Skip to main content
Log in

Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278)

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

To better understand T lymphocyte costimulation by inducible costimulator (ICOS; H4; CD278), we analyzed proteins binding to ICOS peptides phosphorylated at the Y191MFM motif. Phosphorylated ICOS binds class IA phosphatidyl inositol 3-kinase (PI3-K) p85α, p50-55α and p85β regulatory subunits and p110α, p110δ and p110β catalytic subunits. Intriguingly, T cells expressed high levels of both p110α or p110δ catalytic subunits, yet ICOS peptides, cell surface ICOS or PI3-kinase class IA regulatory subunits preferentially coprecipitated p110α catalytic subunits. Silencing p110α or p110δ partially inhibited Akt/PKB activation induced by anti-CD3 plus anti-ICOS antibodies. However, silencing p110α enhanced and silencing p110δ inhibited Erk activation. Both p110α- and p110δ-specific inhibitors blocked cytokine secretion induced by TCR/CD3 activation with or without ICOS costimulus, but only p110α inhibitors blocked ICOS-induced cell elongation. Thus, p110α and p110δ are essential to optimal T cell activation, but their abundance and activity differentially tune up distinct ICOS signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  PubMed  CAS  Google Scholar 

  2. Rudd CE, Schneider H (2003) Unifying concepts in CD28, ICOS and CTLA4 coreceptor signalling. Nat Rev Immunol 3:544–556

    Article  PubMed  CAS  Google Scholar 

  3. Redoglia V, Dianzani U, Rojo JM, Portolés P, Bragardo M, Wolff H, Buonfiglio D, Pileri A, Janeway CA Jr (1996) Characterization of H4: a murine T lymphocyte activation molecule functionally and physically associated with the CD3/TCR. Eur J Immunol 26:2781–2789

    Article  PubMed  CAS  Google Scholar 

  4. Buonfiglio D, Bragardo M, Bonissoni S, Redoglia V, Cauda R, Zupo S, Burgio VL, Wolff H, Franssila K, Gaidano G, Carbone A, Janeway CA Jr, Dianzani U (1999) Characterization of a novel human surface molecule selectively expressed by mature thymocytes, activated T cells and subsets of T cell lymphomas. Eur J Immunol 29:2863–2874

    Article  PubMed  CAS  Google Scholar 

  5. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    Article  PubMed  CAS  Google Scholar 

  6. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliot GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TM, Senaldi G (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832

    Article  PubMed  CAS  Google Scholar 

  7. Pagès F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidyl-inositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369:327–329

    Article  PubMed  Google Scholar 

  8. Prasad KVS, Cai Y-C, Raab M, Duckworth B, Cantley L, Shoelson SE, Rudd CE (1994) T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc Natl Acad Sci USA 91:2834–2838

    Article  PubMed  CAS  Google Scholar 

  9. Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Ngyen T, Burwell T, Schneider H, Gonzalo JA, Gosselin M, Owen LR, Rudd CE, Gutierrez-Ramos JC (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13:95–105

    Article  PubMed  CAS  Google Scholar 

  10. Feito MJ, Vaschetto R, Criado G, Sánchez A, Chiocchetti A, Jiménez-Periáñez A, Dianzani U, Portolés MP, Rojo JM (2003) Mechanisms of ICOS costimulation: effects on proximal TCR signals and MAP kinase pathways. Eur J Immunol 33:204–214

    Article  PubMed  CAS  Google Scholar 

  11. Fos C, Salles A, Lang V, Carrette F, Audebert S, Pastor S, Ghiotto M, Olive D, Bismuth G, Nunes JA (2008) ICOS ligation recruits the p50α PI3K regulatory subunit to the immunological synapse. J Immunol 181:1969–1977

    PubMed  CAS  Google Scholar 

  12. Zang X, Loke Pn, Kim J, Wojnoonski K, Kusdra L, Allison JP (2006) A genetic library screen for signaling proteins that interact with phosphorylated T cell costimulatory receptors. Genomics 88:841–845

    Article  PubMed  CAS  Google Scholar 

  13. Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL (2003) CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171:166–174

    PubMed  CAS  Google Scholar 

  14. Harada Y, Ohgai D, Watanabe R, Okano K, Koiwai O, Tanabe K, Toma H, Altman A, Abe R (2003) A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 197:257–262

