 + dendritic epidermal cells. Ann N Y Acad Sci 548:271–282

    Article  PubMed  CAS  Google Scholar 

  25. He W, Zhang Y, Deng Y, Kabelitz D (1995) Induction of TCR-gamma delta expression on triple-negative (CD3–4-8-) human thymocytes. Comparative analysis of the effects of IL-4 and IL-7. J Immunol 154:3726–3731

    PubMed  CAS  Google Scholar 

  26. He YW, Malek TR (1996) Interleukin-7 receptor alpha is essential for the development of gamma delta + T cells, but not natural killer cells. J Exp Med 184:289–293

    Article  PubMed  CAS  Google Scholar 

  27. Maki K, Sunaga S, Komagata Y, Kodaira Y, Mabuchi A, Karasuyama H, Yokomuro K, Miyazaki JI, Ikuta K (1996) Interleukin 7 receptor-deficient mice lack gammadelta T cells. Proc Natl Acad Sci USA 93:7172–7177

    Article  PubMed  CAS  Google Scholar 

  28. Kang J, Coles M, Raulet DH (1999) Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes. J Exp Med 190:973–982

    Article  PubMed  CAS  Google Scholar 

  29. Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET et al (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2:223–238

    Article  PubMed  CAS  Google Scholar 

  30. Zhao H, Nguyen H, Kang J (2005) Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gamma delta intestinal intraepithelial lymphocytes. Nat Immunol 6:1263–1271

    Article  PubMed  CAS  Google Scholar 

  31. Malissen M, Pereira P, Gerber DJ, Malissen B, DiSanto JP (1997) The common cytokine receptor gamma chain controls survival of gamma/delta T cells. J Exp Med 186:1277–1285

    Article  PubMed  CAS  Google Scholar 

  32. Laky K, Lefrancois L, Lingenheld EG, Ishikawa H, Lewis JM, Olson S, Suzuki K, Tigelaar RE, Puddington L (2000) Enterocyte expression of interleukin 7 induces development of gammadelta T cells and Peyer’s patches. J Exp Med 191:1569–1580

    Article  PubMed  CAS  Google Scholar 

  33. Takashima A, Matsue H, Bergstresser PR, Ariizumi K (1995) Interleukin-7-dependent interaction of dendritic epidermal T cells with keratinocytes. J Invest Dermatol 105:50S–53S

    Article  PubMed  CAS  Google Scholar 

  34. Matsue H, Bergstresser PR, Takashima A (1993) Keratinocyte-derived IL-7 serves as a growth factor for dendritic epidermal T cells in mice. J Immunol 151:6012–6019

    PubMed  CAS  Google Scholar 

  35. Edelbaum D, Mohamadzadeh M, Bergstresser PR, Sugamura K, Takashima A (1995) Interleukin (IL)-15 promotes the growth of murine epidermal gamma delta T cells by a mechanism involving the beta- and gamma c-chains of the IL-2 receptor. J Invest Dermatol 105:837–843

    Article  PubMed  CAS  Google Scholar 

  36. Inagaki-Ohara K, Nishimura H, Mitani A, Yoshikai Y (1997) Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing gamma delta T cell receptor in mice. Eur J Immunol 27:2885–2891

    Article  PubMed  CAS  Google Scholar 

  37. Shalapour S, Deiser K, Sercan O, Tuckermann J, Minnich K, Willimsky G, Blankenstein T, Hammerling GJ, Arnold B, Schuler T (2010) Commensal microflora and interferon-gamma promote steady-state interleukin-7 production in vivo. Eur J Immunol 40:2391–2400

    Article  PubMed  CAS  Google Scholar 

  38. Sharp LL, Jameson JM, Cauvi G, Havran WL (2005) Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol 6:73–79

    Article  PubMed  CAS  Google Scholar 

  39. Boismenu R, Feng L, Xia YY, Chang JC, Havran WL (1996) Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J Immunol 157:985–992

    PubMed  CAS  Google Scholar 

  40. Jameson JM, Cauvi G, Sharp LL, Witherden DA, Havran WL (2005) Gammadelta T cell-induced hyaluronan production by epithelial cells regulates inflammation. J Exp Med 201:1269–1279

    Article  PubMed  CAS  Google Scholar 

  41. Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE, Teyton L, Fischer WH, Wilson IA, Havran WL (2010) The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science 329:1205–1210

    Article  PubMed  CAS  Google Scholar 

  42. Strid J, Roberts SJ, Filler RB, Lewis JM, Kwong BY, Schpero W, Kaplan DH, Hayday AC, Girardi M (2008) Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat Immunol 9:146–154

    Article  PubMed  CAS  Google Scholar 

  43. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001

    Article  PubMed  CAS  Google Scholar 

  44. Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Forster R, Lutz MB, Sorokin L et al (2010) Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32:703–713

