Skip to main content

Advertisement

Log in

The ING family tumor suppressors: from structure to function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The INhibitor of Growth (ING) proteins belong to a well-conserved family which presents in diverse organisms with several structural and functional domains for each protein. The ING family members are found in association with many cellular processes. Thus, the ING family proteins are involved in regulation of gene transcription, DNA repair, tumorigenesis, apoptosis, cellular senescence and cell cycle arrest. The ING proteins have multiple domains that are potentially capable of binding to many partners. It is conceivable, therefore, that such proteins could function similarly within protein complexes. In this case, within this family, each function could be attributed to a specific domain. However, the role of ING domains is not definitively clear. In this review, we summarize recent advances in structure–function relationships in ING proteins. For each domain, we describe the known biological functions and the approaches utilized to identify the functions associated with ING proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Garkavtsev I, Kazarov A, Gudkov A, Riabowol K (1996) Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 14:415–420

    Article  CAS  PubMed  Google Scholar 

  2. Garkavtsev I, Demetrick D, Riabowol K (1997) Cellular localization and chromosome mapping of a novel candidate tumor suppressor gene (ING1). Cytogenet Cell Genet 76:176–178

    Article  CAS  PubMed  Google Scholar 

  3. Zeremski M, Horrigan SK, Grigorian IA, Westbrook CA, Gudkov AV (1997) Localization of the candidate tumor suppressor gene ING1 to human chromosome 13q34. Somat Cell Mol Genet 23:233–236

    Article  CAS  PubMed  Google Scholar 

  4. Garkavtsev II (1999) Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 23:373

    Article  CAS  PubMed  Google Scholar 

  5. Jager D, Stockert E, Scanlan MJ, Gure AO, Jager E, Knuth A, Old LJ, Chen YT (1999) Cancer-testis antigens and ING1 tumor suppressor gene product are breast cancer antigens: characterization of tissue-specific ING1 transcripts and a homologue gene. Cancer Res 59:6197–6204

    CAS  PubMed  Google Scholar 

  6. Gunduz M, Ouchida M, Fukushima K, Hanafusa H, Etani T, Nishioka S, Nishizaki K, Shimizu K (2000) Genomic structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas. Cancer Res 60:3143–3146

    CAS  PubMed  Google Scholar 

  7. Saito A, Furukawa T, Fukushige S, Koyama S, Hoshi M, Hayashi Y, Horii A (2000) p24/ING1-ALT1 and p47/ING1-ALT2, distinct alternative transcripts of p33/ING1. J Hum Genet 45:177–181

    Article  CAS  PubMed  Google Scholar 

  8. Cheung KJ Jr, Li G (2001) The tumor suppressor ING1: structure and function. Exp Cell Res 268:1–6

    Article  CAS  PubMed  Google Scholar 

  9. Wagner MJ, Helbing CC (2005) Multiple variants of the ING1 and ING2 tumor suppressors are differentially expressed and thyroid hormone-responsive in Xenopus laevis. Gen Comp Endocrinol 144:38–50

    Article  CAS  PubMed  Google Scholar 

  10. Unoki M, Shen JC, Zheng ZM, Harris CC (2006) Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J Biol Chem 281:34677–34686

    Article  CAS  PubMed  Google Scholar 

  11. Shimada Y, Saito A, Suzuki M, Takahashi E, Horie M (1998) Cloning of a novel gene (ING1L) homologous to ING1, a candidate tumor suppressor. Cytogenet Cell Genet 83:232–235

    Article  CAS  PubMed  Google Scholar 

  12. Nagashima M, Shiseki M, Pedeux RM, Okamura S, Kitahama-Shiseki M, Miura K, Yokota J, Harris CC (2003) A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene 22:343–350

    Article  CAS  PubMed  Google Scholar 

  13. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC (2003) p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 63:2373–2378