    Article  PubMed  Google Scholar 

  15. Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, Gregson BP, June CH, Linsley PS (2002) Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA 99:11790–11795

    Article  PubMed  CAS  Google Scholar 

  16. Kim H-H, Tharayil M, Rudd CE (1998) Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J Biol Chem 273:296–301

    Article  PubMed  CAS  Google Scholar 

  17. Marengere LE, Okkenhaug K, Clavreul A, Couez D, Gibson S, Mills GB, Mak TW, Rottapel R (1997) The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28 [published erratum appears in J. Immunol. 1999 July 15;163(2):1092]. J Immunol 159: 3220–3229

    Google Scholar 

  18. Okkenhaug K, Rottapel R (1998) Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction. J Biol Chem 273:21194–21202

    Article  PubMed  CAS  Google Scholar 

  19. Alcazar I, Cortes I, Zaballos A, Hernandez C, Fruman DA, Barber DF, Carrera AC (2009) p85β phosphoinositide 3-kinase regulates CD28 coreceptor function. Blood 113:3198–3208

    Article  PubMed  CAS  Google Scholar 

  20. Arimura Y, Kato H, Dianzani U, Okamoto T, Kamekura S, Buonfiglio D, Miyoshi-Akiyama T, Uchiyama T, Yagi J (2001) A co-stimulatory molecule on activated T cells, H4/ICOS, delivers differential signals in T-helper cells and regulates their responses. Int Immunol 14:555–566

    Article  Google Scholar 

  21. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  PubMed  CAS  Google Scholar 

  22. Deane JA, Fruman DA (2004) Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 22:563–598

    Article  PubMed  CAS  Google Scholar 

  23. Fruman DA, Bismuth G (2009) Fine tuning the immune response with PI3K. Immunol Rev 228:253–272

    Article  PubMed  CAS  Google Scholar 

  24. Rommel C, Camps M, Ji H (2007) PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7:191–201

    Article  PubMed  CAS  Google Scholar 

  25. Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling: which way to target? Trends Pharmacol Sci 24:366–376

    Article  PubMed  CAS  Google Scholar 

  26. Okkenhaug K, Ali K, Vanhaesebroeck B (2007) Antigen receptor signalling: a distinctive role for the p110δ isoform of PI3K. Trends Immunol 28:80–87

    Article  PubMed  CAS  Google Scholar 

  27. Pons S, Asano T, Glasheen E, Miralpeix M, Zhang Y, Fisher TL, Myers MG Jr, Sun XJ, White MF (1995) The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol Cell Biol 15:4453–4465

    PubMed  CAS  Google Scholar 

  28. Deane JA, Kharas MG, Oak JS, Stiles LN, Luo J, Moore TI, Ji H, Rommel C, Cantley LC, Lane TE, Fruman DA (2007) T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling. Blood 109:2894–2902

    PubMed  CAS  Google Scholar 

  29. Graupera M, Guillermet-Guibert J, Foukas LC, Phng L-K, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J, Cutillas PR, Smith AJH, Ridley AJ, Ruhrberg C, Gerhardt H, Vanhaesebroeck B (2008) Angiogenesis selectively requires the p110α isoform of PI3 K to control endothelial cell migration. Nature 453:662–666

    Article  PubMed  CAS  Google Scholar 

  30. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2007) A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125:733–747

    Article  Google Scholar 

  31. Tsukamoto K, Hazeki K, Hoshi M, Nigorikawa K, Inoue N, Sasaki T, Hazeki O (2008) Critical roles of the p110β subtype of phosphoinositide 3-kinase in lipopolysaccharide-induced Akt activation and negative regulation of nitrite production in RAW 264.7 cells. J Immunol 180:2054–2061

    PubMed  CAS  Google Scholar 

  32. Leverrier Y, Okkenhaug K, Sawyer C, Bilancio A, Vanhaesebroeck B, Ridley AJ (2003) Class I phosphoinositide 3-kinase p110β is required for apoptotic cell and Fcγ receptor-mediated phagocytosis by macrophages. J Biol Chem 278:38437–38442

