Skip to main content

Advertisement

Log in

Apoptotic cell-derived factors induce arginase II expression in murine macrophages by activating ERK5/CREB

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apoptotic cell (AC)-derived factors alter the physiology of macrophages (MΦs) towards a regulatory phenotype, characterized by reduced nitric oxide (NO) production. Impaired NO formation in response to AC-conditioned medium (CM) was facilitated by arginase II (ARG II) expression, which competes with inducible NO synthase for l-arginine. Here we explored signaling pathways allowing CM to upregulate ARG II in RAW264.7 MΦs. Sphingosine-1-phosphate (S1P) was required and acted synergistically with a so far unidentified factor to elicit high ARG II expression. S1P activated S1P2, since S1P2 knockdown prevented ARG II upregulation. Furthermore, ERK5 knockdown attenuated CM-mediated ARG II protein induction. CREB was implicated as shown by EMSA analysis and decoy-oligonucleotides scavenging CREB in RAW264.7 MΦs, which blocked ARG II expression. We conclude that AC-derived S1P binds to S1P2 and acts synergistically with other factors to activate ERK5 and concomitantly CREB. This signaling cascade shapes an anti-inflammatory MΦ phenotype by ARG II induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AC:

Apoptotic cell

CM:

Apoptotic cell-conditioned medium

ARG II:

Arginase II

MΦ:

Macrophage

mpARG II:

Murine ARG II promoter

cAMP:

Cyclic adenosine monophosphate

CREB:

cAMP responsive element binding protein

CDase:

Ceramidase

CERK:

Ceramide kinase

SMase:

Sphingomyelinase

NO:

Nitric oxide

NOE:

n-oleoyl-ethanolamine

SK2:

Sphingosine kinase 2

S1P:

Sphingosine-1-phosphate

S1P2 :

S1P receptor 2

PGE2 :

Prostaglandin E2

ERK5:

Extracellular signal-regulated kinase 5

MEK5:

Mitogen-activated protein kinase kinase 5

C1P:

Ceramide-1-phosphate

Ab:

Antibody

References

  1. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958

    Article  PubMed  CAS  Google Scholar 

  2. Johann AM, Barra V, Kuhn AM, Weigert A, von Knethen A, Brune B (2007) Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. Faseb J 21:2704

    Article  PubMed  CAS  Google Scholar 

  3. Morris SM Jr (2004) Enzymes of arginine metabolism. J Nutr 134:2743S

    PubMed  CAS  Google Scholar 

  4. Gotoh T, Mori M (1999) Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J Cell Biol 144:427

    Article  PubMed  CAS  Google Scholar 

  5. Topal G, Brunet A, Walch L, Boucher JL, David-Dufilho M (2006) Mitochondrial arginase II modulates nitric-oxide synthesis through nonfreely exchangeable l-arginine pools in human endothelial cells. J Pharmacol Exp Ther 318:1368

    Article  PubMed  CAS  Google Scholar 

  6. Grody WW, Dizikes GJ, Cederbaum SD (1987) Human arginase isozymes. Isozymes Curr Top Biol Med Res 13:181

    PubMed  CAS  Google Scholar 

  7. Vockley JG, Jenkinson CP, Shukla H, Kern RM, Grody WW, Cederbaum SD (1996) Cloning and characterization of the human type II arginase gene. Genomics 38:118

    Article  PubMed  CAS  Google Scholar 

  8. Morris SM Jr, Kepka-Lenhart D, Chen LC (1998) Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am J Physiol 275:E740

    PubMed  Google Scholar 

  9. Barksdale AR, Bernard AC, Maley ME, Gellin GL, Kearney PA, Boulanger BR, Tsuei BJ, Ochoa JB (2004) Regulation of arginase expression by T-helper II cytokines and isoproterenol. Surgery 135:527

    Article  PubMed  Google Scholar 

  10. Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC (2004) Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. Faseb J 18:1746

    PubMed  CAS  Google Scholar 

  11. King NE, Rothenberg ME, Zimmermann N (2004) Arginine in asthma and lung inflammation. J Nutr 134:2830S

    PubMed  CAS  Google Scholar 

  12. Mumenthaler SM, Yu H, Tze S, Cederbaum SD, Pegg AE, Seligson DB, Grody WW (2008) Expression of arginase II in prostate cancer. Int J Oncol 32:357

    PubMed  CAS  Google Scholar 

  13. Rotondo R, Mastracci L, Piazza T, Barisione G, Fabbi M, Cassanello M, Costa R, Morandi B, Astigiano S, Cesario A, Sormani MP, Ferlazzo G, Grossi F, Ratto GB, Ferrini S, Frumento G (2008) Arginase 2 is expressed by human lung cancer, but it neither induces immune suppression, nor affects disease progression. Int J Cancer 123:1108