    CAS  PubMed  Google Scholar 

  14. Campos EI, Chin MY, Kuo WH, Li G (2004) Biological functions of the ING family tumor suppressors. Cell Mol Life Sci 61:2597–2613

    Article  CAS  PubMed  Google Scholar 

  15. Soliman MA, Riabowol K (2007) After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 32:509–519

    Article  CAS  PubMed  Google Scholar 

  16. Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A, DiFrancesco L, Forsyth P, Garkavtsev I, Kobayashi S, Riabowol K (1999) Suppression of ING1 expression in sporadic breast cancer. Oncogene 18:5187–5193

    Article  CAS  PubMed  Google Scholar 

  17. Ohmori M, Nagai M, Tasaka T, Koeffler HP, Toyama T, Riabowol K, Takahara J (1999) Decreased expression of p33ING1 mRNA in lymphoid malignancies. Am J Hematol 62:118–119

    Article  CAS  PubMed  Google Scholar 

  18. Oki E, Maehara Y, Tokunaga E, Kakeji Y, Sugimachi K (1999) Reduced expression of p33(ING1) and the relationship with p53 expression in human gastric cancer. Cancer Lett 147:157–162

    Article  CAS  PubMed  Google Scholar 

  19. Tokunaga E, Maehara Y, Oki E, Kitamura K, Kakeji Y, Ohno S, Sugimachi K (2000) Diminished expression of ING1 mRNA and the correlation with p53 expression in breast cancers. Cancer Lett 152:15–22

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Matsubara N, Yoshino T, Nagasaka T, Hoshizima N, Shirakawa Y, Naomoto Y, Isozaki H, Riabowol K, Tanaka N (2001) Genetic alterations of candidate tumor suppressor ING1 in human esophageal squamous cell cancer. Cancer Res 61:4345–4349

    CAS  PubMed  Google Scholar 

  21. Krishnamurthy J, Kannan K, Feng J, Mohanprasad BK, Tsuchida N, Shanmugam G (2001) Mutational analysis of the candidate tumor suppressor gene ING1 in Indian oral squamous cell carcinoma. Oral Oncol 37:222–224

    Article  CAS  PubMed  Google Scholar 

  22. Bromidge T, Lynas C (2002) Relative levels of alternative transcripts of the ING1 gene and lack of mutations of p33/ING1 in haematological malignancies. Leuk Res 26:631–635

    Article  CAS  PubMed  Google Scholar 

  23. Gunduz M, Ouchida M, Fukushima K, Ito S, Jitsumori Y, Nakashima T, Nagai N, Nishizaki K, Shimizu K (2002) Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene 21:4462–4470

    Article  CAS  PubMed  Google Scholar 

  24. Ito K, Kinjo K, Nakazato T, Ikeda Y, Kizaki M (2002) Expression and sequence analyses of p33(ING1) gene in myeloid leukemia. Am J Hematol 69:141–143

    Article  CAS  PubMed  Google Scholar 

  25. Nouman GS, Anderson JJ, Wood KM, Lunec J, Hall AG, Reid MM, Angus B (2002) Loss of nuclear expression of the p33(ING1b) inhibitor of growth protein in childhood acute lymphoblastic leukaemia. J Clin Pathol 55:596–601

    Article  CAS  PubMed  Google Scholar 

  26. Chen B, Campos EI, Crawford R, Martinka M, Li G (2003) Analyses of the tumour suppressor ING1 expression and gene mutation in human basal cell carcinoma. Int J Oncol 22:927–931

    PubMed  Google Scholar 

  27. Lu F, Dai DL, Martinka M, Ho V, Li G (2006) Nuclear ING2 expression is reduced in human cutaneous melanomas. Br J Cancer 95:80–86

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Dai DL, Martinka M, Li G (2007) Prognostic significance of nuclear ING3 expression in human cutaneous melanoma. Clin Cancer Res 13:4111–4116

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Martinka M, Li G (2008) Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis 29:1373–1379

