Cellular and Molecular Life Sciences

, Volume 68, Issue 5, pp 765–783 | Cite as

Inflammasomes: current understanding and open questions

  • Franz Bauernfeind
  • Andrea Ablasser
  • Eva Bartok
  • Sarah Kim
  • Jonathan Schmid-Burgk
  • Taner Cavlar
  • Veit Hornung
Review

Abstract

The innate immune system relies on its capability to detect invading microbes, tissue damage, or stress via evolutionarily conserved receptors. The nucleotide-binding domain leucine-rich repeat (NLR)-containing family of pattern recognition receptors includes several proteins that drive inflammation in response to a wide variety of molecular patterns. In particular, the NLRs that participate in the formation of a molecular scaffold termed the “inflammasome” have been intensively studied in past years. Inflammasome activation by multiple types of tissue damage or by pathogen-associated signatures results in the autocatalytic cleavage of caspase-1 and ultimately leads to the processing and thus secretion of pro-inflammatory cytokines, most importantly interleukin (IL)-1β and IL-18. Here, we review the current knowledge of mechanisms leading to the activation of inflammasomes. In particular, we focus on the controversial molecular mechanisms that regulate NLRP3 signaling and highlight recent advancements in DNA sensing by the inflammasome receptor AIM2.

Keywords

NLR NLRP3 AIM2 Caspase-1 IL-1β AIM2 

References

  1. 1.
    Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333PubMedGoogle Scholar
  2. 2.
    Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, Ting JP (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 104:8041–8046PubMedGoogle Scholar
  3. 3.
    Ting JP et al (2008) The NLR gene family: a standard nomenclature. Immunity 28:285–287PubMedGoogle Scholar
  4. 4.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedGoogle Scholar
  5. 5.
    Faustin B et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724PubMedGoogle Scholar
  6. 6.
    Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244PubMedGoogle Scholar
  7. 7.
    Franchi L et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582PubMedGoogle Scholar
  8. 8.
    Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791PubMedGoogle Scholar
  9. 9.
    Allen IC et al (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565PubMedGoogle Scholar
  10. 10.
    Roberts TL et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–1060PubMedGoogle Scholar
  11. 11.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513PubMedGoogle Scholar
  12. 12.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518PubMedGoogle Scholar
  13. 13.
    Burckstummer T et al (2009) An orthogonal proteomic–genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272PubMedGoogle Scholar
  14. 14.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550PubMedGoogle Scholar
  15. 15.
    Wilson KP et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370:270–275PubMedGoogle Scholar
  16. 16.
    Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109PubMedGoogle Scholar
  17. 17.
    Andrei C, Margiocco P, Poggi A, Lotti LV, Torrisi MR, Rubartelli A (2004) Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: implications for inflammatory processes. Proc Natl Acad Sci USA 101:9745–9750PubMedGoogle Scholar
  18. 18.
    MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15:825–835PubMedGoogle Scholar
  19. 19.
    Qu Y, Franchi L, Nunez G, Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179:1913–1925PubMedGoogle Scholar
  20. 20.
    Puren AJ, Fantuzzi G, Dinarello CA (1999) Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA 96:2256–2261PubMedGoogle Scholar
  21. 21.
    Okamura H et al (1995) A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun 63:3966–3972PubMedGoogle Scholar
  22. 22.
    Schmitz J et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490PubMedGoogle Scholar
  23. 23.
    Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA 104:282–287PubMedGoogle Scholar
  24. 24.
    Cayrol C, Girard JP (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA 106:9021–9026PubMedGoogle Scholar
  25. 25.
    Talabot-Ayer D, Lamacchia C, Gabay C, Palmer G (2009) Interleukin-33 is biologically active independently of caspase-1 cleavage. J Biol Chem 284:19420–19426PubMedGoogle Scholar
  26. 26.
    Luthi AU et al (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31:84–98PubMedGoogle Scholar
  27. 27.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedGoogle Scholar
  28. 28.
    Bouchier-Hayes L, Martin SJ (2004) CARDINAL roles in apoptosis and NFkappaB activation. Vitam Horm 67:133–147PubMedGoogle Scholar
  29. 29.
    Fernandes-Alnemri T et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604PubMedGoogle Scholar
  30. 30.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325PubMedGoogle Scholar
  31. 31.
    Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A, Reed JC (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci USA 106:3935–3940PubMedGoogle Scholar
  32. 32.
    Bruey JM et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129:45–56PubMedGoogle Scholar
  33. 33.
    Hsu LC et al (2008) A NOD2–NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105:7803–7808PubMedGoogle Scholar
  34. 34.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872PubMedGoogle Scholar
  35. 35.
    Ferwerda G et al (2008) Engagement of NOD2 has a dual effect on proIL-1beta mRNA transcription and secretion of bioactive IL-1beta. Eur J Immunol 38:184–191PubMedGoogle Scholar
  36. 36.
    Banks DJ, Ward SC, Bradley KA (2006) New insights into the functions of anthrax toxin. Expert Rev Mol Med 8:1–18PubMedGoogle Scholar
  37. 37.
    Nour AM, Yeung YG, Santambrogio L, Boyden ED, Stanley ER, Brojatsch J (2009) Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infect Immun 77:1262–1271PubMedGoogle Scholar
  38. 38.
    Squires RC, Muehlbauer SM, Brojatsch J (2007) Proteasomes control caspase-1 activation in anthrax lethal toxin-mediated cell killing. J Biol Chem 282:34260–34267PubMedGoogle Scholar
  39. 39.
    Fink SL, Bergsbaken T, Cookson BT (2008) Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci USA 105:4312–4317PubMedGoogle Scholar
  40. 40.
    Wickliffe KE, Leppla SH, Moayeri M (2008) Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell Microbiol 10:332–343PubMedGoogle Scholar
  41. 41.
    Jin Y, Birlea SA, Fain PR, Spritz RA (2007) Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol 127:2558–2562PubMedGoogle Scholar
  42. 42.
    Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356:1216–1225PubMedGoogle Scholar
  43. 43.
    Tu CX, Gu JS, Lin XR (2003) Increased interleukin-6 and granulocyte-macrophage colony stimulating factor levels in the sera of patients with non-segmental vitiligo. J Dermatol Sci 31:73–78PubMedGoogle Scholar
  44. 44.
    Wagner RN, Proell M, Kufer TA, Schwarzenbacher R (2009) Evaluation of Nod-like receptor (NLR) effector domain interactions. PLoS One 4:e4931PubMedGoogle Scholar
  45. 45.
    Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES (2001) Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 276:28309–28313PubMedGoogle Scholar
  46. 46.
    Mariathasan S et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218PubMedGoogle Scholar
  47. 47.
    Zamboni DS et al (2006) The Birc 1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325PubMedGoogle Scholar
  48. 48.
    Suzuki T et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3:e111PubMedGoogle Scholar
  49. 49.
    Miao EA, Ernst RK, Dors M, Mao DP, Aderem A (2008) Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci USA 105:2562–2567PubMedGoogle Scholar
  50. 50.
    Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575PubMedGoogle Scholar
  51. 51.
    Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18PubMedGoogle Scholar
  52. 52.
    Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A (2008) Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180:7558–7564PubMedGoogle Scholar
  53. 53.
    Lightfield KL et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178PubMedGoogle Scholar
  54. 54.
    Lamkanfi M et al (2007) The Nod-like receptor family member Naip5/Birc 1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178:8022–8027PubMedGoogle Scholar
  55. 55.
    Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245PubMedGoogle Scholar
  56. 56.
    Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37:3030–3039PubMedGoogle Scholar
  57. 57.
    Miao EA and Warren SE (2010) Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome. J Clin Immunol 30:502–506Google Scholar
  58. 58.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305PubMedGoogle Scholar
  59. 59.
    Manji GA et al (2002) PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J Biol Chem 277:11570–11575PubMedGoogle Scholar
  60. 60.
    Kanneganti TD et al (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:36560–36568PubMedGoogle Scholar
  61. 61.
    Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A (2009) Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206:79–87PubMedGoogle Scholar
  62. 62.
    Thomas PG et al (2009) The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:566–575PubMedGoogle Scholar
  63. 63.
    Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107PubMedGoogle Scholar
  64. 64.
    Mariathasan S et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232PubMedGoogle Scholar
  65. 65.
    Meixenberger K et al (2010) Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3. J Immunol 184:922–930PubMedGoogle Scholar
  66. 66.
    Duncan JA et al (2009) Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol 182:6460–6469PubMedGoogle Scholar
  67. 67.
    Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581PubMedGoogle Scholar
  68. 68.
    Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497PubMedGoogle Scholar
  69. 69.
    Gross O et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436PubMedGoogle Scholar
  70. 70.
    Ichinohe T, Pang IK, Iwasaki A (2010) Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11:404–410PubMedGoogle Scholar
  71. 71.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082PubMedGoogle Scholar
  72. 72.
    Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589PubMedGoogle Scholar
  73. 73.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241PubMedGoogle Scholar
  74. 74.
    Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, Akira S, Rock KL (2006) MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116:2262–2271PubMedGoogle Scholar
  75. 75.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856PubMedGoogle Scholar
  76. 76.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677PubMedGoogle Scholar
  77. 77.
    Cassel SL et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040PubMedGoogle Scholar
  78. 78.
    Eisenbarth SC, Colegio OR, O′Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126PubMedGoogle Scholar
  79. 79.
    Kool M et al (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181:3755–3759PubMedGoogle Scholar
  80. 80.
    Dostert C et al (2009) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4:e6510PubMedGoogle Scholar
  81. 81.
    Reimer T et al (2010) Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome. Eur J Immunol 40(3):764–769Google Scholar
  82. 82.
    Shio MT et al (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5:e1000559PubMedGoogle Scholar
  83. 83.
    Griffith JW, Sun T, McIntosh MT, Bucala R (2009) Pure hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol 183:5208–5220PubMedGoogle Scholar
  84. 84.
    Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865PubMedGoogle Scholar
  85. 85.
    Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615PubMedGoogle Scholar
  86. 86.
    Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of toll-like receptor signaling. Immunity 26:433–443PubMedGoogle Scholar
  87. 87.
    Kanneganti TD et al (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236PubMedGoogle Scholar
  88. 88.
    Franchi L, Eigenbrod T, Nunez G (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183:792–796PubMedGoogle Scholar
  89. 89.
    Netea MG et al (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113:2324–2335PubMedGoogle Scholar
  90. 90.
    Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072PubMedGoogle Scholar
  91. 91.
    Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203PubMedGoogle Scholar
  92. 92.
    Arlehamn CS, Petrilli V, Gross O, Tschopp J, Evans TJ (2010) The role of potassium in inflammasome activation by bacteria. J Biol Chem 285:10508–10518PubMedGoogle Scholar
  93. 93.
    Poeck H et al (2010) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11:63–69PubMedGoogle Scholar
  94. 94.
    Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507–1516PubMedGoogle Scholar
  95. 95.
    Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282:2871–2879PubMedGoogle Scholar
  96. 96.
    Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187PubMedGoogle Scholar
  97. 97.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140PubMedGoogle Scholar
  98. 98.
    Pollock JD et al (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9:202–209PubMedGoogle Scholar
  99. 99.
    Duewell P et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361PubMedGoogle Scholar
  100. 100.
    Masters SL, Simon A, Aksentijevich I, Kastner DL (2009) Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 27:621–668PubMedGoogle Scholar
  101. 101.
    Feldmann J et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71:198–203PubMedGoogle Scholar
  102. 102.
    Neven B et al (2004) Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 103:2809–2815PubMedGoogle Scholar
  103. 103.
    Gattorno M et al (2007) Pattern of interleukin-1beta secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum 56:3138–3148PubMedGoogle Scholar
  104. 104.
    Yu JW et al (2006) Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ 13:236–249PubMedGoogle Scholar
  105. 105.
    Anderson JP, Mueller JL, Misaghi A, Anderson S, Sivagnanam M, Kolodner RD, Hoffman HM (2008) Initial description of the human NLRP3 promoter. Genes Immun 9:721–726PubMedGoogle Scholar
  106. 106.
    Pontillo A, Brandao LA, Guimaraes RL, Segat L, Athanasakis E and Crovella S (2010) A 3′ UTR SNP in NLRP3 gene is associated with susceptibility to HIV-1 infection. J Acquir Immune Defic Syndr 54:236–240Google Scholar
  107. 107.
    Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355:581–592PubMedGoogle Scholar
  108. 108.