    Article  PubMed  CAS  Google Scholar 

  14. Tate DJ Jr, Vonderhaar DJ, Caldas YA, Metoyer T, Patterson JRt, Aviles DH, Zea AH (2008) Effect of arginase II on l-arginine depletion and cell growth in murine cell lines of renal cell carcinoma. J Hematol Oncol 1:14

    Article  PubMed  Google Scholar 

  15. Porembska Z, Luboinski G, Chrzanowska A, Mielczarek M, Magnuska J, Baranczyk-Kuzma A (2003) Arginase in patients with breast cancer. Clin Chim Acta 328:105

    Article  PubMed  CAS  Google Scholar 

  16. Grandvaux N, Gaboriau F, Harris J, tenOever BR, Lin R, Hiscott J (2005) Regulation of arginase II by interferon regulatory factor 3 and the involvement of polyamines in the antiviral response. Febs J 272:3120

    Article  PubMed  CAS  Google Scholar 

  17. Corraliza I, Moncada S (2002) Increased expression of arginase II in patients with different forms of arthritis. Implications of the regulation of nitric oxide. J Rheumatol 29:2261

    PubMed  CAS  Google Scholar 

  18. Marathe C, Bradley MN, Hong C, Lopez F, Ruiz de Galarreta CM, Tontonoz P, Castrillo A (2006) The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. J Biol Chem 281:32197

    Article  PubMed  CAS  Google Scholar 

  19. Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brune B (2006) Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood 108:1635

    Article  PubMed  CAS  Google Scholar 

  20. Weigert A, Tzieply N, von Knethen A, Johann AM, Schmidt H, Geisslinger G, Brune B (2007) Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol Biol Cell 18:3810

    Article  PubMed  CAS  Google Scholar 

  21. Johann AM, Weigert A, Eberhardt W, Kuhn AM, Barra V, von Knethen A, Pfeilschifter JM, Brune B (2008) Apoptotic cell-derived sphingosine-1-phosphate promotes HuR-dependent cyclooxygenase-2 mRNA stabilization and protein expression. J Immunol 180:1239

    PubMed  CAS  Google Scholar 

  22. Von Knethen AA, Brune B (2001) Delayed activation of PPARgamma by LPS and IFN-gamma attenuates the oxidative burst in macrophages. Faseb J 15:535

    Article  Google Scholar 

  23. von Knethen A, Lotero A, Brune B (1998) Etoposide and cisplatin induced apoptosis in activated RAW 264.7 macrophages is attenuated by cAMP-induced gene expression. Oncogene 17:387

    Article  Google Scholar 

  24. Morimoto H, Kondoh K, Nishimoto S, Terasawa K, Nishida E (2007) Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. J Biol Chem 282:35449

    Article  PubMed  CAS  Google Scholar 

  25. Terasawa K, Okazaki K, Nishida E (2003) Regulation of c-Fos and Fra-1 by the MEK5-ERK5 pathway. Genes Cells 8:263

    Article  PubMed  CAS  Google Scholar 

  26. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717

    Article  PubMed  CAS  Google Scholar 

  27. Goetzl EJ, Wang W, McGiffert C, Huang MC, Graler MH (2004) Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system. J Cell Biochem 92:1104

    Article  PubMed  CAS  Google Scholar 

  28. Hughes JE, Srinivasan S, Lynch KR, Proia RL, Ferdek P, Hedrick CC (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 102:950

    Article  PubMed  CAS  Google Scholar 

  29. Zhao C, Fernandes MJ, Turgeon M, Tancrede S, Di Battista J, Poubelle PE, Bourgoin SG (2008) Specific and overlapping sphingosine-1-phosphate receptor functions in human synoviocytes: impact of TNF-alpha. J Lipid Res 49:2323

    Article  PubMed  CAS  Google Scholar 

  30. Balthasar S, Bergelin N, Lof C, Vainio M, Andersson S, Tornquist K (2008) Interactions between sphingosine-1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid carcinoma cells. Endocr Relat Cancer 15:521

    Article  PubMed  CAS  Google Scholar 

  31. Herr B, Zhou J, Werno C, Menrad H, Namgaladze D, Weigert A, Dehne N, Brune B (2009) The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor-1alpha in macrophages via sphingosine-1-phosphate and transforming growth factor-beta. Blood 114:2140

    Article  PubMed  CAS  Google Scholar 

  32. Mathieson FA, Nixon GF (2006) Sphingolipids differentially regulate mitogen-activated protein kinases and intracellular Ca2+ in vascular smooth muscle: effects on CREB activation. Br J Pharmacol 147:351

