Skip to main content

Advertisement

Log in

The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

This study examined the role of Rab5a GTPase in regulating hCG-induced internalization and trafficking of the hCG-LH receptor complex in transfected 293T cells. Coexpression of wild-type Rab5a (WT) or constitutively active Rab5a (Q79L) with LHR significantly increased hCG-induced LHR internalization. Conversely, coexpression of dominant negative Rab5a (S34N) with LHR reduced internalization. Confocal microscopy showed LHR colocalizing with Rab5a (WT) and Rab5a (Q79L) in punctuate structures. Coexpression of Rab5a (WT) and Rab5a (Q79L) with LHR significantly increased colocalization of LHR in early endosomes. Conversely, dominant negative Rab5a (S34N) decreased this colocalization. While Rab5a stimulated internalization of LHR, it significantly decreased LHR recycling to the cell surface and increased degradation. Dominant negative Rab5a (S34N) increased LHR recycling and decreased degradation. These results suggest that Rab5a plays a role in LHR trafficking by facilitating internalization and fusion to early endosomes, increasing the degradation of internalized receptor resulting in a reduction in LHR recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ascoli M, Fanelli F, Segaloff DL (2002) The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 23:141–174

    Article  PubMed  CAS  Google Scholar 

  2. Menon KM, Clouser CL, Nair AK (2005) Gonadotropin receptors: role of post-translational modifications and post-transcriptional regulation. Endocrine 26:249–257

    Article  PubMed  CAS  Google Scholar 

  3. Menon KM, Munshi UM, Clouser CL, Nair AK (2004) Regulation of luteinizing hormone/human chorionic gonadotropin receptor expression: a perspective. Biol Reprod 70:861–866

    Article  PubMed  CAS  Google Scholar 

  4. Baratti-Elbaz C, Chinea N, Lahuna O, Lo-osfelt H, Pichon C, Milgrom E (1999) Internalization and recycling pathways of the thyrotropin receptor. Mol Endocrinol 13:1751–1765

    Article  PubMed  CAS  Google Scholar 

  5. Nakamura K, Liu X, Ascoli M (2000) Seven non-contiguous intracellular residues of the lutropin/choriogonadotropin receptor dictate the rate of agonist-induced internalization and its sensitivity to non-visual arrestins. J Biol Chem 275:241–247

    Article  PubMed  CAS  Google Scholar 

  6. Galet C, Ascoli M (2006) A constitutively active mutant of the human lutropin receptor (hLHR-L457R) escapes lysosomal targeting and degradation. Mol Endocrinol 20:2931–2945

    Article  PubMed  CAS  Google Scholar 

  7. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–1017

    Article  PubMed  CAS  Google Scholar 

  8. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci 103:11821–11827

    Article  PubMed  CAS  Google Scholar 

  9. Stenmark H (2009) Seeing is believing. Nat Rev Mol Cell Biol 10:582

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120:3905–3910

    Article  PubMed  CAS  Google Scholar 

  11. Somsel Rodman J, Wandinger-Ness A (2000) Rab GTPases coordinate endocytosis. J Cell Sci 113:183–192

    PubMed  Google Scholar 

  12. Li H, Li HF, Felder RA, Periasamy A, Jose PA (2008) Rab4 and Rab11 coordinately regulate the recycling of angiotensin II type I receptor as demonstrated by fluorescence resonance energy transfer microscopy. J Biomed Opt 13:031206

    Article  PubMed  Google Scholar 

  13. Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C (2010) Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 123:1480–1491

    Article  PubMed  CAS  Google Scholar 

  14. Seachrist JL, Laporte SA, Dale LB, Babwah AV, Caron MG, Anborgh PH, Ferguson SS (2002) Rab5 association with the angiotensin II type 1A receptor promotes Rab5 GTP binding and vesicular fusion. J Biol Chem 277:679–685

    Article  PubMed  CAS  Google Scholar 

  15. O’Keeffe MB, Reid HM, Kinsella BT (2008) Agonist-dependent internalization and trafficking of the human prostacyclin receptor: a direct role for Rab5a GTPase. Biochim Biophys Acta 1783:1914–1928