    Article  PubMed  CAS  Google Scholar 

  30. Cheung KJ Jr, Li G (2002) p33(ING1) enhances UVB-induced apoptosis in melanoma cells. Exp Cell Res 279:291–298

    Article  CAS  PubMed  Google Scholar 

  31. Chin MY, Ng KC, Li G (2005) The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells. Exp Cell Res 304:531–543

    Article  CAS  PubMed  Google Scholar 

  32. Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H, Kumamoto K, Wincovitch S, Garfield SH, McMenamin M, Nagashima M, Grossman SR, Appella E, Harris CC (2005) ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol 25:6639–6648

    Article  CAS  PubMed  Google Scholar 

  33. Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, Villasenor J, Mehrotra B, Chen J, Rao VR, Brugge JS, Ferguson CG, Payrastre B, Myszka DG, Cantley LC, Wagner G, Divecha N, Prestwich GD, Yuan J (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114:99–111

    Article  CAS  PubMed  Google Scholar 

  34. Kim S, Chin K, Gray JW, Bishop JM (2004) A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci U S A 101:16251–16256

    Article  CAS  PubMed  Google Scholar 

  35. Shen JC, Unoki M, Ythier D, Duperray A, Varticovski L, Kumamoto K, Pedeux R, Harris CC (2007) Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1. Cancer Res 67:2552–2558

    Article  CAS  PubMed  Google Scholar 

  36. Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I (1997) A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Res 57:1255–1258

    CAS  PubMed  Google Scholar 

  37. Scott M, Boisvert FM, Vieyra D, Johnston RN, Bazett-Jones DP, Riabowol K (2001) UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Res 29:2052–2058

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Chin MY, Li G (2006) The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res 66:1906–1911

    Article  CAS  PubMed  Google Scholar 

  39. Kuo WH, Wang Y, Wong RP, Campos EI, Li G (2007) The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Exp Cell Res 313:1628–1638

    Article  CAS  PubMed  Google Scholar 

  40. Cheung KJ Jr, Mitchell D, Lin P, Li G (2001) The tumor suppressor candidate p33(ING1) mediates repair of UV-damaged DNA. Cancer Res 61:4974–4977

    CAS  PubMed  Google Scholar 

  41. Garkavtsev I, Riabowol K (1997) Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol Cell Biol 17:2014–2019

    CAS  PubMed  Google Scholar 

  42. Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R, Wang XW, Yokota J, Riabowol K, Harris CC (2001) DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci U S A 98:9671–9676

    Article  CAS  PubMed  Google Scholar 

  43. Loewith R, Meijer M, Lees-Miller SP, Riabowol K, Young D (2000) Three yeast proteins related to the human candidate tumor suppressor p33(ING1) are associated with histone acetyltransferase activities. Mol Cell Biol 20:3807–3816

    Article  CAS  PubMed  Google Scholar 

  44. Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol Cell Biol 22:835–848

    Article  CAS  PubMed  Google Scholar 

  45. Wagner MJ, Gogela-Spehar M, Skirrow RC, Johnston RN, Riabowol K, Helbing CC (2001) Expression of novel ING variants is regulated by thyroid hormone in the Xenopus laevis tadpole. J Biol Chem 276:47013–47020

    Article  CAS  PubMed  Google Scholar 

  46. Toyama T, Iwase H, Yamashita H, Hara Y, Sugiura H, Zhang Z, Fukai I, Miura Y, Riabowol K, Fujii Y (2003) p33(ING1b) stimulates the transcriptional activity of the estrogen receptor alpha via its activation function (AF) 2 domain. J Steroid Biochem Mol Biol 87:57–63

    Article  CAS  PubMed  Google Scholar 

  47. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK (2004) The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428:328–332