    Article  PubMed  CAS  Google Scholar 

  45. Konigshofer Y, Chien YH (2006) Gammadelta T cells—innate immune lymphocytes? Curr Opin Immunol 18:527–533

    Article  PubMed  CAS  Google Scholar 

  46. Brandes M, Willimann K, Lang AB, Nam KH, Jin C, Brenner MB, Morita CT, Moser B (2003) Flexible migration program regulates gamma delta T-cell involvement in humoral immunity. Blood 102:3693–3701

    Article  PubMed  CAS  Google Scholar 

  47. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R (2004) CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–288

    Article  PubMed  CAS  Google Scholar 

  48. Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B (2009) A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 5:e1000308

    Article  PubMed  Google Scholar 

  49. Nedellec S, Sabourin C, Bonneville M, Scotet E (2010) NKG2D costimulates human V gamma 9 V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol 185:55–63

    Article  PubMed  CAS  Google Scholar 

  50. Chen Y, Shao L, Ali Z, Cai J, Chen ZW (2008) NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal V{gamma}2 V{delta}2 T-cell expansion. Blood 111:4220–4232

    Article  PubMed  CAS  Google Scholar 

  51. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5:1243–1250

    Article  PubMed  CAS  Google Scholar 

  52. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330

    Article  PubMed  CAS  Google Scholar 

  53. Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M et al (2010) gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33:351–363

    Article  PubMed  CAS  Google Scholar 

  54. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950

    Article  PubMed  CAS  Google Scholar 

  55. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL et al (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120:1762–1773

    Article  PubMed  Google Scholar 

  56. Kunzmann V, Kimmel B, Herrmann T, Einsele H, Wilhelm M (2009) Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4 + CD25 + FoxP3 + regulatory T cells. Immunology 126:256–267

    Article  PubMed  CAS  Google Scholar 

  57. Goncalves-Sousa N, Ribot JC, de Barros A, Correia DV, Caramalho I, Silva-Santos B (2010) Inhibition of murine gammadelta lymphocyte expansion and effector function by regulatory alphabeta T cells is cell-contact-dependent and sensitive to GITR modulation. Eur J Immunol 40:61–70

    Article  PubMed  CAS  Google Scholar 

  58. Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS, Ghosh S (2010) T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity 33:791–803

    Article  PubMed  CAS  Google Scholar 

  59. Wan YY, Flavell RA (2005) Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 102:5126–5131

    Article  PubMed  CAS  Google Scholar 

  60. Stewart CA, Walzer T, Robbins SH, Malissen B, Vivier E, Prinz I (2007) Germ-line and rearranged Tcrd transcription distinguish bona fide NK cells and NK-like gammadelta T cells. Eur J Immunol 37:1442–1452

    Article  PubMed  CAS  Google Scholar 

  61. Bajenoff M, Breart B, Huang AY, Qi H, Cazareth J, Braud VM, Germain RN, Glaichenhaus N (2006) Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med 203:619–631

    Article  PubMed  CAS  Google Scholar 

  62. Garrod KR, Wei SH, Parker I, Cahalan MD (2007) Natural killer cells actively patrol peripheral lymph nodes forming stable conjugates to eliminate MHC-mismatched targets. Proc Natl Acad Sci USA 104:12081–12086

    Article  PubMed  CAS  Google Scholar 

  63. Garrod KR, Liu FC, Forrest LE, Parker I, Kang SM, Cahalan MD (2010) NK cell patrolling and elimination of donor-derived dendritic cells favor indirect alloreactivity. J Immunol 184:2329–2336

    Article  PubMed  CAS  Google Scholar 

  64. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523

    Article  PubMed  CAS  Google Scholar 

  65. Beuneu H, Deguine J, Breart B, Mandelboim O, Di Santo JP, Bousso P (2009) Dynamic behavior of NK cells during activation in lymph nodes. Blood 114:3227–3234

    Article  PubMed  CAS  Google Scholar 

  66. Deguine J, Breart B, Lemaitre F, Di Santo JP, Bousso P (2010) Intravital imaging reveals distinct dynamics for natural killer and CD8(+) T cells during tumor regression. Immunity 33:632–644

    Article  PubMed  CAS  Google Scholar 

  67. Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR (2005) Intravascular immune surveillance by CXCR6 + NKT cells patrolling liver sinusoids. PLoS Biol 3:e113

    Article  PubMed  Google Scholar 

  68. Azuara V, Levraud JP, Lembezat MP, Pereira P (1997) A novel subset of adult gamma delta thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell receptor repertoire. Eur J Immunol 27:544–553

    Article  PubMed  CAS  Google Scholar 

  69. Gerber DJ, Azuara V, Levraud JP, Huang SY, Lembezat MP, Pereira P (1999) IL-4-producing gamma delta T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J Immunol 163:3076–3082