    Article  PubMed  CAS  Google Scholar 

  33. Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A, Humphries LA, Rawlings D, Reynolds H, Vigorito E, Turner M (2002) A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 196:753–763

    Article  PubMed  CAS  Google Scholar 

  34. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3 K, Akt, and mTOR. Proc Natl Acad Sci USA 105:7797–7802

    Article  PubMed  CAS  Google Scholar 

  35. Kurosu H, Maehama T, Okada T, Yamamoto T, Hoshino S-i, Fukui Y, Ui M, Hazeki O, Katada T (1997) Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J Biol Chem 272:24252–24256

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez-Viciana P, Sabatier C, McCormick F (2004) Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol 24:4943–4954

    Article  PubMed  CAS  Google Scholar 

  37. Delgado P, Cubelos B, Calleja E, Martinez-Martin N, Cipres A, Merida I, Bellas C, Bustelo XR, Alarcon B (2009) Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol 10:880–888

    Article  PubMed  CAS  Google Scholar 

  38. Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A, Meek S, Smith AJH, Okkenhaug K, Vanhaesebroeck B (2008) The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc Natl Acad Sci USA 105:8292–8297

    Article  PubMed  CAS  Google Scholar 

  39. Kurosu H, Katada T (2001) Association of phosphatidylinositol 3-kinase composed of p110β-catalytic and p85-regulatory subunits with the small GTPase Rab5. J Biochem 130:73–78

    PubMed  CAS  Google Scholar 

  40. Portolés P, Rojo J, Golby A, Bonneville M, Gromkowski S, Greenbaum L, Janeway CA Jr, Murphy DB, Bottomly K (1989) Monoclonal antibodies to murine CD3ε define distinct epitopes, one of which may interact with CD4 during T cell activation. J Immunol 142:4169–4175

    PubMed  Google Scholar 

  41. Springer T, Galfré G, Secher DS, Milstein C (1979) Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol 9:301–306

    Article  PubMed  CAS  Google Scholar 

  42. Ojeda G, Ronda M, Ballester S, Díez-Orejas R, Feito MJ, García-Albert L, Rojo JM, Portolés P (1995) A hyperreactive variant of a CD4+ T cell line is activated by syngeneic antigen presenting cells in the absence of antigen. Cell Immunol 164:265–278

    Article  PubMed  CAS  Google Scholar 

  43. Díez-Orejas R, Ballester S, Feito MJ, Ronda M, Ojeda G, Criado G, Portolés P, Rojo JM (1994) Genetic and immunochemical evidence for CD4-dependent association of p56lck with the αβ T-cell receptor (TCR): regulation of TCR-induced activation. EMBO J 13:90–99

    PubMed  Google Scholar 

  44. Kaye J, Porcelli S, Tite J, Jones B, Janeway CA Jr (1983) Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med 158:836–856

    Article  PubMed  CAS  Google Scholar 

  45. Bello R, Feito MJ, Ojeda G, Portolés P, Rojo JM (2007) Loss of N-terminal charged residues of mouse CD3ε chains generates isoforms modulating T cell receptor-mediated signals and T cell receptor-CD3 interactions. J Biol Chem 282:22324–22334

    Article  PubMed  CAS  Google Scholar 

  46. Bello R, Feito MJ, Ojeda G, Portolés P, Rojo JM (2009) N-terminal negatively charged residues in CD3ε chains as a phylogenetically conserved trait potentially yielding isoforms with different isoelectric points: Analysis of human CD3ε chains. Immunol Lett 126:8–15

    Article  PubMed  CAS  Google Scholar 

  47. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD (1997) p110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA 94:4330–4335

    Article  PubMed  CAS  Google Scholar 

  48. Soond DR, Bjorgo E, Moltu K, Dale VQ, Patton DT, Torgersen KM, Galleway F, Twomey B, Clark J, Gaston JSH, Tasken K, Bunyard P, Okkenhaug K (2010) PI3K p110δ regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 115:2203–2213

    Article  PubMed  CAS  Google Scholar 

  49. Rolf J, Bell SE, Kovesdi D, Janas ML, Soond DR, Webb LMC, Santinelli S, Saunders T, Hebeis B, Killeen N, Okkenhaug K, Turner M (2010) Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J Immunol 185:4042–4052