    Article  CAS  PubMed  Google Scholar 

  48. Ozer A, Wu LC, Bruick RK (2005) The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A 102:7481–7486

    Article  CAS  PubMed  Google Scholar 

  49. Piche B, Li G (2010) Inhibitor of growth tumor suppressors in cancer progression. Cell Mol Life Sci 67:1987–1999

    Article  CAS  PubMed  Google Scholar 

  50. Campos EI, Martinka M, Mitchell DL, Dai DL, Li G (2004) Mutations of the ING1 tumor suppressor gene detected in human melanoma abrogate nucleotide excision repair. Int J Oncol 25:73–80

    CAS  PubMed  Google Scholar 

  51. Vieyra D, Senger DL, Toyama T, Muzik H, Brasher PM, Johnston RN, Riabowol K, Forsyth PA (2003) Altered subcellular localization and low frequency of mutations of ING1 in human brain tumors. Clin Cancer Res 9:5952–5961

    CAS  PubMed  Google Scholar 

  52. Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, Tsujigiwa H, Yamachika E, Fukushima K, Beder L, Hirohata S, Ninomiya Y, Nishizaki K, Shimizu K, Nagai N (2005) Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene 356:109–117

    Article  CAS  PubMed  Google Scholar 

  53. Cengiz B, Gunduz E, Gunduz M, Beder LB, Tamamura R, Bagci C, Yamanaka N, Shimizu K, Nagatsuka H (2010) Tumor-specific mutation and down-regulation of ING5 detected in oral squamous cell carcinoma. Int J Cancer. doi: 10.1002/ijc.25224

  54. Coles AH, Liang H, Zhu Z, Marfella CG, Kang J, Imbalzano AN, Jones SN (2007) Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis. Cancer Res 67:2054–2061

    Article  CAS  PubMed  Google Scholar 

  55. Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64

    Article  CAS  PubMed  Google Scholar 

  56. Feng X, Hara Y, Riabowol K (2002) Different HATS of the ING1 gene family. Trends Cell Biol 12:532–538

    Article  CAS  PubMed  Google Scholar 

  57. Berardi P, Russell M, El-Osta A, Riabowol K (2004) Functional links between transcription, DNA repair and apoptosis. Cell Mol Life Sci 61:2173–2180

    Article  CAS  PubMed  Google Scholar 

  58. Ransom M, Dennehey BK, Tyler JK (2010) Chaperoning histones during DNA replication and repair. Cell 140:183–195

    Article  CAS  PubMed  Google Scholar 

  59. Cunliffe VT (2003) Memory by modification: the influence of chromatin structure on gene expression during vertebrate development. Gene 305:141–150

    Article  CAS  PubMed  Google Scholar 

  60. Jelinsky SA, Estep P, Church GM, Samson LD (2000) Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20:8157–8167

    Article  CAS  PubMed  Google Scholar 

  61. Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ Jr (2001) Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res 156:657–661

    Article  CAS  PubMed  Google Scholar 

  62. Sesto A, Navarro M, Burslem F, Jorcano JL (2002) Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc Natl Acad Sci U S A 99:2965–2970

    Article  CAS  PubMed  Google Scholar 

  63. Wood C, Snijders A, Williamson J, Reynolds C, Baldwin J, Dickman M (2009) Post-translational modifications of the linker histone variants and their association with cell mechanisms. FEBS J 276:3685–3697

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Dominguez M, Reyes JC (2009) SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim Biophys Acta 1789:451–459

    CAS  PubMed  Google Scholar 

  65. Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    Article  CAS  PubMed  Google Scholar 

  66. Wu RS, Panusz HT, Hatch CL, Bonner WM (1986) Histones and their modifications. CRC Crit Rev Biochem 20:201–263

    Article  CAS  PubMed  Google Scholar 

  67. Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K (2001) UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci 114:3455–3462

    CAS  PubMed  Google Scholar 

  68. Li J, Wang Y, Wong RP, Li G (2009) The role of ING tumor suppressors in UV stress response and melanoma progression. Curr Drug Targets 10:455–464