    Article  PubMed  Google Scholar 

  16. Hunker CM, Kruk I, Hall J, Giambini H, Veisaga ML, Barbieri MA (2006) Role of Rab5 in insulin receptor-mediated endocytosis and signaling. Arch Biochem Biophys 449:130–142

    Article  PubMed  CAS  Google Scholar 

  17. Conti F, Sertic S, Reversi A, Chini B (2009) Intracellular trafficking of the human oxytocin receptor: evidence of receptor recycling via a Rab4/Rab5 “short cycle”. Am J Physiol Endocrinol Metab 296:532–542

    Article  Google Scholar 

  18. Ding Q, Wang Z, Chen Y (2009) Endocytosis of adiponectin receptor 1 through a clathrin-and Rab5-dependent pathway. Cell Res 19:317–327

    Article  PubMed  CAS  Google Scholar 

  19. Iwata K, Ito K, Fukuzaki A, Inaki K, Haga T (1999) Dynamin and rab5 regulate GRK2-dependent internalization of dopamine D2 receptors. Eur J Biochem 263:596–602

    Article  PubMed  CAS  Google Scholar 

  20. Schmidlin F, Dery O, DeFea KO, Slice L, Patierno S, Sternini C, Grady EF, Bunnett NW (2001) Dynamin and Rab5a-dependent trafficking and signaling of the neurokinin 1 receptor. J Biol Chem 276:25427–25437

    Article  PubMed  CAS  Google Scholar 

  21. Dale LB, Seachrist JL, Babwah AV, Ferguson SS (2004) Regulation of angiotensin II type 1A receptor intracellular retention, degradation, and recycling by Rab5, Rab7, and Rab11 GTPases. J Biol Chem 279:13110–13118

    Article  PubMed  CAS  Google Scholar 

  22. Jopling HM, Odell AF, Hooper NM, Zachary IC, Walker JH, Ponnambalam S (2009) Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol 29:1119–1124

    Article  PubMed  CAS  Google Scholar 

  23. Munshi UM, Peegel H, Menon KM (2001) Palmitoylation of the luteinizing Hormone/human chorionic gonadotropin receptor regulates receptor interaction with the arrestin-mediated internalization pathway. Eur J Biochem 268:1631–1639

    Article  PubMed  CAS  Google Scholar 

  24. Bradbury FA, Menon KM (1999) Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized. Biochemistry 38:8703–8712

    Article  PubMed  CAS  Google Scholar 

  25. Kawate N, Menon KM (1994) Palmitoylation of luteinizing hormone/human choriogonadotropin receptors in transfected cells. Abolition of palmitoylation by mutation of Cys-621 and Cys-622 residues in the cytoplasmic tail increases ligand- induced internalization of the receptor. J Biol Chem 269:30651–30658

    PubMed  CAS  Google Scholar 

  26. Lazari MF, Liu X, Nakamura K, Benovic JL, Ascoli M (1999) Role of G protein-coupled receptor kinases on the agonist-induced phosphorylation and internalization of the follitropin receptor. Mol Endocrinol 13:866–878

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura K, Ascoli M (1999) A dileucine-based motif in the C-terminal tail of the lutropin/choriogonadotropin receptor inhibits endocytosis of the agonist-receptor complex. Mol Pharmacol 56:728–736

    PubMed  CAS  Google Scholar 

  28. Kishi M, Ascoli M (2000) The C-terminal tail of the rat lutropin/choriogonadotropin (CG) receptor independently modulates human (h)CG-induced internalization of the cell surface receptor and the lysosomal targeting of the internalized hCG-receptor complex. Mol Endocrinol 14:926–936

    Article  PubMed  CAS  Google Scholar 

  29. Barbieri MA, Li G, Mayorga LS, Stahl PD (1996) Characterization of Rab5:Q79L-stimulated endosome fusion. Arch Biochem Biophys 326:64–72