    PubMed  CAS  Google Scholar 

  70. Wands JM, Roark CL, Aydintug MK, Jin N, Hahn YS, Cook L, Yin X, Dal Porto J, Lahn M, Hyde DM et al (2005) Distribution and leukocyte contacts of gammadelta T cells in the lung. J Leukoc Biol 78:1086–1096

    Article  PubMed  CAS  Google Scholar 

  71. Silva-Santos B, Pennington DJ, Hayday AC (2005) Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 307:925–928

    Article  PubMed  CAS  Google Scholar 

  72. Pennington DJ, Silva-Santos B, Shires J, Theodoridis E, Pollitt C, Wise EL, Tigelaar RE, Owen MJ, Hayday AC (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta + and alphabeta + cells. Nat Immunol 4:991–998

    Article  PubMed  CAS  Google Scholar 

  73. Jin Y, Xia M, Saylor CM, Narayan K, Kang J, Wiest DL, Wang Y, Xiong N (2010) Cutting edge: intrinsic programming of thymic {gamma}{delta}T Cells for specific peripheral tissue localization. J Immunol 185:7156–7160

    Article  PubMed  CAS  Google Scholar 

  74. Xiong N, Kang C, Raulet DH (2004) Positive selection of dendritic epidermal gammadelta T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 21:121–131

    Article  PubMed  CAS  Google Scholar 

  75. Ferrero I, Wilson A, Beermann F, Held W, MacDonald HR (2001) T cell receptor specificity is critical for the development of epidermal gammadelta T cells. J Exp Med 194:1473–1483

    Article  PubMed  CAS  Google Scholar 

  76. Lewis JM, Girardi M, Roberts SJ, Barbee SD, Hayday AC, Tigelaar RE (2006) Selection of the cutaneous intraepithelial gammadelta + T cell repertoire by a thymic stromal determinant. Nat Immunol 7:843–850

    Article  PubMed  CAS  Google Scholar 

  77. Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC, Tigelaar RE, Lifton RP (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40:656–662

    Article  PubMed  CAS  Google Scholar 

  78. Xia M, Qi Q, Jin Y, Wiest DL, August A, Xiong N (2010) Differential roles of IL-2-inducible T cell kinase-mediated TCR signals in tissue-specific localization and maintenance of skin intraepithelial T cells. J Immunol 184:6807–6814

    Article  PubMed  CAS  Google Scholar 

  79. Jiang X, Campbell JJ, Kupper TS (2010) Embryonic trafficking of gammadelta T cells to skin is dependent on E/P selectin ligands and CCR4. Proc Natl Acad Sci USA 107:7443–7448

    Article  PubMed  CAS  Google Scholar 

  80. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  81. Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10:479–489

    Article  PubMed  CAS  Google Scholar 

  82. Haas JD, Gonzalez FH, Schmitz S, Chennupati V, Fohse L, Kremmer E, Forster R, Prinz I (2009) CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Eur J Immunol 39:3488–3497

    Article  PubMed  CAS  Google Scholar 

  83. Riol-Blanco L, Lazarevic V, Awasthi A, Mitsdoerffer M, Wilson BS, Croxford A, Waisman A, Kuchroo VK, Glimcher LH, Oukka M (2010) IL-23 receptor regulates unconventional IL-17-producing T cells that control bacterial infections. J Immunol 184:1710–1720

    Article  PubMed  CAS  Google Scholar 

  84. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

    Article  PubMed  CAS  Google Scholar 

  85. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  PubMed  CAS  Google Scholar 

  86. Koenecke C, Chennupati V, Schmitz S, Malissen B, Forster R, Prinz I (2009) In vivo application of mAb directed against the gammadelta TCR does not deplete but generates “invisible” gammadelta T cells. Eur J Immunol 39:372–379

    Article  PubMed  CAS  Google Scholar 

  87. Siffrin V, Radbruch H, Glumm R, Niesner R, Paterka M, Herz J, Leuenberger T, Lehmann SM, Luenstedt S, Rinnenthal JL et al (2010) In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33:424–436

    Article  PubMed  CAS  Google Scholar 

  88. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    Article  PubMed  CAS  Google Scholar 

  89. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Tim Worbs, Andreas Krueger and Vijaykumar Chennupati for helpful discussions and for carefully reading the MS. The group of I.P. is supported by the Deutsche Forschungsgemeinschaft, Grant SFB621-A14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immo Prinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prinz, I. Dynamics of the interaction of γδ T cells with their neighbors in vivo. Cell. Mol. Life Sci. 68, 2391–2398 (2011). https://doi.org/10.1007/s00018-011-0701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0701-y

Keywords

Navigation