    Article  CAS  PubMed  Google Scholar 

  69. Larrieu D, Ythier D, Binet R, Brambilla C, Brambilla E, Sengupta S, Pedeux R (2009) ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Rep 10:1168–1174

    Article  CAS  PubMed  Google Scholar 

  70. He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K (2005) Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol 22:104–116

    Article  CAS  PubMed  Google Scholar 

  71. Ythier D, Larrieu D, Brambilla C, Brambilla E, Pedeux R (2008) The new tumor suppressor genes ING: genomic structure and status in cancer. Int J Cancer 123:1483–1490

    Article  CAS  PubMed  Google Scholar 

  72. Loewith R, Smith JS, Meijer M, Williams TJ, Bachman N, Boeke JD, Young D (2001) Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. J Biol Chem 276:24068–24074

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y, Wang J, Li G (2006) Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis. FEBS Lett 580:3787–3793

    Article  CAS  PubMed  Google Scholar 

  74. Han X, Feng X, Rattner JB, Smith H, Bose P, Suzuki K, Soliman MA, Scott MS, Burke BE, Riabowol K (2008) Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat Cell Biol 10:1333–1340

    Article  CAS  PubMed  Google Scholar 

  75. Ha S, Park S, Yun CH, Choi Y (2002) Characterization of nuclear localization signal in mouse ING1 homolog protein. Biochem Biophys Res Commun 293:163–166

    Article  CAS  PubMed  Google Scholar 

  76. Gong W, Suzuki K, Russell M, Riabowol K (2005) Function of the ING family of PHD proteins in cancer. Int J Biochem Cell Biol 37:1054–1065

    Article  CAS  PubMed  Google Scholar 

  77. Zhang X, Wang KS, Wang ZQ, Xu LS, Wang QW, Chen F, Wei DZ, Han ZG (2005) Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochem Biophys Res Commun 331:1032–1038

    Article  CAS  PubMed  Google Scholar 

  78. Russell MW, Soliman MA, Schriemer D, Riabowol K (2008) ING1 protein targeting to the nucleus by karyopherins is necessary for activation of p21. Biochem Biophys Res Commun 374:490–495

    Article  CAS  PubMed  Google Scholar 

  79. Sutherland JJ, Higgs RE, Watson I, Vieth M (2008) Chemical fragments as foundations for understanding target space and activity prediction. J Med Chem 51:2689–2700

    Article  CAS  PubMed  Google Scholar 

  80. Matthews JM, Bhati M, Lehtomaki E, Mansfield RE, Cubeddu L, Mackay JP (2009) It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. Curr Pharm Des 15:3681–3696

    Article  CAS  PubMed  Google Scholar 

  81. Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20:56–59

    Article  CAS  PubMed  Google Scholar 

  82. Pascual J, Martinez-Yamout M, Dyson HJ, Wright PE (2000) Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. J Mol Biol 304:723–729

    Article  PubMed  CAS  Google Scholar 

  83. Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31:35–40

    Article  CAS  PubMed  Google Scholar 

  84. Capili AD, Schultz DC, Rauscher IF, Borden KL (2001) Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J 20:165–177

    Article  CAS  PubMed  Google Scholar 

  85. Kwan AH, Gell DA, Verger A, Crossley M, Matthews JM, Mackay JP (2003) Engineering a protein scaffold from a PHD finger. Structure 11:803–813

    Article  CAS  PubMed  Google Scholar 

  86. Bottomley MJ, Stier G, Pennacchini D, Legube G, Simon B, Akhtar A, Sattler M, Musco G (2005) NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) disease. J Biol Chem 280:11505–11512

    Article  CAS  PubMed  Google Scholar 

  87. Gibbons RJ, Bachoo S, Picketts DJ, Aftimos S, Asenbauer B, Bergoffen J, Berry SA, Dahl N, Fryer A, Keppler K, Kurosawa K, Levin ML, Masuno M, Neri G, Pierpont ME, Slaney SF, Higgs DR (1997) Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain. Nat Genet 17:146–148