    Article  PubMed  CAS  Google Scholar 

  33. Kluk MJ, Hla T (2002) Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 1582:72

    PubMed  CAS  Google Scholar 

  34. Weis N, Weigert A, von Knethen A, Brune B (2009) Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol Biol Cell 20:1280

    Article  PubMed  Google Scholar 

  35. Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, Segal RA (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4:981

    Article  PubMed  CAS  Google Scholar 

  36. Sharma G, Goalstone ML (2005) Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis. Mol Cell Endocrinol 245:93

    Article  PubMed  CAS  Google Scholar 

  37. Meyer zu Heringdorf D, Lass H, Kuchar I, Lipinski M, Alemany R, Rumenapp U, Jakobs KH (2001) Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Eur J Pharmacol 414:145

    Article  PubMed  CAS  Google Scholar 

  38. Inoki I, Takuwa N, Sugimoto N, Yoshioka K, Takata S, Kaneko S, Takuwa Y (2006) Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor. Biochem Biophys Res Commun 346:293

    Article  PubMed  CAS  Google Scholar 

  39. Xu Y, Xiao YJ, Zhu K, Baudhuin LM, Lu J, Hong G, Kim KS, Cristina KL, Song L, Elson SWF,P, Markman M, Belinson J (2003) Unfolding the pathophysiological role of bioactive lysophospholipids. Curr Drug Targets Immune Endocr Metabol Disord 3:23

    Article  PubMed  CAS  Google Scholar 

  40. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139

    Article  PubMed  CAS  Google Scholar 

  41. Pettus BJ, Kitatani K, Chalfant CE, Taha TA, Kawamori T, Bielawski J, Obeid LM, Hannun YA (2005) The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol Pharmacol 68:330

    PubMed  CAS  Google Scholar 

  42. Igarashi Y, Kitamura K, Toyokuni T, Dean B, Fenderson B, Ogawass T, Hakomori S (1990) A specific enhancing effect of N, N-dimethylsphingosine on epidermal growth factor receptor autophosphorylation. Demonstration of its endogenous occurrence (and the virtual absence of unsubstituted sphingosine) in human epidermoid carcinoma A431 cells. J Biol Chem 265:5385

    PubMed  CAS  Google Scholar 

  43. Scapoli L, Ramos-Nino ME, Martinelli M, Mossman BT (2004) Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by asbestos. Oncogene 23:805

    Article  PubMed  CAS  Google Scholar 

  44. Jiang LI, Collins J, Davis R, Lin KM, DeCamp D, Roach T, Hsueh R, Rebres RA, Ross EM, Taussig R, Fraser I, Sternweis PC (2007) Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem 282:10576

    Article  PubMed  CAS  Google Scholar 

  45. Esparis-Ogando A, Diaz-Rodriguez E, Montero JC, Yuste L, Crespo P, Pandiella A (2002) Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol Cell Biol 22:270

    Article  PubMed  CAS  Google Scholar 

  46. McCracken SR, Ramsay A, Heer R, Mathers ME, Jenkins BL, Edwards J, Robson CN, Marquez R, Cohen P, Leung HY (2008) Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer. Oncogene 27:2978

    Article  PubMed  CAS  Google Scholar 

  47. Zhu W, Downey JS, Gu J, Di Padova F, Gram H, Han J (2000) Regulation of TNF expression by multiple mitogen-activated protein kinase pathways. J Immunol 164:6349

    PubMed  CAS  Google Scholar 

  48. Rovida E, Spinelli E, Sdelci S, Barbetti V, Morandi A, Giuntoli S, Dello Sbarba P (2008) ERK5/BMK1 is indispensable for optimal colony-stimulating factor 1 (CSF-1)-induced proliferation in macrophages in a Src-dependent fashion. J Immunol 180:4166

    PubMed  CAS  Google Scholar 

  49. Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YP, Eagle AR, Dunn SE, Awakuni JU, Nguyen KD, Steinman L, Michie SA, Chawla A (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15:1266

    Article  PubMed  CAS  Google Scholar 

  50. Woo CH, Massett MP, Shishido T, Itoh S, Ding B, McClain C, Che W, Vulapalli SR, Yan C, Abe J (2006) ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J Biol Chem 281:32164

    Article  PubMed  CAS  Google Scholar 

  51. Siehler S, Manning DR (2002) Pathways of transduction engaged by sphingosine 1-phosphate through G protein-coupled receptors. Biochim Biophys Acta 1582:94