    Article  PubMed  CAS  Google Scholar 

  30. Stenmark H, Parton RG, Steele-Mortimer O, Lütcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296

    PubMed  CAS  Google Scholar 

  31. Munshi UM, Clouser CL, Peegel H, Menon KM (2005) Evidence that palmitoylation of carboxyl terminus cysteine residues of the human luteinizing hormone receptor regulates postendocytic processing. Mol Endocrinol 19:749–758

    Article  PubMed  CAS  Google Scholar 

  32. Laifenfeld D, Patzek LJ, McPhie DL, Chen Y, Levites Y, Cataldo AM, Neve RL (2007) Rab5 mediates an amyloid precursor protein signaling pathway that leads to apoptosis. J Neurosci 27:7141–7153

    Article  PubMed  CAS  Google Scholar 

  33. Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7:897–908

    Article  PubMed  CAS  Google Scholar 

  34. Nair AK, Menon KM (2005) Regulation of luteinizing hormone receptor expression: evidence of translational suppression in vitro by a hormonally regulated mRNA-binding protein and its endogenous association with luteinizing hormone receptor mRNA in the ovary. J Biol Chem 280:42809–42816

    Article  PubMed  CAS  Google Scholar 

  35. Chen PI, Kong C, Su X, Stahl PD (2009) Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors. J Biol Chem 284:30328–30338

    Article  PubMed  CAS  Google Scholar 

  36. Holmes KD, Babwah AV, Dale LB, Poulter MO, Ferguson SS (2006) Differential regulation of corticotropin releasing factor 1alpha receptor endocytosis and trafficking by beta-arrestins and Rab GTPases. J Neurochem 96:934–949

    Article  PubMed  CAS  Google Scholar 

  37. Hirota Y, Kuronita T, Fujita H, Tanaka Y (2007) A role for Rab5 activity in the biogenesis of endosomal and lysosomal compartments. Biochem Biophys Res Commun 364:40–47

    Article  PubMed  CAS  Google Scholar 

  38. Seachrist JL, Anborgh PH, Ferguson SS (2000) beta 2-adrenergic receptor internalization, endosomal sorting, and plasma membrane recycling are regulated by rab GTPases. J Biol Chem 275:27221–27228

    PubMed  CAS  Google Scholar 

  39. Dinneen JL, Ceresa BP (2004) Continual expression of Rab5 (Q79L) causes a ligand-independent EGFR internalization and diminishes EGFR activity. Traffic 5:606–615

    Article  PubMed  CAS  Google Scholar 

  40. Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD (2009) Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J 28:3290–3302

    Article  PubMed  CAS  Google Scholar 

  41. Sonnichsen B, DeRenzis S, Nielson E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5 and Rab11. J Cell Biol 149:901–914

    Article  PubMed  CAS  Google Scholar 

  42. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    Article  PubMed  CAS  Google Scholar 

  43. Del Conte-Zerial P, Brusch L, Rink JC, Collinet C, Kalaidzidis Y, Zerial M, Deutsch A (2008) Membrane identity and GTPase cascades regulated by toggle and cut-out Switches. Mol Syst Biol 4:206

    Article  PubMed  Google Scholar 

  44. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141:497–508

    Article  PubMed  CAS  Google Scholar 

  45. Galet C, Min L, Narayanan R, Kishi M, Weigel NL, Ascoli M (2003) Identification of transferable two-amino-acid motif (gt) present in the c-terminal tail of the human lutropin receptor that redirects internalized g protein-coupled receptors from a degradation to a recycling pathway. Mol Endocrinol 17:411–422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant R37 HD06656. We are grateful to Helle Peegel and other members of the laboratory for critical reading of the manuscript and many helpful suggestions. The confocal microscopic studies described here utilized the Morphology and Image Analysis Core (MIAC) facility at the University of Michigan Diabetes Research and training center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. J. Menon.

Additional information

T. Gulappa and C. L. Clouser contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulappa, T., Clouser, C.L. & Menon, K.M.J. The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex. Cell. Mol. Life Sci. 68, 2785–2795 (2011). https://doi.org/10.1007/s00018-010-0594-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0594-1

Keywords

Navigation