    Article  CAS  PubMed  Google Scholar 

  88. Saugier-Veber P, Drouot N, Wolf LM, Kuhn JM, Frebourg T, Lefebvre H (2001) Identification of a novel mutation in the autoimmune regulator (AIRE-1) gene in a French family with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Eur J Endocrinol 144:347–351

    Article  CAS  PubMed  Google Scholar 

  89. Elkin SK, Ivanov D, Ewalt M, Ferguson CG, Hyberts SG, Sun ZY, Prestwich GD, Yuan J, Wagner G, Oettinger MA, Gozani OP (2005) A PHD finger motif in the C terminus of RAG2 modulates recombination activity. J Biol Chem 280:28701–28710

    Article  CAS  PubMed  Google Scholar 

  90. Gozani O, Field SJ, Ferguson CG, Ewalt M, Mahlke C, Cantley LC, Prestwich GD, Yuan J (2005) Modification of protein sub-nuclear localization by synthetic phosphoinositides: evidence for nuclear phosphoinositide signaling mechanisms. Adv Enzyme Regul 45:171–185

    Article  CAS  PubMed  Google Scholar 

  91. Ragvin A, Valvatne H, Erdal S, Arskog V, Tufteland KR, Breen K, Yan AM, Eberharter A, Gibson TJ, Becker PB, Aasland R (2004) Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J Mol Biol 337:773–788

    Article  CAS  PubMed  Google Scholar 

  92. Denslow SA, Wade PA (2007) The human Mi-2/NuRD complex and gene regulation. Oncogene 26:5433–5438

    Article  CAS  PubMed  Google Scholar 

  93. Misra S, Miller GJ, Hurley JH (2001) Recognizing phosphatidylinositol 3-phosphate. Cell 107:559–562

    Article  CAS  PubMed  Google Scholar 

  94. Stenmark H, Aasland R, Driscoll PC (2002) The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett 513:77–84

    Article  CAS  PubMed  Google Scholar 

  95. Coscoy L, Sanchez DJ, Ganem D (2001) A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol 155:1265–1273

    Article  CAS  PubMed  Google Scholar 

  96. Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T (2002) The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9:945–956

    Article  CAS  PubMed  Google Scholar 

  97. Jones DR, Divecha N (2004) Linking lipids to chromatin. Curr Opin Genet Dev 14:196–202

    Article  CAS  PubMed  Google Scholar 

  98. Uchida D, Hatakeyama S, Matsushima A, Han H, Ishido S, Hotta H, Kudoh J, Shimizu N, Doucas V, Nakayama KI, Kuroda N, Matsumoto M (2004) AIRE functions as an E3 ubiquitin ligase. J Exp Med 199:167–172

    Article  CAS  PubMed  Google Scholar 

  99. Aravind L, Iyer LM, Koonin EV (2003) Scores of RINGS but no PHDs in ubiquitin signaling. Cell Cycle 2:123–126

    CAS  PubMed  Google Scholar 

  100. Scheel H, Hofmann K (2003) No evidence for PHD fingers as ubiquitin ligases. Trends Cell Biol 13:285–287, author reply 287–288

    Article  CAS  PubMed  Google Scholar 

  101. Bunce MW, Bergendahl K, Anderson RA (2006) Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta 1761:560–569

    CAS  PubMed  Google Scholar 

  102. Eberharter A, Vetter I, Ferreira R, Becker PB (2004) ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. EMBO J 23:4029–4039

    Article  CAS  PubMed  Google Scholar 

  103. Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kutateladze TG, Shi Y, Cote J, Chua KF, Gozani O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99

    Article  CAS  PubMed  Google Scholar 

  104. Pena PV, Musselman CA, Kuo AJ, Gozani O, Kutateladze TG (2009) NMR assignments and histone specificity of the ING2 PHD finger. Magn Reson Chem 47:352–358