    Yamamoto M et al (2004) ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells 9:1055–1067PubMedGoogle Scholar
  109. 109.
    Li P et al (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–411PubMedGoogle Scholar
  110. 110.
    Sutterwala FS et al (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327PubMedGoogle Scholar
  111. 111.
    De Gregorio E, Tritto E, Rappuoli R (2008) Alum adjuvanticity: unraveling a century old mystery. Eur J Immunol 38:2068–2071PubMedGoogle Scholar
  112. 112.
    Morefield GL, Sokolovska A, Jiang D, HogenEsch H, Robinson JP, Hem SL (2005) Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine 23:1588–1595PubMedGoogle Scholar
  113. 113.
    Jordan MB, Mills DM, Kappler J, Marrack P, Cambier JC (2004) Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304:1808–1810PubMedGoogle Scholar
  114. 114.
    Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938PubMedGoogle Scholar
  115. 115.
    Nemazee D, Gavin A, Hoebe K, Beutler B (2006) Immunology: toll-like receptors and antibody responses. Nature 441:E4; discussion E4Google Scholar
  116. 116.
    Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181:17–21PubMedGoogle Scholar
  117. 117.
    McKee AS, Munks MW, MacLeod MK, Fleenor CJ, Van Rooijen N, Kappler JW, Marrack P (2009) Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol 183:4403–4414PubMedGoogle Scholar
  118. 118.
    Franchi L, Nunez G (2008) The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol 38:2085–2089PubMedGoogle Scholar
  119. 119.
    Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178PubMedGoogle Scholar
  120. 120.
    Guarda G, Dostert C, Staehli F, Cabalzar K, Castillo R, Tardivel A, Schneider P, Tschopp J (2009) T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460:269–273PubMedGoogle Scholar
  121. 121.
    Hemmi H et al (2000) A toll-like receptor recognizes bacterial DNA. Nature 408:740–745PubMedGoogle Scholar
  122. 122.
    Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10:1065–1072PubMedGoogle Scholar
  123. 123.
    Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–505PubMedGoogle Scholar
  124. 124.
    Ishii KJ et al (2008) TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451:725–729PubMedGoogle Scholar
  125. 125.
    Hornung V, Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10:123–130PubMedGoogle Scholar
  126. 126.
    Landolfo S, Gariglio M, Gribaudo G, Lembo D (1998) The Ifi 200 genes: an emerging family of IFN-inducible genes. Biochimie 80:721–728PubMedGoogle Scholar
  127. 127.
    Ludlow LE, Johnstone RW, Clarke CJ (2005) The HIN-200 family: more than interferon-inducible genes? Exp Cell Res 308:1–17PubMedGoogle Scholar
  128. 128.
    Choubey D, Panchanathan R (2008) Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol Lett 119:32–41PubMedGoogle Scholar
  129. 129.
    Baechler EC et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 100:2610–2615PubMedGoogle Scholar
  130. 130.
    Fernandes-Alnemri T et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393PubMedGoogle Scholar
  131. 131.
    Rathinam VA et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402PubMedGoogle Scholar
  132. 132.
    Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, Latz E, Hornung V (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol 40:1545–1551PubMedGoogle Scholar
  133. 133.
    Koul D, Obeyesekere NU, Gutterman JU, Mills GB, Choubey D (1998) p202 self-associates through a sequence conserved among the members of the 200-family proteins. FEBS Lett 438:21–24PubMedGoogle Scholar
  134. 134.
    Wang L et al (2002) PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 277:29874–29880PubMedGoogle Scholar
  135. 135.
    Grenier JM et al (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 530:73–78PubMedGoogle Scholar
  136. 136.
    Harder J, Franchi L, Munoz-Planillo R, Park JH, Reimer T, Nunez G (2009) Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol 183:5823–5829PubMedGoogle Scholar
  137. 137.
    Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145PubMedGoogle Scholar
  138. 138.
    Munoz-Planillo R, Franchi L, Miller LS, Nunez G (2009) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 183:3942–3948PubMedGoogle Scholar
  139. 139.
    Sharp FA et al (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 106:870–875PubMedGoogle Scholar
  140. 140.
    Yamasaki K et al (2009) NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 284:12762–12771PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Franz Bauernfeind
    • 1
  • Andrea Ablasser
    • 1
  • Eva Bartok
    • 1
  • Sarah Kim
    • 1
  • Jonathan Schmid-Burgk
    • 1
  • Taner Cavlar
    • 1
  • Veit Hornung
    • 1
  1. 1.Unit for Clinical Biochemistry, Institute for Clinical Chemistry and Clinical PharmacologyUniversity Hospital, University of BonnBonnGermany

Personalised recommendations