    PubMed  CAS  Google Scholar 

  52. Fukuhara S, Marinissen MJ, Chiariello M, Gutkind JS (2000) Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Galpha q and Galpha 12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras AND Rho-independent pathway. J Biol Chem 275:21730

    Article  PubMed  CAS  Google Scholar 

  53. Hadizadeh S, King DN, Shah S, Sewer MB (2008) Sphingosine-1-phosphate regulates the expression of the liver receptor homologue-1. Mol Cell Endocrinol 283:104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Deutsche Forschungsgemeinschaft (Br 999, FOG 784, and Excellence Cluster Cardiopulmonary System), Sander Foundation and LOEWE/LiFF. We thank Prof. Eisuke Nishida (Kyoto University, Japan) for kindly providing pcDNA3-HA1-ERK5N, pcDNA3-FLAG1-MEK5 WT and pcDNA3-FLAG1-MEK5D expression plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Brüne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

. Pharmacological inhibition of SMase, CDase and CERK with GW4869, NOE and NVP231 did not interfere with staurosporine-mediated apoptosis of MCF-7 cells. MCF-7 cells were pre-incubated with 10 µM GW4869, 50 µM NOE or 0.2 µM NVP231 for 45 minutes before inducing apoptosis for 2.5 hours with staurosporine (sts) in FCS-free medium. Cell death was quantified by AnnexinV staining using FACS analysis (according to Lauber et al., Cell, Vol. 113, 717-730, 2003). Asterisk marks statistically significant differences. * p ≤ 0.05, n.s. (not significant), n ≥ 3 (JPEG 259 kb)

Supplemental Figure 2

. CM-M-dependent ARG II mRNA expression in RAW264.7 MΦs is mediated by S1P2. MΦs were incubated for 16 hours with CM-M with or without the S1P2 antagonist JTE013 (0.1 µM). The antagonist was pre-incubated for 45 minutes. ARG II mRNA expression was determined by quantitative real-time PCR. n = 4 (JPEG 210 kb)

Supplemental Figure 3

. ERK1/2 signaling does not mediated ARG II up-regulation by CM-M. RAW264.7 cells were incubated for 16 hours with CM-M with or without the specific ERK1/2 inhibitor PD98059 at the indicated concentrations. PD98059 was pre-incubated for 45 minutes. ARG II expression and ERK1/2 phosphorylation were determined by Western analysis. n ≥ 3 (JPEG 579 kb)

Supplemental Figure 4

. CM-M induces ERK5 phosphorylation in RAW264.7 MΦs. Cells were incubated with CM-M for indicated time periods. ERK5 phosphorylation was determined by Western analysis. n = 3 (JPEG 597 kb)

Supplemental Figure 5

. Sub-optimal concentrations of CM-J cannot be rescued by S1P to restore ARG II up-regulation. RAW264.7 cells were incubated for 16 hours with CM-J at a ratio of 5 ACs to 1 MΦ (5ACs:1MΦ) or 3 ACs to 1 MΦ (3ACs:1MΦ). CM-J (3ACs:1MΦ) was combined with the indicated concentrations of S1P. ARG II expression was determined by Western analysis. The graph shows quantification of ARG II expression. n ≥ 3 (JPEG 354 kb)

Supplemental Figure 6

. Physiological relevance of S1P2 signaling for ARG II expression in primary MΦs. Primary murine peritoneal MΦs from C57BL/6 mice were incubated for 16 hours with CM-M with or without the specific S1P2 antagonist JTE013 (10 µM). JTE013 was pre-incubated for 45 minutes. ARG II expression was determined by Western analysis. n = 3 (JPEG 404 kb)

Supplemental Figure 7

. Activation of adenylate cyclase with 100 µM forskolin induces ARG II expression in RAW264.7 MΦs. Cells were incubated for 16 hours with 100 µM forskolin. ARG II expression was determined by Western analysis. n = 3 (JPEG 366 kb)

Supplemental Figure 8

. RAW264.7 MΦs were stimulated for 16 hours with CM-M with or without the S1P2 antagonist JTE013 or the MEK inhibitor U0126 at the indicated concentration. Antagonists or inhibitors were pre-incubated for 45 minutes, followed by incubation with or without 100 U/ml IFNγ for 24 hours. The supernatants were harvested and nitrite levels determined by the Griess assay. iNOS expression was determined by Western analysis. n = 4 (JPEG 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barra, V., Kuhn, AM., von Knethen, A. et al. Apoptotic cell-derived factors induce arginase II expression in murine macrophages by activating ERK5/CREB. Cell. Mol. Life Sci. 68, 1815–1827 (2011). https://doi.org/10.1007/s00018-010-0537-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0537-x

Keywords

Navigation