    Article  PubMed  CAS  Google Scholar 

  50. Okkenhaug K, Patton DT, Bilancio A, Garcon F, Rowan WC, Vanhaesebroeck B (2006) The p110δ isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol 177:5122–5128

    PubMed  CAS  Google Scholar 

  51. Nukada Y, Okamoto N, Konakahara S, Tezuka K, Ohashi K, Mizuno K, Tsuji T (2006) AILIM/ICOS-mediated elongation of activated T cells is regulated by both the PI3-kinase/Akt and Rho family cascade. Int Immunol 18:1815–1824

    Article  PubMed  CAS  Google Scholar 

  52. Franko JL, Levine AD (2009) Antigen-independent adhesion and cell spreading by inducible costimulator engagement inhibits T cell migration in a PI-3K-dependent manner. J Leukoc Biol 85:526–538

    Article  PubMed  CAS  Google Scholar 

  53. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  PubMed  CAS  Google Scholar 

  54. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998) Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18:1379–1387

    PubMed  CAS  Google Scholar 

  55. Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm Genome 13:169–172

    PubMed  CAS  Google Scholar 

  56. Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J Biol Chem 274:10963–10968

    Article  PubMed  CAS  Google Scholar 

  57. Jou S-T, Carpino N, Takahashi Y, Piekorz R, Chao J-R, Carpino N, Wang D, Ihle JN (2002) Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol Cell Biol 22:8580–8591

    Article  PubMed  CAS  Google Scholar 

  58. Ji H, Rintelen F, Waltzinger C, Bertschy Meier D, Bilancio A, Pearce W, Hirsch E, Wymann MP, Ruckle T, Camps M, Vanhaesebroeck B, Okkenhaug K, Rommel C (2007) Inactivation of PI3Kγ and PI3 Kδ distorts T-cell development and causes multiple organ inflammation. Blood 110:2940–2947

    Article  PubMed  CAS  Google Scholar 

  59. Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E, Rowan WC, Sancho S, Walker LSK, Vanhaesebroeck B, Okkenhaug K (2006) Cutting edge: the phosphoinositide 3-kinase p110δ is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177:6598–6602

    PubMed  CAS  Google Scholar 

  60. Waugh C, Sinclair L, Finlay D, Bayascas JR, Cantrell D (2009) Phosphoinositide (3, 4, 5)-triphosphate binding to phosphoinositide-dependent kinase 1 regulates a protein kinase B/Akt signaling threshold that dictates T-cell migration, not proliferation. Mol Cell Biol 29:5952–5962

    Article  PubMed  CAS  Google Scholar 

  61. Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, Zhu Y, Lutz M, Collins S, Dehoff M, Kang S, Whartenby K, Powell J, Leahy D, Worley PF (2008) NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 319:476–481

    Article  PubMed  CAS  Google Scholar 

  62. Nirula A, Ho M, Phee H, Roose J, Weiss A (2006) Phosphoinositide-dependent kinase 1 targets protein kinase A in a pathway that regulates interleukin 4. J Exp Med 203:1733–1744

    Article  PubMed  CAS  Google Scholar 

  63. Kroczek RA, Mages HW, Hutloff A (2004) Emerging paradigms of T-cell co-stimulation. Curr Opinion Immunol 16:321–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The skillful technical assistance of Maria Luisa del Pozo and Marta Blanco-Berrocal is gratefully acknowledged. Y.Y.A. is the recipient of a Predoctoral Fellowship of the “Junta de Ampliación de Estudios” (JAE) Program (C.S.I.C., Ministerio de Ciencia e Innovación, Spain). P.P. is a Tenured Sciencist of C.S.I.C. at the Centro Nacional de Microbiología, I.S.: Carlos III. This work was supported by grants PI070620 and PI070484 (Fondo de Investigación Sanitaria, Ministerio de Ciencia e Innovación, Spain) and by AIRC (Milan) (to U.D.).

Conflict of interest

The authors declare no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Rojo.

Additional information

Y. Y. Acosta and M. P. Zafra contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, Y.Y., Zafra, M.P., Ojeda, G. et al. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell. Mol. Life Sci. 68, 3065–3079 (2011). https://doi.org/10.1007/s00018-010-0606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0606-1

Keywords

Navigation