    Article  CAS  PubMed  Google Scholar 

  105. Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442:100–103

    CAS  PubMed  Google Scholar 

  106. Lan F, Collins RE, De Cegli R, Alpatov R, Horton JR, Shi X, Gozani O, Cheng X, Shi Y (2007) Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448:718–722

    Article  CAS  PubMed  Google Scholar 

  107. Laherty CD, Billin AN, Lavinsky RM, Yochum GS, Bush AC, Sun JM, Mullen TM, Davie JR, Rose DW, Glass CK, Rosenfeld MG, Ayer DE, Eisenman RN (1998) SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell 2:33–42

    Article  CAS  PubMed  Google Scholar 

  108. Campos EI, Xiao H, Li G (2004) Generation of a polyclonal antibody specifically against the p33(ING1b) tumor suppressor. J Immunoassay Immunochem 25:71–80

    CAS  PubMed  Google Scholar 

  109. Sugasawa K, Akagi J, Nishi R, Iwai S, Hanaoka F (2009) Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol Cell 36:642–653

    Article  CAS  PubMed  Google Scholar 

  110. Feng X, Bonni S, Riabowol K (2006) HSP70 induction by ING proteins sensitizes cells to tumor necrosis factor alpha receptor-mediated apoptosis. Mol Cell Biol 26:9244–9255

    Article  CAS  PubMed  Google Scholar 

  111. Huang W, Zhang H, Davrazou F, Kutateladze TG, Shi X, Gozani O, Prestwich GD (2007) Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: chemistry, biology, and molecular modeling. J Am Chem Soc 129:6498–6506

    Article  CAS  PubMed  Google Scholar 

  112. Kaadige MR, Ayer DE (2006) The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding. J Biol Chem 281:28831–28836

    Article  CAS  PubMed  Google Scholar 

  113. Martin DG, Baetz K, Shi X, Walter KL, MacDonald VE, Wlodarski MJ, Gozani O, Hieter P, Howe L (2006) The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Mol Cell Biol 26:7871–7879

    Article  CAS  PubMed  Google Scholar 

  114. Palacios A, Garcia P, Padro D, Lopez-Hernandez E, Martin I, Blanco FJ (2006) Solution structure and NMR characterization of the binding to methylated histone tails of the plant homeodomain finger of the tumour suppressor ING4. FEBS Lett 580:6903–6908

    Article  CAS  PubMed  Google Scholar 

  115. Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, Heck AJ, D’Santos CS, Divecha N (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell 23:685–695

    Article  CAS  PubMed  Google Scholar 

  116. Shi X, Gozani O (2005) The fellowships of the INGs. J Cell Biochem 96:1127–1136

    Article  CAS  PubMed  Google Scholar 

  117. Bunce MW, Gonzales ML, Anderson RA (2006) Stress-ING out: phosphoinositides mediate the cellular stress response. Sci STKE 2006:pe46

    Article  PubMed  Google Scholar 

  118. Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4:349–360

    Article  CAS  PubMed  Google Scholar 

  119. Gonzalez L, Freije JM, Cal S, Lopez-Otin C, Serrano M, Palmero I (2006) A functional link between the tumour suppressors ARF and p33ING1. Oncogene 25:5173–5179

    CAS  PubMed  Google Scholar 

  120. Xin H, Yoon HG, Singh PB, Wong J, Qin J (2004) Components of a pathway maintaining histone modification and heterochromatin protein 1 binding at the pericentric heterochromatin in mammalian cells. J Biol Chem 279:9539–9546

    Article  CAS  PubMed  Google Scholar 

  121. Pena PV, Hom RA, Hung T, Lin H, Kuo AJ, Wong RP, Subach OM, Champagne KS, Zhao R, Verkhusha VV, Li G, Gozani O, Kutateladze TG (2008) Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 380:303–312

    Article  CAS  PubMed  Google Scholar 

  122. Vieyra D, Loewith R, Scott M, Bonnefin P, Boisvert FM, Cheema P, Pastyryeva S, Meijer M, Johnston RN, Bazett-Jones DP, McMahon S, Cole MD, Young D, Riabowol K (2002) Human ING1 proteins differentially regulate histone acetylation. J Biol Chem 277:29832–29839

    Article  CAS  PubMed  Google Scholar 

  123. Goeman F, Otto K, Kyrylenko S, Schmidt O, Baniahmad A (2008) ING2 recruits histone methyltransferase activity with methylation site specificity distinct from histone H3 lysines 4 and 9. Biochim Biophys Acta 1783:1673–1680

    Article  CAS  PubMed  Google Scholar 

  124. Kataoka H, Bonnefin P, Vieyra D, Feng X, Hara Y, Miura Y, Joh T, Nakabayashi H, Vaziri H, Harris CC, Riabowol K (2003) ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res 63:5785–5792

    CAS  PubMed  Google Scholar 

  125. Skowyra D, Zeremski M, Neznanov N, Li M, Choi Y, Uesugi M, Hauser CA, Gu W, Gudkov AV, Qin J (2001) Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J Biol Chem 276:8734–8739

    Article  CAS  PubMed  Google Scholar 

  126. Simpson F, Lammerts van Bueren K, Butterfield N, Bennetts JS, Bowles J, Adolphe C, Simms LA, Young J, Walsh MD, Leggett B, Fowles LF, Wicking C (2006) The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b. Exp Cell Res 312:73–85

    Article  CAS  PubMed  Google Scholar 

  127. Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM, Gudkov AV (1998) The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature 391:295–298

    Article  CAS  PubMed  Google Scholar 

  128. Binda O, Nassif C, Branton PE (2008) SIRT1 negatively regulates HDAC1-dependent transcriptional repression by the RBP1 family of proteins. Oncogene 27:3384–3392

    Article  CAS  PubMed  Google Scholar 

  129. Gong W, Russell M, Suzuki K, Riabowol K (2006) Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression. Mol Cell Biol 26:2947–2954

    Article  CAS  PubMed  Google Scholar 

  130. Sarker KP, Kataoka H, Chan A, Netherton SJ, Pot I, Huynh MA, Feng X, Bonni A, Riabowol K, Bonni S (2008) ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. J Biol Chem 283:13269–13279

    Article  CAS  PubMed  Google Scholar 

  131. Smith KT, Martin-Brown SA, Florens L, Washburn MP, Workman JL (2010) Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chem Biol 17(1):65–74

    Article  CAS  Google Scholar 

  132. Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP, Harrison K, Nabors LB, Benveniste EN (2008) The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 28:6632–6645

    Article  CAS  PubMed  Google Scholar 

  133. Champagne KS, Saksouk N, Pena PV, Johnson K, Ullah M, Yang XJ, Cote J, Kutateladze TG (2008) The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 72:1371–1376

    Article  CAS  PubMed  Google Scholar 

  134. Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Cote V, Yang XJ, Gozani O, Kutateladze TG, Cote J (2009) HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 33:257–265

    Article  CAS  PubMed  Google Scholar 

  135. Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256

    Article  CAS  PubMed  Google Scholar 

  136. Palacios A, Munoz IG, Pantoja-Uceda D, Marcaida MJ, Torres D, Martin-Garcia JM, Luque I, Montoya G, Blanco FJ (2008) Molecular basis of histone H3K4me3 recognition by ING4. J Biol Chem 283:15956–15964

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (MOP-84559 and MOP-93810) and the Canadian Dermatology Foundation to G. Li. R.P.C.W. is a recipient of a Terry Fox Foundation Research Studentship from Canadian Cancer Society Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguissa-Touré, AH., Wong, R.P.C. & Li, G. The ING family tumor suppressors: from structure to function. Cell. Mol. Life Sci. 68, 45–54 (2011). https://doi.org/10.1007/s00018-010-0509-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0509-1

Keywords

Navigation